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Nonstationary heat conduction in one-dimensional models with substrate potential

O. V. Gendelman,1,* R. Shvartsman,1 B. Madar,1 and A. V. Savin2

1Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
2Semenov Institute of Chemical Physics, Russian Academy of Sciences, RU-117977 Moscow, Russia

(Received 14 August 2011; published 3 January 2012)

The paper investigates nonstationary heat conduction in one-dimensional models with substrate potential. To
establish universal characteristic properties of the process, we explore three different models: Frenkel-Kontorova
(FK), phi4+ (φ4+), and phi4− (φ4−). Direct numeric simulations reveal in all these models a crossover from
oscillatory decay of short-wave perturbations of the temperature field to smooth diffusive decay of the long-wave
perturbations. Such behavior is inconsistent with the parabolic Fourier equation of heat conduction and clearly
demonstrates the necessity for hyperbolic corrections in the phenomenological description of the heat conduction
process. The crossover wavelength decreases with an increase in the average temperature. The decay patterns of
the temperature field almost do not depend on the amplitude of the perturbations, so the use of linear evolution
equations for the temperature field is justified. In all models investigated, the relaxation of thermal perturbations
is exponential, contrary to a linear chain, where it follows a power law. The most popular lowest-order hyperbolic
generalization of the Fourier law, known as the Cattaneo-Vernotte or telegraph equation, is also not valid for
the description of the observed behavior of the models with the substrate potential, since the characteristic
relaxation time in an oscillatory regime strongly depends on the excitation wavelength. For some of the models,
this dependence seems to obey a simple scaling law.
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I. INTRODUCTION

The relationship between empiric equations of heat conduc-
tion (Fourier law) and the microstructure of solid dielectrics
is known to be one of the oldest and most elusive unsolved
problems in solid state physics [1,2]. The classic solution
for the problem suggested by Peierls [3] was questioned
after the seminal numeric experiment of Fermi, Pasta, and
Ulam [4], which disproved the common belief concerning
fast thermalization and mixing in nonintegrable systems with
weak nonlinearity. Despite the large amount of work done,
the necessary and sufficient conditions for a microscopic
model of a solid to obey macroscopically the Fourier law
with finite and size-independent heat conduction coefficients
[4–16] are not known yet. Numerous anomalies in the heat
transfer in microscopic models of dielectrics were revealed
by means of direct numeric simulation over recent years,
including the qualitatively different behavior of models of
different types (with and without the substrate potential) and
dimensionality [1]. To date, it is believed that in one dimension
in microscopic models with conserved momentum, the heat
conduction coefficient diverges in the thermodynamic limit
(as the chain length N goes to infinity) as κ ∼ Nγ with γ

varying in the interval 0.3–0.4 [1]. The only known exception
with a convergent heat conduction coefficient is a chain of
coupled rotators [8,9]. As for the models without the moment
conservation, their heat conduction is convergent [10,14], with
the exception of integrable models [11]. In two dimensions,
the divergence still exists [1], although it is reported to be of
logarithmic rather than power-law type. It is believed that in
three dimensions the heat conduction coefficient will converge,
although some alternative data exist [15,16].
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The vast majority of results obtained to date in the field
of microscopic foundations of heat conduction dealt with sta-
tionary problem, with steady heat flux under constant thermal
gradient. In all these cases the macroscopic law to be verified
was the common Fourier law of heat conduction. However, it is
well known that due to its parabolic character it implies infinite
speed of the signal propagation and thus should be modified if
very large gradients or extremely small scales are involved
[17–20]. On a macroscopic level, numerous modifications
were suggested to recover the hyperbolic character of the heat
transport equation [19–22]. Perhaps, the most known is the
lowest-order approximation known as the Cattaneo-Vernotte
(CV) or telegraph (TE) law [23,24]. It is written as

(
1 + τ

∂

∂t

)
�q = −κ �∇T , (1)

where κ is the standard heat conduction coefficient, τ is the
characteristic relaxation time of the system, �q is the vector of
heat flux, and T is the temperature. The relaxation time is rather
short for majority of materials (10−12 s at room temperature),
but can be of order 1 s, for instance, in some biological tissues
[25].

Modifications of the Fourier law bring about new ob-
servable physical phenomena, such as temperature waves
or the second sound [17–20]. The importance of hyperbolic
heat conduction models for the description of nanoscale heat
transfer has been recognized in recent experiments [26,27].

Only a few papers have dealt with microscopic foun-
dations of non-Fourier heat conduction laws from the first
principles or by its numeric investigation in the microscopic
models [26,28–37]. These works confirm that the non-Fourier
effects may be very significant if large space gradients or fast
changes of the temperature are involved.

In a recent paper [38] an attempt was made to relate
the structure and parameters of microscopic models with
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conserved momentum to empiric description of the non-
Fourier heat conduction. For this sake, two models belonging
to different universality classes with respect to the stationary
heat conduction were studied: the β-Fermi-Pasta-Ulam (FPU)
chain and the chain of rotators. Oscillatory behavior of the
decaying temperature disturbance, compatible only with a
hyperbolic macroscopic equation of thermal transport, has
been revealed in both models. The CV equation of the heat
transport adequately describes the behavior of the chain
of rotators, besides the region of crossover between the
hyperbolic and the parabolic behavior. However, the β-FPU
model does not obey the CV equation.

This paper continues the line of research started in
Ref. [38] and investigates the relationship between structure,
parameters, and macroscopic description of the nonstationary
heat transfer in models with the substrate (on-site) potential.
Such models are known to have normal heat conductivity
[1,9,10,14]. We are going to check (a) whether the effects of
hyperbolicity can be observed in such models, (b) whether the
thermal transport in these models can be described by linear
equations, and (c) to what extent the behavior of these model
with on-site potential is universal and what one can say about
suitable macroscopic phenomenological models.

II. MODELS AND PROCEDURES

Stationary heat transfer is characterized by a single coeffi-
cient of heat (or thermal) conductivity. In numeric experiments
it is measured either by direct simulation of the stationary flux
under constant temperature gradient, or from autocorrelation
of the heat flux in an isolated system via the Green-Kubo
formula [1]. The nonstationary conduction involves at least
two parameters (CV equation) or even more in more advanced
models. Moreover, one should not be bound by a priori
selection of the empiric equation to fit the results. Then, it
is desirable to find the characteristics of the process which can
be measured directly from the numeric data and are not related
to specific choice of the macroscopic empiric equation.

One such choice may be observation of the temperature
waves (the second sound), implemented, for instance, in
papers [27,35–37]. We follow here a different approach [38]
based on the study of relaxation patterns for different spatial
modes of the temperature field. Simply put, if one initiates
the sinusoidal temperature profile in the system and then
removes all external forces, the system will relax to uniform
temperature distribution; temporal profile of this relaxation
is of main interest. In particular, the oscillatory relaxation
pattern is naturally related to the hyperbolicity of the system
and is qualitatively inconsistent with the Fourier law [38].
Such an approach is related to early numeric simulations of
the nonstationary heat conduction in argon crystals [30] and
of thermal conductivity in superlattices [34].

Moreover, careful analysis of the relaxation profiles for
different modes of temperature perturbation also can provide
interesting insights. For instance, Eq. (1) leads to the prediction
that all spatial temperature modes which have oscillatory decay
will have the same characteristic relaxation time [38]. One can
verify this prediction by comparison with the numeric data and
thus to evaluate the accuracy of the CV equation (or any other
model equation) for a particular model.

For a general one-dimensional model with on-site potential,
we simulate the chain of particles with unit masses with the
Hamiltonian

H =
N∑

n=1

[
p2

n/2 + V (un+1 − un) + U (un)
]
. (2)

Here un is the displacement of the nth particle, pn = u̇n, V (ρ)
is the potential of the nearest-neighbor interaction, and U (u) is
the on-site potential [the minimum of V (ρ) corresponds to ρ =
0, and the minimum of U (u) is at u = 0]. The global minimum
of the potential energy corresponds to an unperturbed state
{un = 0}Nn=1. Boundary conditions are adopted to be periodic.

In order to obtain the initial nonequilibrium temperature
distribution, each particle in the chain has been initially
connected to a separate Langevin thermostat. For this sake,
the following system of equations was simulated:

ün = V ′(un+1 − un) − V ′(un − un−1) − U ′(un)

− γ u̇n + ξn, n = 1 . . . N, (3)

where γ is the damping coefficient and the white noise ξn is
normalized by the following conditions:

〈ξn(t)〉 = 0, 〈ξn(t1)ξm(t2)〉 = 2γ Tnδnmδ(t1 − t2), (4)

where Tn is the prescribed temperature of the nth particle.
In order to study the relaxation of different spatial modes

of the initial temperature distribution, its profile has been
prescribed as

Tn = T0 − A cos[2π (n − 1)/Z], (5)

where T0 is the average temperature, A is the amplitude of
the perturbation, and Z is the length of the mode (number of
particles). The overall length of the chain N has to be a multiple
of Z in order to satisfy the periodic boundary conditions.
After the initial heating in accordance with Eqs. (3)–(5), the
Langevin thermostats were removed and relaxation of the
isolated system to a stationary temperature profile was studied.
The results were averaged over about 106–107 realizations
of the initial profile {Tn}Nn=1 in order to reduce the effect of
fluctuations.

In this paper, we analyze three models with linear nearest-
neighbor interactions, which differ by the shape of the on-site
potential. The Hamiltonians of all three models are written as

H =
N∑

n=1

[
p2

n/2 + (un+1 − un)2/2 + U (un)
]
. (6)

The unit coefficient of the parabolic potential of the nearest-
neighbor interaction does not effect the generality. We treat
three different on-site potentials: sinusoidal potential (Frenkel-
Kontorova model, FK)

U (u) = 1 − cos u; (7)

φ4− potential

U (u) = 2u2(u − 2π )2/π4; (8)

φ4+ potential

U (u) = u2/2 + u4/4. (9)
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Substrate potentials (7)–(9) differ topologically. The FK
potential is periodic and bounded. Potential φ4− is double-
well and unbounded. To simplify the comparison, a distance
between the well minima and a height of the potential barrier
are the same as for the FK model. Potential φ4+ is single-well
and unbounded.

III. RESULTS

The first set of simulations reported here has been devoted
to verification of the transition from an oscillatory to a smooth
relaxation profile of the temperature perturbation for different
initial wavelengths. Typical results of the simulation are
presented in Fig. 1. The FK chains with the same length
N = 1024, average temperature T0 = 1, and amplitude of
the perturbation A = 0.2 demonstrate qualitatively different
relaxation profiles for different modal wavelengths Z.

Results of the simulations presented in Fig. 2 demonstrate
that all three investigated models with the on-site potential
clearly exhibit similar transition from diffusive to oscillatory
relaxation pattern as the characteristic wavelength decreases. It
is possible to distinguish qualitatively three different relaxation
patterns: diffusive (curves with k = 3), oscillatory (curves with
k = 0, 1), and crossover (curves with k = 2). In other terms,
for all these models there exists the critical wavelength scale
l∗ which separates the oscillatory from the diffusive decay. For
the simulations presented here this characteristic scale is

l∗ ∼ 200–300. (10)

Thus, already at this step one can conclude that the hyperbolic
behavior can be observed in all three models.

FIG. 1. Relaxation of initial periodic thermal profile in the chain
with the FK potential, N = 1024, T0 = 1, A = 0.2, (a) Z = 32,
and (b) Z = 128. Only part of the chain for n from 1 to 128 is
demonstrated.
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FIG. 2. (Color online) Evolution of the relaxation profile in the
chain (length N = 800) for Z = 50, 100, 200, and 400 (k = 0, 1, 2,
and 3) with (a) FK potential (T0 = 4, A = 0.5); (b) φ4− potential
(T0 = 4, A = 0.5); (c) φ4+ potential (T = 0.5, A = 0.05). Time
dependence of the mode maximum T (1 + Z/2) [red (gray) lines] and
minimum T (1) [blue (black) lines] are depicted. Note that the time
scales are different for each curve in order to fit them into one figure.

The wide range obtained in Eq. (10) is due to relatively
small chain length; this simulation is sufficient to reveal the
existence of the transition between the decay patterns, but
not sufficient for more or less exact estimation of the critical
wavelength scale. In the models with conserved momentum
the critical wavelength strongly depends on the average
temperature [38]. One can conjecture that similar dependence
exists in the models with the on-site potential. To verify this
conjecture, we have performed more exact measurements of
l∗ (for longer chains, up to 10 000 particles, and with higher
resolution) for all three models. The results are presented in
Fig. 3. As the temperature decreases, the crossover length
l∗ increases monotonously. This finding is in line with the
observation [37] that the second sound waves are observed
only for relatively low temperatures of the chain.

IV. LINEARITY OF THERMAL RELAXATION PROFILES

To verify whether the macroscopic equations of the nonsta-
tionary heat conduction for given models may be assumed as
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FIG. 3. (Color online) Dependence of the critical wavelength l∗

on average temperature T0 of the chain with φ4+ substrate (curve 1),
FK substrate (curve 2), and φ4− substrate potential (curve 3).

linear, we have simulated the evolution of initial temperature
distribution (5) with varying amplitude of the perturbation A,
keeping all other parameters fixed. Then, the value �Tn(t) =
[Tn(t) − T0]/A is plotted versus time. If the results coincide
for different values of A, then it is possible to conclude that
the relaxation of the thermal perturbations can be described by
a linear equation. In Fig. 4 the simulation results for the FK
model are demonstrated.

For all regimes of the relaxation, one barely sees any
difference for the relaxation profiles with different initial
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FIG. 4. (Color online) Dependence of rescaled temperature am-
plitude �Tn(t)/A = (Tn(t) − T0)/A on rescaled time t/tj for FK
chain: (a) Z = 50, tj = 0.5; (b) Z = 100, tj = 1; (c) Z = 200, tj =
2; (d) Z = 400, tj = 4. The length N = 800, average temperature
T0 = 4. Lines 1,3,5,7 [red (gray)] correspond to the minimum
of the temperature in the chain n = 1, and Lines 2,4,6,7 [blue
(black)]– to the maximum n = Z/2 + 1. Solid lines correspond to
the perturbation amplitude A = 0.5, dashed lines– to A = 1, dots –
to A = 2. The time scales are different for each curve in order to fit
them at one figure.

amplitudes; this happens despite the fact that the perturbation
is by no means small, i.e., it achieves half the average
temperature. Quite similar results were obtained also for
φ4− and φ4+ chains. So, one can conclude that the process
of thermal relaxation in all these models may be described
macroscopically with the help of linear equations with rather
good accuracy. A similar conclusion was achieved also for
the systems with conserved momentum, but with a somewhat
different method [38].

This conclusion is not trivial. The models under consider-
ation are essentially nonlinear and it is not completely clear
why linear macroscopic equations should be so suitable for
the description of thermal relaxation, especially for relatively
large perturbation amplitudes.

V. THERMAL RELAXATION IN OSCILLATORY REGIME

In this section we are going to discuss the relationship of
the observed relaxation of the thermal perturbations to the
microscopic structure of the investigated models. Complete
derivation of the heat transfer equations from first principles
has not been achieved yet; still, some insight is possible.
First of all, it is easy to see that the nonlinearity of the
chain is not necessary to explain the relaxation of the thermal
perturbations: dispersion of the linear oscillatory waves is
enough to account for this phenomenon. Indeed, in a linear
chain, if this dispersion would be absent, the system would
obey a simple microscopic wave equation; and due to the
periodic boundary conditions, the initial perturbation would
recover itself exactly after finite time and no relaxation
would be observed. However, due to dispersion, different
linear modes will have different and, generally speaking,
incommensurate phase velocities. Initial thermal perturbation
includes, generically, all of these modes and therefore the
initial thermal perturbation will never recover itself and the
system will relax to the uniform “temperature” distribution.
To distinguish this effect from the relaxation caused by the
interactions of the modes in the nonlinear chain, we look at
the linear models in more detail.

Let us consider the process of the relaxation of thermal
waves in an infinite linear chain with the on-site potential.
Such a chain will be described by Eq. (6) with the external
potential

UL(u) = ω2u2/2. (11)

Appropriate equations of motion will take the form

ün + 2un − un−1 − un+1 + ω2un = 0. (12)

For f simplicity, let us adopt that the initial temperature
distribution is realized through attribution of initial velocities
to each particle, with zero initial displacements. By the
virial theorem, such a choice will not affect the long-time
asymptotics. Namely, the initial conditions for Eq. (12) are
formulated as

un(0) = 0, u̇n(0) = ηn, 〈ηn〉 = 0,
(13)

〈ηnηm〉 = 2[T0 + A cos(2πn/Z)]δnm,

where ηn is a random value with Gaussian distribution accord-
ing to Eq. (13). The averaging is performed over the ensemble

011105-4



NONSTATIONARY HEAT CONDUCTION IN ONE- . . . PHYSICAL REVIEW E 85, 011105 (2012)

of the initial conditions. By standard transformations, it is easy
to obtain the following solution of Eq. (12):

u̇n(t) =
∞∑

m=−∞
ηmG(n − m,t),

(14)

G(p,t) = 1

π

∫ π

0
cos(t

√
ω2 + 4 sin2 μ − 2pμ) dμ.

The temperature distribution at arbitrary moment of time may
be presented as

Tn(t) = 〈
u̇2

n

〉 = T0 + 2AgZ(t) cos(2πn/Z),
(15)

gZ(t) =
∞∑

p=−∞
G2(p,t) cos(2πp/Z).

The time dependence of a given thermal mode is completely
governed by the long-time asymptotics of function gZ(t). For
a given linear model with on-site potential it is difficult to
perform the exact integrations and summations in Eqs. (14)
and (15) (for the case without the on-site potential these
expressions can be reduced to compact exact expressions in
terms of Bessel functions). Instead, we are going to derive the
required asymptotics by the approximate method, taking into
account only generic features of the dispersion relation used
in Eq. (14). For this sake, let us consider the general Green’s
function similar to Eq. (14)

G0(p,t) = 1

π

∫ π

0
cos[tf (μ) − 2pμ] dμ, (16)

where f (μ) is bounded at interval (0,π ) and has a single
inflection point μ∗ with a positive first derivative, which
satisfies the conditions

f ′′(μ∗) = 0, f ′(μ∗) > 0, μ∗ ∈ [0,π ]. (17)

Then, for t large enough, the integral in Eq. (16) can be
evaluated by a stationary phase method. The condition of the
stationary phase for specific values of p, t is presented as

�(μ,p,t) = tf (μ) − 2pμ,�′(μ0) = tf ′(μ0) − 2p = 0.

(18)

For simplicity, we will consider only the case where Eq. (18)
has a unique solution. In the vicinity of this point, the phase is
expanded as

� = f (μ0)t − 2pμ0 + 1
2f ′′(μ0)t(μ − μ0)2

+ 1
6f ′′′(μ0)t(μ − μ0)3 + · · · . (19)

Standard evaluation of integral (16) for the case t � p takes
into account only the terms up to the term with the second
derivative in Eq. (19) and leads to the following estimation:

G0(p,t) ∼ t−1/2, t → ∞. (20)

In the vicinity of the inflection point, which is defined by
condition μ0 = μ∗, the term with the second derivative in
expansion (19) will disappear, and one has to take into account
the next term in Eq. (19):

� = f (μ∗)t − 2pμ∗ + 1
6f ′′′(μ∗)t(μ − μ∗)3 + · · · . (21)

Evaluation of integral (16) with phase expansion (21) will
yield

G0(p,t) = 1

π

∫ π

0
cos[�(μ,p,t)] dμ

∼ t−1/3 cos[f (μ∗)t − 2pμ∗ + ψ] + O(t−2/3),

(22)

where ψ denotes constant phase shift. Expansion (22) is valid
for 2p/t ≈ f ′(μ∗). This contribution corresponds to the linear
waves with group velocity close to maximum. Estimation (22)
suggests, more exactly, that the expansion is valid for the
interval of p defined as

|p − p∗| ∼ (p∗)1/3, p∗ = tf ′(μ∗)/2. (23)

Due to a slower decrease rate with respect to time, the
terms in expansion (15) in the interval of index defined by
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FIG. 5. (Color online) (a) Evolution of the relaxation profile
in the linear chain (frequency ω = 1, length N = 1024, average
temperature T0 = 2, amplitude A = 0.4) for Z = 32, 64, 128, and
256 (j = 1, 2, 3, and 4; time scales t1 = 1, t2 = 1.5, t3 = 2, and
t4 = 4, respectively). Time dependence of the mode minimum T1 [red
(gray) lines] and maximum TZ/2+1 [blue (black) lines] are depicted.
The time scales are different for each curve in order to fit them into
one figure. (b) The same results are presented in double logarithmic
coordinates, �T (t) = |T1(t) − T0| + |TZ/2+1(t) − T0|. Dashed fitting
lines correspond to the power law �T ∼ t−0.48.
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estimation (23) will be the most significant for long-time
behavior. Then, the sum in Eq. (15) may be estimated as

gk(t) ∼ t−2/3
p∗+(p∗)1/3∑

p=p∗−(p∗)1/3

cos

(
2πp

Z

)

× cos2[f (μ∗)t − 2pμ∗ + ψ]. (24)

For the most interesting case of relatively small wave numbers,
the input of the sum in Eq. (24) will be of order of the square
root of the number of participating summands, i.e., of order
(p∗)1/6. Consequently, with the account of Eq. (23), one finally
arrives at the following estimation:

gZ(t) ∼ t−2/3(p∗)1/6 ∼ t−1/2. (25)

As it is clear from the treatment, estimation (25) should be
rather generic for linear chains. This power-law decay of the
thermal mode is illustrated in Fig. 5.
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FIG. 6. (Color online) (a) Evolution of the relaxation profile in the
φ4+ chain (length N = 1024, average temperature T0 = 1, amplitude
A = 0.2) for Z = 16, 32, 64, 128 and 256 (j = 1, 2, 3, 4 and 5; time
scale t1 = 0.25, t2 = t3 = 0.5, t4 = 1, and t5 = 2 respectively). Time
dependence of the minimum T1 [red (gray) lines] and maximum
TZ/2+1 [blue (black) lines] are depicted. The time scales are different
for each curve in order to fit them at one figure. (b) Decay profile of
the temperature difference �T (t) = |T1(t) − T0| + |TZ/2+1(t) − T0|
in semilogarithmic coordinates. Dashed lines correspond to �T ∼
exp(−t/tr ) with tr = 18.9, 22.2, 31.3, 100 and 370 for j = 1, 2, 3, 4
and 5 respectively.

Therefore, we see that the thermal “relaxation” in linear
chains obeys a power law rather than an exponential. One can
also mention that, quite as expected, the long-time asymptotics
is not affected by the difference between the finite chain with
periodic boundary conditions used for the simulations and the
infinite chain used treated analytically.

This result means that the dispersion of the linear waves
brings about slow power-law decay of the thermal pertur-
bation instead of the exponential law expected from known
phenomenological macroscopic equations (for instance, both
the Fourier law and the CV equation). Thus, the expected
exponential relaxation of the thermal perturbations should
appear due to nonlinear modal interactions in the chain.

The next point to check is whether the decay of the
thermal disturbances in the considered nonlinear models is
indeed exponential. For this sake, we simulate the relaxation
for different wave numbers k for the φ4+ on-site potential
(9). The results are presented in Fig. 6. This simulation
clearly demonstrates the exponential character of decay for
�T (t) = |T1(t) − T0| + |TZ/2+1(t) − T0|:

�T (t) ∼ exp(−t/tr ), when t → ∞,

However, in Fig. 6 we already can see that the characteristic
relaxation time tr in the oscillatory regime depends on the
perturbation wavelength, clearly at odds with the CV law; as
it was already mentioned above, the latter suggests that the
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FIG. 7. (Color online) Dependence of the characteristic relax-
ation time tr on the period of initial thermal perturbation Z (double
logarithmic scale): (a) the models with on-site potential: FK model
(line 1, average temperature T0 = 2, perturbation amplitude A = 0.5),
φ4− model (line 2, T0 = 2, A = 0.5), φ4+ model (line 3, T0 = 1,
A = 0.2); (b) the models with conserved momentum [38]: chain of
rotators (line 4, T0 = 0.5, line 5, T0 = 0.3) FPU (line 6, T0 = 20).
For all models, the solid part of the line corresponds to the oscillatory
relaxation pattern and the dashed – to the crossover and monotonous
relaxation.
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relaxation time in the oscillatory regime should not depend on
the wavelength [38]. To further clarify this point, we present in
Fig. 7 the dependence of the characteristic relaxation time on
the thermal perturbation wavelength for all three models with
the on-site potentials studied above, as well as for the models
with conserved momentum (FPU and chain of rotators) studied
in Ref. [38].

As we can see from these results, two out of three models
with the on-site potential (FK and ϕ4−) exhibit peculiar
scaling of the relaxation time in the oscillatory regime, which
conforms to the approximate law

τk ∼ (N/k)β, (26)

with β ≈ 0.45. Similarly, one can suggest that the FPU model
obeys similar a scaling law with β ≈ 1.4 for a certain range
of the perturbation wavelengths. However, the latter case is
more complicated since in the FPU chain it is more difficult
to distinguish clearly between the oscillatory and monotonous
relaxation patterns [38]. As for the ϕ4+ model, the relaxation
time also depends on the wavelength of the initial thermal
profile, but it is difficult to speak about some peculiar scaling.
Only in the chain of rotators does the relaxation time in the
oscillatory regime not seem to depend on the wavelength of
the temperature perturbation.

VI. CONCLUDING REMARKS

On the basis of the simulations presented above, one can
conclude that the one-dimensional models with topologically
different substrate potentials exhibit qualitatively similar be-
havior with respect to nonstationary thermal conductivity. The

thermal relaxation can be quite accurately described by linear
equations even for relatively high perturbation amplitudes. All
three models demonstrate the transition from oscillatory to
diffusive relaxation regimes for growing wavelength of the
initial thermal profile. Characteristic crossover wavelength
rapidly decreases with the temperature increase.

Quantitative study reveals that no unique relaxation time
exists for different spatial harmonics of the initial temperature
profile. For some (but not all) of the models, the relaxation
times in the oscillatory regime approximately obey scaling law
with respect to the wavelength of the initial thermal profile.
In particular, it means that neither of the models with the
substrate potential obeys the well-known Cattaneo-Vernotte
(CV) equation.

All studied models are known to obey the Fourier law in
the thermodynamical limit. The fact that the CV law is not
suitable for description of the nonstationary heat transfer in
these systems is rather surprising. Still, at this stage one cannot
claim that the scaling exponents observed here are in any sense
universal; a lot of further analysis is required. Scaling relation-
ship (26) suggests that the macroscopic equations describing
the nonstationary heat conduction in these models should
include fractional derivatives. It is somewhat surprising that
such fractional terms should appear as hyperbolic corrections
to common Fourier law.

The chain of rotators turns out to be “exceptional”: it seems
to obey the CV law both for the long and the short wavelengths
of the temperature distribution. This result means that even
the models with convergent heat conduction can behave in a
different manner when the nonstationary thermal relaxation is
considered.
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