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Random walks in modular scale-free networks with multiple traps
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Extensive empirical investigation has shown that a plethora of real networks synchronously exhibit scale-free
and modular structure and it is thus of great importance to uncover the effects of these two striking properties
on various dynamical processes occurring on such networks. In this paper, we examine two cases of random
walks performed on a class of modular scale-free networks with multiple traps located at several given nodes.
We first derive a formula of the mean first-passage time (MFPT) for a general network, which is the mean of the
expected time to absorption originating from a specific node, averaged over all nontrap starting nodes. Although
the computation is complex, the expression of the formula is exact; moreover, the computational approach and
procedure are independent of the number and position of the traps. We then determine analytically the MFPT
for the two random walks being considered. The obtained analytical results are in complete agreement with the
numerical ones. Our results show that the number and location of traps play an important role in the behavior
of the MFPT, since for both cases the MFPT grows as a power-law function of the number of nodes, but their
exponents are quite different. We demonstrate that the root of the difference in the behavior of MFPT is attributed
to the modular and scale-free topologies of the networks. This work can deepen the understanding of diffusion
on networks with modular and scale-free architecture and motivate relevant studies for random walks running on
complex random networks with multiple traps.
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I. INTRODUCTION

In the past decade, with a huge amount of data and
computational resources available, scientists have processed
and analyzed data of a wide variety of real systems in different
areas, leading to important advances in the understanding of
complex systems [1–4]. A large volume of empirical studies
showed that scale-free feature [5] and modular structure [6–8]
are two prominent properties that seem to be common to
real networks, especially biological and social networks. The
former implies that the networks obey a power-law degree
distribution as P (k) ∼ k−γ , with 2 < γ � 3, while the latter
means that the networks can be divided into groups (modules),
within which nodes are more tightly connected with each
other than with nodes outside. These two remarkable natures
constitute our fundamental understanding of the structure of
complex networks, which are relevant to other topological
features (i.e., average distance [9,10] and clustering coefficient
[8]), and have led to many popular topics of research in
network science, including explaining the origin of the scale-
free phenomenon [1,2], identifying the modules [11–15], and
finding their concrete applications [16,17].

It is well known that one of the ultimate goals for research
on complex networks is to make clear how the underlying
structural characteristics affect the dynamical processes de-
fined on networks [3,18]. Among various dynamical processes,
random walks have held continual interest within the scientific
community [19–35] because of their relevance to a wide
range of different applications to many fields [36,37]. In
particular, as an integral subject of random walks, the trapping
problem is closely related to numerous aspects in a great
many disciplines [38–41]. Over the past decades, scholars in a
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large interdisciplinary community have made a huge effort to
address the trapping problem in diverse networks, including
regular lattices [42], regular fractals [43–47], small-world
networks [48], and scale-free networks [49–55], among other
graphs [56–58].

Thus far, most previous works on random walks in complex
networks have focused on the case with a single trap fixed at
a given location, while work on the case with multiple traps is
much less common. In particular, research on the multiple-trap
problem in complex networks with modular organization
and scale-free structure is still lacking, despite the multiple-
trap issue having obvious applications to various aspects
[59] (description of particle-cluster aggregation [60,61], for
instance) and being relevant in diffusion-limited reactions in
chemical field [62] and modular and scale-free topologies
having vital influence on dynamical processes taking place
on networks [63–67].

In this paper, we study the classic random-walk problem for
a category of modular scale-free networks [7,8] with several
given nodes being occupied by immobile traps, which absorb
all particles visiting it. The basic quantity we are interested in
is the mean first-passage time (MFPT) [68] characterizing the
trapping process, which is defined as the average of expected
time for a particle starting off from a particular node until
first visiting one of the traps, averaged over all nontrap source
nodes. The networks we study are of a deterministic family,
which has proven to be an important tool in the field of complex
networks and has recently attracted much interest [69–81].

We first study the MFPT in a generic network and reduce
the problem of computing the MFPT to finding the sum
of elements of a matrix associated with the trapping issue.
Then, based on the deterministic recursive construction of the
modular scale-free networks being considered, we investigate
analytically the key quantity of MFPT for two cases of
particular arrangements of traps. In the first case, traps are
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placed on peripheral nodes; in the other case, traps are fixed
on those nodes farthest from the hub. For both cases, we
derive exactly the dominant scalings for the MFPT and show
that they produce a power-law function of the network size
with their exponents smaller than 1 but being different, which
is confirmed by the numerical results obtained via inverting
related matrices. The obtained results indicate that both the
number and the location of traps have a significant impact
on the behavior of the trapping. We demonstrate that the
high efficiency of both trapping processes and the distinction
between the behavior of the MFPT for the two random
walks are rested with the scale-free property and the modular
structure of the networks under consideration.

II. MODULAR SCALE-FREE NETWORKS

We first introduce the model for the modular scale-free
networks, which are built in an iterative way [7,8]. Let
Mg stand for the network model after g (g � 1) iterations
(i.e., number of generations). Initially (g = 1), the model is
composed of m (m � 3) nodes linked by m(m − 1)/2 edges
forming a complete graph, among which a node (e.g., the
central node in Fig. 1) is called hub (or root) node and the
other m − 1 nodes are named peripheral nodes. At the second
generation (g = 2), m − 1 replicas of M1 are created with the
m − 1 peripheral nodes of each copy being connected to the
root of the original M1. In this way, we obtain M2, the hub
and peripheral nodes of which are the hub of the original M1

and the (m − 1)2 peripheral nodes in the m − 1 duplicates of
M1, respectively. Supposing one has Mg−1, the next generation
network Mg can be obtained by adding m − 1 copies of Mg−1

to the primal Mg−1, with all peripheral nodes of the replicas
being linked to the hub of the original Mg−1 unit. The hub
of the original Mg−1 and the peripheral nodes of the m − 1
copies of Mg−1 form the hub node and peripheral nodes of Mg ,
respectively. Repeating indefinitely the two steps of replication
and connection, one obtains the modular scale-free networks.

FIG. 1. (Color online) Sketch of a network M3 for the limiting
case of m = 5. Note that the diagonal nodes are also linked to each
other; the edges are not visible.

Figure 1 illustrates a network M4 for the particular case of
m = 5.

Many interesting quantities and properties of the model can
be determined explicitly [8,82]. In Mg , the network size (num-
ber of nodes), denoted by Ng , is Ng = mg . All these nodes can
be classified into four distinct sets [82,83]: the peripheral node
set P , the locally peripheral node set Pz (1 � z < g), the set H
containing only the hub node of Mg , and the local hub set Hz

(1 � z < g). The number of nodes in each of these four sets is

|P | = (m − 1)g, (1)

|Pz| = (m − 1)zmg−(z+1), (2)

|H| = 1, (3)

and

|Hz| = (m − 1)mg−(z+1), (4)

respectively. For Mg , all nodes in a set have the same degree.
It has been obtained exactly that the degree for a node in sets
H, Hz, P , and Pz is, respectively,

Kh(g) =
g∑

gi=1

(m − 1)gi = m − 1

m − 2
[(m − 1)g − 1] , (5)

Kh,z(g) =
z∑

gi=1

(m − 1)gi = m − 1

m − 2
[(m − 1)z − 1] , (6)

Kp(g) = g + m − 2 , (7)

and

Kp,z(g) = z + m − 2 . (8)

In addition, it is easy to obtain that the average degree
of all nodes is approximately equal to a constant
2(m − 1)(3m − 2)/m in the limit of infinite g, showing
that the networks are sparse.

The model under consideration is in fact an extension of
the one proposed in Ref. [84] and studied in much detail in
Refs. [85–87]. It presents some typical features observed in a
variety of real-world systems [8,82]. Its degree distribution
follows a power-law scaling P (k) ∼ k−γ with a general
exponent γ = 1 + ln m/ ln(m − 1) belonging to the interval
(2,2.585]. Its average clustering coefficient tends to a large
constant dependent on m and its average distance grows
logarithmically with the network order [88], both of which
show that the model is small world [89]. In addition, the
betweenness distribution P (b) of nodes also obeys a power-law
behavior P (b) ∼ b−2 with the exponent independent of the
parameter m. In particular, the whole class of networks shows
a remarkable modular structure. These peculiar structural
properties make the networks unique within the category of
complex networks. It is thus interesting to address dynamical
processes happening on them. The main purpose of this work
is to study random walks on this network family with multiple
traps located on some special nodes.

III. FORMULATION OF RANDOM WALKS
WITH MULTIPLE TRAPS ON A NETWORK

In this section, we formulate the problem of random walks
on the network M with multiple traps, which is a discrete-time
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random walk of a particle in the presence of several perfect
traps placed on certain nodes. At each time step, the particle
jumps with equal probability from its current location to one of
its nearest neighbors. If the particle meets one of the traps, then
it is absorbed. At last, the particle will be inevitably absorbed
by the traps, regardless of its starting position [90,91].

It is well known that an arbitrary network can be completely
represented by its adjacency matrix. For M , its adjacency
matrix A is a matrix consisting of entries 0 or 1, with an
order N × N (N is the number of nodes in M). The (i,j )
element aij of A is defined as follows: aij = 1 if i and j are
neighbors and aij = 0 otherwise. Then the degree di of node
i is given by di = ∑N

j=1 aij , the diagonal degree matrix Z
associated with M is Z = diag(d1,d2, . . . ,di, . . . ,dN ), and the
corresponding normalized Laplacian matrix of M is defined
to be L = I − Z−1 A, where I is the identity matrix with order
N × N .

We use � to denote the set of traps and |�| to represent the
number of traps. We are concerned with the expected time the
particle spends, starting from a source node, before it falls on
one of the traps for the first time. Let Ti be the expected time,
frequently called first-passage time (FPT) or trapping time,
for a particle first arriving at any one of the traps, given that it
starts from node i. It is clear that for any node i ∈ �, we have
Ti = 0. The set of this important quantity satisfies the relation

Ti =
∑

j

wij Tj + 1, (9)

where i∈̄� and wij is transition probability for the particle
of going from node i to node j . According to the definition
of the random-walk problem, it is not difficult to know that
wij = aij /di , which is exactly the (i,j ) element of the matrix
Z−1 A.

In order to facilitate the description, we distinguish all nodes
in M by assigning each of them a unique number. We label
consecutively all nodes, excluding those in �, from 1 to N −
|�| and trap nodes are numbered from N − |�| + 1 to N . Then
Eq. (9) can be rewritten in matrix form as

T′ = W′ T′ + e, (10)

where T′ = [T1,T2, . . . ,TN−|�|]� (the superscript � of the vec-
tor represents transpose) is an (N − |�|)-dimensional vector, e
is the (N − |�|)-dimensional unit vector (1,1, . . . ,1)�, and W′

is the transition matrix corresponding to the trapping problem.
Equation (10) can be further recast as

T′ = [L′]−1 e, (11)

where

L′ = I′ − W′, (12)

with I′ being the (N − |�|) × (N − |�|) identity matrix.
It should be mentioned that the considered random walk is

in fact a Markov process and Eq. (12) is the fundamental matrix
of the Markov chain representing such an unbiased random
walk. We also note that the matrix I′ − W′ on the right-hand
side of Eq. (12) is actually a submatrix of the normalized
discrete Laplacian matrix L of M , which is obtained from L
by suppressing the last |�| rows and columns that correspond
to the trap nodes.

Equation (11) shows that trapping time Ti can be expressed
in terms of the entries l−1

ij of inverse matrix of L′ (i.e., a
submatrix of L). Concretely, Ti is provided by

Ti =
N−|�|∑
j=1

l−1
ij , (13)

which accounts for the Markov chain representing the random
walk: The entry l−1

ij of the fundamental matrix [L′]−1 for the
Markov process represents the expected number of times the
particle visits node j in the case that it starts off from node i

(see Ref. [92] for a single trap). Then the MFPT 〈T 〉, which
is defined as the average of Ti over all initial nodes distributed
uniformly over nodes in M including the traps [93], is given by

〈T 〉 = 1

N

N∑
i=1

Ti = 1

N

N−|�|∑
i=1

Ti = 1

N

N−|�|∑
i=1

N−|�|∑
j=1

l−1
ij . (14)

Thus, on the basis of the definition of the unbiased random
walks, we have derived the numerical yet exact solution to the
MFPT 〈T 〉 for random walks on any network with multiple
traps, independently of the number and location of the traps.
We note that our derivation is a reformulation of the backward
equation satisfied by the MFPT and that Eq. (14) can also be
found in the literature in several equivalent forms [90,91].

Equation (14) is very important since it reduces the problem
of calculating the MFPT 〈T 〉 to computing the sum of the
elements of the matrix [L′]−1 and can be used to check
the results for 〈T 〉 derived by other methods, at least for
networks with a small number of nodes. However, it is notable
that although the above computational method, process, and
result are applicable to the trapping issue on all networks,
the derivation of Eq. (14) requires inverting the matrix L′

with an order (N − |�|) × (N − |�|). Since the computation
of inverting the matrix L′ puts heavy demands on time and
memory for large networks, by using Eq. (14) we can directly
compute 〈T 〉 only for networks with small size. In particular,
by applying the approach of inverting the matrix, it appears
very difficult, even impossible, to get the exact dominating
scaling of 〈T 〉 characterizing the efficiency of the trapping
problem. Therefore, it is of significant practical importance to
seek an alternative method of computing 〈T 〉 even for specific
networks, which is able to reduce the computational effort of
the method of inverting the matrix.

IV. SCALINGS OF THE MFPT FOR RANDOM WALKS
ON MODULAR NETWORKS WITH MULTIPLE TRAPS

Here we study two particular trapping problems defined
in the modular scale-free networks Mg . We first address the
case that traps are located at all peripheral nodes; then we
consider the case that traps are fixed on those nodes farthest
from the main hub. We will show that the special recursive
construction of the modular scale-free networks and the
particular selections made for the trap locations allow for an
analytical treatment of the MFPT to the traps.

A. Determination of intermediate variables

Prior to studying the MFPT to the traps, we first define
some intermediate variables and determine their values. We
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denote by T P
g the FPT for a walker starting from an arbitrary

peripheral node of Mg to visit the hub for the first time and by
T H

g the FPT spent by a particle initially located at the hub to
first visit any peripheral node. In Appendix A, we give detailed
derivations for T H

g and T P
g , which read

T H
g =

(
3 − 5m − 2

m2

)(
m

m − 1

)g

− 1 (15)

and

T P
g =

(
3m − 8 + 7m − 2

m2

) (
m

m − 1

)g

− 2m + 3, (16)

respectively.
Equations (15) and (16) are very useful for the following

derivation of the exact formula for the MFPT to the targets. We
note that Eqs. (15) and (16) have also been derived in Ref. [66]
by using the technique of generating functions [94], but the
approach used here is different from and relatively easier than
the previous one.

B. Exact solution to the MFPT for random walks
with traps located at peripheral nodes

After obtaining the intermediate quantities, we are now in
a position to consider random walks on networks Mg with all
the (m − 1)g peripheral nodes being occupied by traps. Our
goal in this case is to determine the MFPT denoted by 〈T 〉g ,
which is the average of the FPT for a walker originating from
a node in Mg to first visit any target over all starting points
including the traps. In order to find 〈T 〉g , we introduce another
quantity 〈H 〉g , defined as the FPTs of all nodes to the hub.
From the structure of the networks we can easily establish the
following recursive relations for 〈T 〉g and 〈H 〉g:

〈T 〉g = 1

m

(〈H 〉g−1 + T H
g

) + m − 1

m
〈T 〉g−1 (17)

and

〈H 〉g = 1

m
〈H 〉g−1 + m − 1

m

(〈T 〉g−1 + T P
g

)
. (18)

Equations (17) and (18) can be rewritten as

m〈T 〉g − (m − 1)〈T 〉g−1 − T H
g = 〈H 〉g−1 (19)

and

m〈H 〉g − 〈H 〉g−1 = (m − 1)
(〈T 〉g−1 + T P

g

)
. (20)

From Eq. (19) we further have

m〈T 〉g+1 − (m − 1)〈T 〉g − T H
g+1 = 〈H 〉g, (21)

which, together with Eqs. (19) and (20), yields

m
[
m〈T 〉g+1 − (m − 1)〈T 〉g − T H

g+1

]
−[

m〈T 〉g − (m − 1)〈T 〉g−1 − T H
g

]
= m〈H 〉g − 〈H 〉g−1

= (m − 1)
(〈T 〉g−1 + T P

g

)
, (22)

that is,

〈T 〉g+1 − 〈T 〉g = 1

m2

[
mT H

g+1 − T H
g + (m − 1)T P

g

]
. (23)

Substituting Eqs. (15) and (16) into Eq. (23) and con-
sidering the initial condition 〈T 〉2 = m + 1 − 2/m, we can
solve inductively Eq. (23) to obtain the following rigorous
expression:

〈T 〉g = (m − 1)(3m − 2)(m2 − 2m + 2)

m3

(
m

m − 1

)g

− 2(m − 1)2

m2
g − 3m + 10 − 12

m
+ 4

m2
. (24)

Plugging this result for 〈T 〉g into Eq. (18) and using the initial
condition 〈H 〉2 = m/(m − 1), Eq. (18) is solved to yield

〈H 〉g = 2(3m − 2)(m − 1)3

m3

(
m

m − 1

)g

− 2(m − 1)2

m2
g − m − 1

m2
(5m2 − 10m + 4). (25)

To confirm our analytic formulas, we have compared them
with the numerical values from the method of inverting the
matrix provided by Eq. (14); see Fig. 2. For various values of
m and g, the results for 〈T 〉g and 〈H 〉g obtained separately
from Eqs. (24) and (25) are in complete agreement with
those from Eq. (14). This agreement serves as a mutual test
of our numerical solution and analytical formulas, providing
important evidence of the validity of Eqs. (14), (24), and (25).

We proceed to represent 〈T 〉g and 〈H 〉g as functions of
network size Ng to obtain an expression of their dependence
on Ng . From Ng = mg we have g = ln Ng/ ln m and mg/

(m − 1)g = (Ng)1−ln(m−1)/ ln m, which enables us to recast
Eqs. (24) and (25) in terms of Ng as

〈T 〉g = (m − 1)(3m − 2)(m2 − 2m + 2)

m3
(Ng)1−ln(m−1)/ln m

− 2(m − 1)2

m2

ln Ng

ln m
− 3m + 10 − 12

m
+ 4

m2
(26)

and

〈H 〉g = 2(3m − 2)(m − 1)3

m3
(Ng)1−ln(m−1)/ln m

− 2(m − 1)2

m2

ln Ng

ln m
− m − 1

m2
(5m2 − 10m + 4).

(27)

Equations (26) and (27) imply that in the limit of large
network size (i.e., Ng → ∞), both 〈T 〉g and 〈H 〉g grow
asymptotically as power-law functions of network size Ng

with the same exponent η(m) = 1 − ln(m − 1)/ ln m:

〈T 〉g ∼ (Ng)η(m) = (Ng)1−ln(m−1)/ln m (28)

and

〈H 〉g ∼ (Ng)η(m) = (Ng)1−ln(m−1)/ln m. (29)

Obviously, the exponent η(m) is smaller than 1, showing that
both 〈T 〉g and 〈H 〉g scale sublinearly with the network size.

We note that the scaling in Eq. (28) has been previously
derived in Ref. [66] by using the theory of generating
functions, the computation process of which is a little complex.
Equation (28) shows that when the hub node is considered an
immobile trap, the trapping efficiency is high (even the highest
among all networks [35,53]), which can be elaborated as
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FIG. 2. (Color online) Mean first-passage times 〈T 〉g and 〈H 〉g as functions of the iteration g on a log-log scale for the two cases of m = 3
and 4. The open symbols represent the numerical results obtained by direct calculation from Eq. (14); the solid symbols correspond to the
rigorous values given by Eq. (24) or (25).

follows. In Mg the average distance between the hub and other
nodes is only half of the average distance between all pairs
on nodes [88], suggesting that the hub node is spatially closer
than any other node. In contrast, the degree of the hub node is
the highest, which is why the MFPT to the hub is very low.

C. Behavior of the MFPT for random walks with traps
fixed at farthest nodes

We now focus on the trapping problem with traps being
placed on the nodes farthest from the main hub, which are
expected be more difficult to visit compared with the peripheral
nodes [95].

1. Related definitions and quantities

In Mg the maximum value of the distance from the main
hub to other nodes is g. We let Fg denote the set of those
nodes in Mg at a distance g from the main hub of Mg , hereafter
called the farthest nodes of Mg , and |Fg| denote the cardinality
(number of elements in a set) of Fg . By construction, Mg

is composed of a primal Mg−1 and m − 1 copies of Mg−1,
denoted separately by M

(x)
g−1 (x = 1,2, . . . ,m − 1). For M1,

its farthest nodes are exactly its m − 1 peripheral nodes; for
M2, its farthest nodes correspond to the hub nodes of all M

(x)
1 .

Proceeding analogously, for g � 3, the farthest nodes of Mg

must belong to all subgraphs M
(x)
g−1 and the farthest nodes of the

primal central subgraphs (i.e., Mg−2) forming M
(x)
g−1 constitute

Fg . Thus we have

|Fg| = (m − 1)|Fg−2|. (30)

Considering |F1| = m − 1 and |F2| = m − 1, the recursive
relation can be solved to obtain

|Fg| =
{

(m − 1)(g+1)/2, g is odd

(m − 1)g/2, g is even.
(31)

Next we concentrate on the MFPT from the hub to
the farthest nodes in Mg , which will be denoted by 〈T 〉Hg
henceforth since, as will be shown, it has the same scaling
as that of the average of MFPTs to the farthest nodes Fg ,
taken over all starting points. For a convenient description
of the computation for the MFPT to the farthest nodes, we
introduce more variables. For Mg , let Hg and Rg express the
sets of the main hub and peripheral nodes, respectively. In
addition, for those nodes of Mg that belong to M

(x)
g−1, we

can further classify them in the following way. Let Hg−n

(n = 1,2, . . . ,g − 1) denote the set of those local hubs that are
directly connected to g − n classes of local peripheral nodes
in Pz and Rg−n (n = 1,2, . . . ,g − 1) stand for the set of the
local peripheral nodes whose neighbors are g − n different
local hubs belonging to Hz. It is easy to verify that the
respective degrees of nodes in Rg−n and Hg−n are KR

g−n =
m − 2 + g − n and KH

g−n = ∑g−n

i=1 (m − 1)i , respectively.

2. Exact solution to the MFPT from the hub to farthest nodes

According to the structure of Mg , for a walker starting from
the main hub, in order to reach the farthest nodes, it should
follow the path Hg→Rg→Hg−1→Rg−2→Hg−3→· · · →
Rg−(n−2) → Hg−(n−1)→Rg−n→Hg−(n+1)→Rg−(n+2)→ · · · →
R1 (or H1). Then it is natural to define the following quantities.
Let Rg(n) and Hg(n) represent, respectively, the FPT from a
node in Rg−n to any of its neighboring nodes in Hg−(n+1) and
the FPT from a node in Hg−n to any of its neighbors belonging
to Rg−(n+1). In Appendix B, we report the derivation for Rg(n)
and Hg(n), the exact expressions for which are

Rg(n) = (m − 1)n/2+1

[
3m − 2

m

(
m

m − 1

)g

− 2

]

− 3m − 2

m − 1

(
m

m − 1

)g−n−3

+ 1 (32)
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and

Hg(n) = (m − 1)(n+3)/2

[
3m − 2

m

(
m

m − 1

)g

− 2

]

− (3m − 2)

(
m

m − 1

)g−n−3

+ 2m − 3, (33)

respectively.
Using the obtained intermediate quantities, we can derive

an exact formula for 〈T 〉Hg . We distinguish two cases: (i) g is
odd and (ii) g is even. For odd g we have

〈T 〉Hg = T H
g +

(g−1)/2−1∑
i=0

Rg(2i) +
(g−1)/2−2∑

i=0

Hg(2i + 1)

+ (m − 1)Rg(g − 3) + m. (34)

By plugging Eqs. (32) and (33) into Eq. (34) and doing some
algebra, we find a closed-form solution to 〈T 〉Hg given by

〈T 〉Hg = 3m − 2

m − 2

(
m

m − 1

)g

(m − 1)(g+1)/2

− 2m

m − 2
(m − 1)(g+1)/2

− (m − 1)(3m − 2)(m2 − 2m + 3)

(m − 2)(2m − 1)

(
m

m − 1

)g

+ (m − 1)g + (m − 1)(3m3 − 9m2 + 14m − 4)

(m − 2)(2m − 1)
.

(35)

When g is even, it is not difficult to reach the following
expression:

〈T 〉Hg = T H
g +

g/2−2∑
i=0

Rg(2i) +
g/2−2∑
i=0

Hg(2i + 1)

+Hg(g − 3) + m. (36)

Inserting Eqs. (32) and (33) into Eq. (36), after some algebra,
the explicit expression for 〈T 〉Hg is obtained, which reads

〈T 〉Hg = 2(3m − 2)

(m − 2)m

(
m

m − 1

)g

(m − 1)g/2+1

− 4

m − 2
(m − 1)g/2+1

− (m − 1)(3m − 2)(m2 − 2m + 3)

(m − 2)(2m − 1)

(
m

m − 1

)g

+ (m − 1)g + 3m4 − 11m3 + 19m2 − 14m + 4

(m − 2)(2m − 1)
.

(37)

To check the validity of Eqs. (35) and (37), we also compute
〈T 〉Hg numerically by using the approach of inverting the
related matrix; see Eq. (13). The results obtained by analytical
and numerical methods completely agree with each other. The
comparison is shown in Fig. 3. Equation (35), together with
Eq. (37), indicates that for large networks, i.e., Ng → ∞,

〈T 〉Hg ∼ (Ng)θ(m) = (Ng)1−ln(m−1)/(2 ln m), (38)

FIG. 3. (Color online) Mean first-passage time 〈T 〉H
g as a function

of generation g on a log-log scale for two special cases of m = 3 and
4. The open symbols indicate the numerical results obtained by direct
calculation from Eq. (13); the solid symbols display the analytical
values provided by Eqs. (35) and (37).

with the exponent θ (m) = 1 − ln(m − 1)/(2 ln m) smaller
than 1.

Thus far we have found the rigorous formula for the MFPT
〈T 〉Hg to farthest nodes in Mg and its dependence on network
size Ng . We stress that the analytical computation for the
MFPT 〈T 〉g to the farthest nodes that average all starting
points in Mg is rather lengthy and awkward. However, it is
easy to infer that when g is large enough, the dominant term
of 〈T 〉g also increases as a power-law function of network size
Ng with an exponent identical to that of 〈T 〉Hg , which can be
understood from the following heuristic explanation. Note that
Mg consists of m subgraphs, which are copies of Mg−1. For
those nodes in the central subgraph, their MFPT to the farthest
nodes is equal to 〈T 〉Hg + 〈H 〉g−1, the dominant term of which
is 〈T 〉Hg ; for nodes in each of the m − 1 fringe subgraphs

M
(x)
g−1 (x = 1,2, . . . ,m − 1), their MFPT to the farthest nodes

is identical but smaller than 〈T 〉Hg . Hence, for all nodes in
Mg , the dominating term of the MFPT 〈T 〉g is proportional to
(Ng)θ(m), but its prefactor may be different from that of 〈T 〉Hg .

D. Result analysis

Equations (28) and (38) show that when traps are positioned
at several particular nodes, the MFPTs to the target node are
very small, which scale sublinearly with the network order.
When either peripheral nodes or farthest nodes are occupied by
traps, the characteristic exponent η(m) or θ (m) is a decreasing
function of m: When the parameter m increases from 3 to ∞,
both η(m) and θ (m) drop and are close to zero. Therefore,
the efficiency of the random-walk process is reliant on m:
The larger the parameter m, the more efficient the random-
walk process. The fact that both trapping processes are very
efficient demonstrates that the modular scale-free networks
being studied exhibit an efficient configuration for random
walks with traps positioned at certain given nodes.
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In contrast, for each given parameter m, η(m) is smaller than
θ (m), which implies that when traps are located at peripheral
nodes, the trapping efficiency is higher than that of the case
when traps are placed on farthest nodes. Thus, the two trapping
processes defined on the networks under consideration display
rich behavior in the context of MFPTs to the traps. The
difference between η(m) and θ (m) shows that the number
and location of traps sensitively affect the behavior of random
walks on the modular scale-free networks.

Actually, the intrinsic structure of the modular scale-free
networks is responsible for the high efficiency of random
walks performing on them with certain nodes being occupied
by traps. In these networks, there are many small highly
integrated clusters, which group into a few larger but less
compact modules linked by local hub nodes; see Fig. 1. These
relatively large modules combine to form even larger and fewer
groups, which are further joined to shape a fine modular and
scale-free architecture, a topology that accounts for the fast
diffusion phenomenon in Mg .

In the case that traps are placed on peripheral nodes, when a
particle originates from a node in a duplicate Mg−1 (an element
of Mg), it will either be directly trapped by one of the traps or
jump to local hub nodes in a few steps. These local hubs play
a bridge role linking different small modules together. After
arriving at local hub nodes, the particle can be easily trapped
in a short time. In contrast, if the particle starts off from a node
in the original Mg−1 (the central part of Mg), it will easily visit
local hub nodes or the hub first, through which it can find the
way to one of the traps quickly. Thus, the particle can drop
into the traps very fast wherever it starts to jump, which can
be understood from the above heuristic argument based on the
inherent structure of the considered networks.

When the traps are fixed on the farthest nodes, to find a
garget, the walker must first visit the local hubs and local
peripheral nodes of a larger and sparser cluster, starting from
which it continues to arrive at the local hubs and local
peripheral nodes of smaller and denser groups. From Eqs. (32)
and (33) we know that the expected time between local hub
nodes and local peripheral nodes in inner subgraphs rely on
their size or deepness (i.e., g − n): The smaller the value of
g − n, the smaller the size of inner subgraphs and the higher
the expected time. This can account for the main reason the
farthest nodes are more difficult to reach than the peripheral
nodes.

V. CONCLUSION

We have studied the random-walk dynamics on a family
of modular scale-free networks with multiple traps, which
exhibit remarkable characteristics observed for various real-
life networks, such as social and biological networks. We
first deduced a general formula for the MFPT to the traps
in a generic network, which is expressed in terms of several
elements of a matrix associated with the trapping problem.
Then we studied the MFPT for two trapping issues on the
studied networks with two different arrangements of targets.
In the first case, peripheral nodes are treated as traps; in the
second case, farthest nodes work as traps.

For the two trapping problems, we studied both numerically
and analytically the MFPT to traps, the results of which are

compatible with each other. Our results show that in both
cases, the MFPT varies as a power-law function of network
size with the exponent depending on the parameter m, which
is lower than 1 in the full range of m. Thus, the studied
networks display an efficient architecture in favor of diffusion.
Moreover, we demonstrated that, compared with the second
case, the diffusion is faster in the first case, which indicates that
the transport efficiency relies on the number and location of the
absorbing nodes. We also showed that the modular topology,
together with the scale-free behavior, is responsible for the
quick diffusion processes, as well as the scaling difference
of the MFPT for the two trappings running on the networks
addressed. We expect that our work can provide insight into
designing networks with a structure in favor of diffusion.
Finally, it should be mentioned that the method developed
here applies only to very specific sets of traps and is hard to
generalize to other sets of traps.
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APPENDIX A: DERIVATION OF T P
g AND T H

g

According to the particular structure of the networks, for
any g > 1, the two quantities T P

g and T H
g obey the following

recursion relations:

T P
g = 1

(m − 2) + g

[
1 + (m − 2)

(
1 + T P

g

)

+
g−1∑
i=1

(
1 + T H

i + T P
g

)]
(A1)

and

T H
g = 1

g∑
i=1

(m − 1)i

[
(m − 1)g

+
g−1∑
i=1

(m − 1)i
(
1 + T P

i + T H
g

)]
. (A2)

The three terms on the right-hand side (rhs) of Eq. (A1) can
be explained as follows. The first term is based on the fact that
the walker takes only one time step to first reach the hub. The
second term describes the process by which the particle first
jumps to one of its m − 2 neighbors belonging to P in one
time step and then takes T P

g more steps to first get to the target
node. The last term accounts for the fact that the walker first
makes a jump to a local hub node belonging to Hz, then takes
T H

i time steps, starting off from the local hub, to reach any
node in P , and continues to jump T P

g more steps to reach the
target node for the first time.

Analogously, the two terms on the rhs of Eq. (A2) are based
on the following two processes. The first term describes the
fact that the walker, starting from the hub, requires only one
time step to hit a peripheral node. The second term explains
such a process that the walker, starting off from the hub, first
jumps to a local peripheral node belonging to Pz in one time
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step, then makes T P
i jumps to the hub, and proceeds to any

node in P , taking T H
g more time steps.

After merging similar items, Eqs. (A1) and (A2) can be
rewritten as

T P
g = (m − 2) + g +

g−1∑
i=1

T H
i (A3)

and

T H
g = 1

(m − 1)g

[
g∑

i=1

(m − 1)i +
g−1∑
i=1

(m − 1)iT P
i

]
, (A4)

respectively. Equations (A3) and (A4) lead to

T P
g+1 − T P

g = 1 + T H
g (A5)

and

T H
g+1 − 1

m − 1
T H

g = 1 + 1

m − 1
T P

g . (A6)

According to Eq. (A6), we obtain(
T H

g+2 − 1

m − 1
T H

g+1

)
−

(
T H

g+1 − 1

m − 1
T H

g

)

= 1

m − 1

(
T P

g+1 − T P
g

) = 1

m − 1

(
1 + T H

g

)
, (A7)

where the relation provided in Eq. (A5) was used. Applying
the initial condition T H

2 = 2m−1
m−1 , we solve Eq. (A7) to obtain

T H
g =

(
3 − 5m − 2

m2

) (
m

m − 1

)g

− 1. (A8)

Inserting the result for T H
g into Eq. (A5), we arrive the exact

formula for T P
g given by

T P
g =

(
3m − 8 + 7m − 2

m2

)(
m

m − 1

)g

− 2m + 3. (A9)

APPENDIX B: DERIVATION OF Rg(n) AND Hg(n)

For the two quantities Rg(n) and Hg(n), the following
relations hold:

Rg(n) = 1

KR
g−n

{
(m − 2)[1 + Rg(n)]

+ [1 + Hg(n − 1) + Rg(n)] + 1 + [2 + Rg(n)]

+
g−(n+2)∑

i=2

[
1 + T H

i + Rg(n)
]}

(B1)

and

Hg(n) = 1

KH
g−n

{
(m − 1)g−n[1 + Rg(n − 1) + Hg(n)]

+ (m − 1)g−(n+1) + (m − 1)[m + Hg(n)]

+
g−(n+2)∑

i=2

(m − 1)i
[
1 + T P

i + Hg(n)
]}

. (B2)

Equation (B1) can be elaborated as follows. Originating from
a node in Rg−n, the particle can jump to one of the m − 2

neighboring nodes belonging to Rg−n, from which it continues
to jump Rg(n) steps to first visit a target; this is accounted for
by the first term on the rhs. Alternatively, the walker can go to
a local hub belonging to Hg−(n−1), then takes time Hg(n − 1)
to reach a neighbor in Rg−n, and proceeds to bounce Rg(n)
steps to hit a target for the first time; this process is explained
by the second term. The third term describes the process that
the walker goes directly to a target node. The fourth term
represents the process by which the walker first jumps to a
neighbor belonging to Hg−(g−1), makes a move returning to a
node in Rg−n, and then walks continuously in time Rg(n) to
arrive at a destination node. Finally, the last sum term explains
the fact that the particle goes to a local hub in Hg−i [2 � i �
g − (n + 2)], from which it takes an average time T H

i to return
to one of its neighbors in Rg−n, and then moves on average
Rg−n steps to get to a target. Analogously, we can explain
Eq. (B2).

After some algebra, Eqs. (B1) and (B2) can be simplified
to

Rg(n) = m − 2 + g − n + Hg(n − 1) + 1 +
g−(n+2)∑

i=2

T H
i

(B3)

and

Hg(n) = (m − 1)n+1−g

g−n∑
i=1

(m − 1)i + (m − 1)Rg(n − 1)

+ (m − 1)n+3−g

+ (m − 1)n+1−g

g−(n+2)∑
i=2

[
(m − 1)iT P

i

]
. (B4)

Inserting Eq. (B4) into Eq. (B3) and utilizing the initial
condition

Rg(0) = m − 1 + g + T H
g +

g−2∑
i=2

T H
i

= (m − 1)(3m − 2)(m2 − m + 1)

m

(
m

m − 1

)g

− 2m + 3,

Eq. (B4) is solved to get

Rg(n) = (m − 1)n/2+1

[
3m − 2

m

(
m

m − 1

)g

− 2

]

− 3m − 2

m − 1

(
m

m − 1

)g−n−3

+ 1. (B5)

Substituting this expression for Rg(n) into Eq. (B4) and solving
Eq. (B4), we obtain

Hg(n) = (m − 1)(n+3)/2

[
3m − 2

m

(
m

m − 1

)g

− 2

]

− (3m − 2)

(
m

m − 1

)g−n−3

+ 2m − 3. (B6)
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