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Excluded-volume effects in the diffusion of hard spheres
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Excluded-volume effects can play an important role in determining transport properties in diffusion of particles.
Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered
systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation
for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion
rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the
full particle system are shown to compare well with the solution of this equation for two examples.
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I. INTRODUCTION

Recently there has been an increasing interest in under-
standing the transport of particles with size exclusion [1]. Size
exclusion is important in many biological processes, including
diffusion through ion channels [2,3] and in chemotaxis [4],
and can have a significant impact on the thermodynamics and
kinetics of biological processes such as association reactions
at membranes [5]. Finite-size effects are also important when
considering the combustion of powders [6], collective behavior
(e.g., animal flocks or traffic movement) [7,8], and granular
gases [9].

Excluded-volume or steric interactions arise from the
mutual impenetrability of finite-size particles (see Fig. 1). For
one-dimensional configurations, such as channels, the single-
file diffusion of hard-core particles can be solved exactly by
mapping it to the classical diffusion of point particles [10,11].
This has recently been extended to heterogeneous particles and
anomalous particles [12,13]. However, the situation in higher
dimensions is more challenging.

It is well known that for finite-size particles the effective
diffusion coefficient becomes concentration dependent. In fact
we have to distinguish between two alternative notions of
diffusion coefficient: the collective diffusion coefficient, which
describes the evolution of the total concentration, and the
self-diffusion coefficient, which describes the evolution of a
single tagged particle [15]. Here we concentrate on collective
diffusion, hereafter simply referred to as diffusion.

Batchelor [16] models Brownian diffusion of particles with
hydrodynamic interaction using generalized Einstein relations
to find a concentration-dependent correction to the collective
diffusion coefficient. Felderhof [17] considers the same prob-
lem through an analysis of the Fokker-Planck equation, and
includes both excluded volume and hydrodynamic effects. His
analysis is based on the thermodynamic limit (in which the
number of particles N and the system volume V tend to infinity,
with the concentration N/V fixed), and is valid only for a small
perturbation from the equilibrium concentration. Similarly,
the self-diffusion coefficient to first order in a constant
concentration is obtained from the generalized Smoluchowski
equation in [15,18].

Muramatsu and Minton [19] use a simple model to calculate
the diffusion coefficient of hard spheres by estimating the
probability that the target volume for a step in a random
walk is free of any macromolecules. Other authors model

excluded volume phenomenologically by introducing a par-
ticle pressure, resulting in an equation of state in which the
compressibility is reduced as the concentration increases [20].

Another popular approach is to consider lattice models, in
which a particle can only move to a site if it is presently
unoccupied. Such an approach has been used to model
diffusion of multiple species with size exclusion effects [21,22]
or to model the effect of crowding on diffusion-limited
reaction [23].

The preceding approaches are all either phenomenological
in nature, restricted to small perturbations from a uniform
concentration, or based on the thermodynamic limit in which
the number of particles tends to infinity. Here we consider
a finite number of finite-sized particles diffusing in a box of
fixed size. We perform an asymptotic analysis of the associated
Fokker-Planck equation in the limit that the volume fraction of
particles is small. Our analysis is systematic, using the method
of matched asymptotic expansions, but is not appropriate for
concentrations close to the jamming limit.

II. DIFFUSION WITH FINITE-SIZE EFFECTS

In order to focus on steric effects, we suppose that there are
no electrostatic or hydrodynamic interaction forces between
particles. We work in d dimensions, where d is either 2 or 3.
Thus our starting point is a system of N identical hard-core
diffusing and interacting spheres (or disks), each with constant
diffusion coefficient D0 and diameter K , in a bounded domain
� in Rd of typical diameter L. By nondimensionalizing length
with L and time with L2/D0, the size of the domain and the
diffusion coefficient may be normalized to unity, while the
diameter of the particles becomes ε = K/L. We assume that
the particles occupy a small volume fraction, so that Nεd � 1.
We denote the centers of the particles by Xi(t) ∈ � at time
t � 0, where 1 � i � N [24]. Each center evolves according
to the stochastic differential equation (SDE)

dXi ≡ √
2 dBi + fi dt, 1 � i � N, (1)

where the Bi are N -independent d-dimensional standard
Brownian motions and fi is the external force on the ith
particle. In general this force may include both interparticle
and external interactions, such as electromagnetic, friction,
convection, and potential forces, in which case fi depends
on the positions of all the particles �X = (X1, . . . ,XN ). While
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FIG. 1. (Color online) Excluded [red (dark gray) and black] and
available [blue (light gray)] area in a solution of black particles for
the placement of an additional test particle. (a) The area available
with point particles is the whole domain. (b) The area available (to
the center of the test particle) with finite-size particles is reduced.
Modified from Minton [14].

soft-core steric effects can also be built into fi , hard-core
collisions can be more easily expressed as reflective boundary
conditions on the “collision surfaces” r = ||Xi − Xj || = ε,
with 1 � i < j � N . Since we are focusing on hard-core
particle interactions, we restrict ourselves to other external
forces of the form

�F ( �X) = [f(X1), . . . ,f(XN )], (2)

where f : � → Rd acts identically on all N particles. We
suppose that the initial positions Xi(0) are also random, and
that they are independent and identically distributed.

Let P (�x,t) be the joint probability density function of the N

particles. Then, by the Itô formula, P (�x,t) evolves according
to the linear Fokker-Planck partial differential equation (PDE)

∂P

∂t
= �∇�x · [ �∇�x P − �F (�x) P ] in �N

ε , (3a)

where �∇�x and �∇�x ·, respectively, stand for the gradient
and divergence operators with respect to the N -particle
position vector �x = (x1, . . . ,xN ) ∈ �N . Note that because
of steric effects, Eq. (3a) is not defined in �N but in its
“hollow form” �N

ε = �N\Bε , where Bε = {�x ∈ �N : ∃i 
=
j such that ||xi − xj || � ε} is the set of all illegal configu-
rations (with at least one overlap). On the collision surfaces
∂�N

ε we have the reflecting boundary condition

[ �∇�x P − �F (�x) P ] · �n = 0 on ∂�N
ε , (3b)

where �n ∈ SdN−1 denotes the unit outward normal. Since the
initial positions of the particles are independent and identically
distributed, the initial distribution function P0(�x) is invariant
to permutations of the particle labels. The form of Eq. (3) then
means that P itself is invariant to permutations of the particle
labels for all time.

Although linear, the PDE model (3) is very high dimen-
sional, and it is impractical to solve it directly. Since all
the particles are identical, we are interested mainly in the
marginal distribution function of the first particle, given by
p(x1,t) = ∫

P (�x,t)dx2 · · · dxN . We aim to reduce the high-
dimensional PDE for P to a low-dimensional PDE for p

through a systematic asymptotic expansion as ε → 0.

A. Point particles

In the particular case of point particles (ε = 0) the model
reduction is straightforward. In this case the N particles are
independent and the domain is �N

ε ≡ �N (no holes), which
implies that the internal boundary conditions in Eq. (3b)
vanish. Therefore P (�x,t) = ∏N

i=1 p(xi ,t), and

∂p

∂t
(x1,t) = ∇x1 · [∇x1 p − f(x1) p

]
in �, (4a)

0 = [∇x1 p − f(x1) p
] · n̂1 on ∂�, (4b)

where n̂1 is the outward unit normal to ∂�. Note that since the
particles are indistinguishable each satisfies the same diffusion
equation and boundary condition, so that P is a product of N

identical one-particle distribution functions p. If the particles
were not identically distributed initially then we would need
a different distribution function for each one; although these
would all satisfy the same diffusion equation they would have
different initial conditions. This point will be important when
we go on to consider finite-sized particles.

B. Finite-size particles

When ε > 0, the internal boundary conditions in Eq. (3b)
mean the particles are no longer independent. When we
integrate Eq. (3a) over x2, . . . , xN and apply the divergence
theorem we end up with surface integrals over the collision
surfaces, on which P must be evaluated. However, when
the particle volume fraction is small, the volume in �N

ε

occupied by configurations in which three or more particles
are close is small [O(ε2dN2)] compared to those in which two
particles alone are in proximity [O(εdN )]. Thus the dominant
contribution to these “collision integrals” corresponds to two-
particle collisions. We illustrate our approach for N = 2; since
two-particle collisions dominate the extension to arbitrary N

is straightforward. A similar approach is used in Refs. [15,18].
For two particles at positions x1 and x2, Eq. (3a) reads

∂P

∂t
(x1,x2,t)

= ∇x1 · [∇x1P − f(x1)P
] + ∇x2 · [∇x2P − f(x2)P

]
, (5a)

for (x1,x2) ∈ �2
ε , and the boundary condition (3b) reads

[∇x1P − f(x1)P
] · n̂1 + [∇x2P − f(x2)P

] · n̂2 = 0, (5b)

on xi ∈ ∂� and ||x1 − x2|| = ε. Here n̂i = ni/||ni ||, where ni

is the component of the normal vector �n corresponding to the
ith particle, �n = (n1,n2). We note that n̂1 = 0 on x2 ∈ ∂�, and
that n̂1 = −n̂2 on ||x1 − x2|| = ε.

We denote by �(x1) the region available to particle 2
when particle 1 is at x1, namely, �(x1) = � \ Bε(x1). Note
that when the distance between x1 and ∂� is less than ε the
volume |�(x1)| increases. This creates a boundary layer of
width ε around ∂� where there exists a wall-particle-particle
interaction (three-body interaction). Since the dimensions of
the container are much larger than the particle diameter these
interactions are higher order and we may safely ignore them
and take |�(x1)| constant [25]. Integrating Eq. (5a) over �(x1)
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yields

∂p

∂t
(x1,t) = ∇x1 · [∇x1 p − f(x1) p

]

+
∫

∂Bε (x1)

[
f(x1) P − 2∇x1P − ∇x2P

] · n̂2 dS2

+
∫

∂�∪∂Bε (x1)

[∇x2 P − f(x2) P
] · n̂2 dS2. (6)

The first integral in Eq. (6) comes from switching the order of
integration with respect to x2 and differentiation with respect
to x1 using the transport theorem; the second comes from using
the divergence theorem on the derivatives in x2. Using Eq. (5b)
and rearranging we find

∂p

∂t
(x1,t) = ∇x1 · [∇x1 p − f(x1) p

]

+
∫

∂Bε (x1)
{−2∇x1P + P [f(x1) − f(x2)]} · n̂2 dS2.

(7)

Because the pairwise particle interaction is localized near the
collision surface ∂Bε(x1) we can determine it using the method
of matched asymptotic expansions [26].

C. Matched asymptotic expansions of the density P

We suppose that when two particles are far apart (||x1−
x2|| � ε) they are independent, whereas when they are close to
each other (||x1 − x2|| ∼ ε) they are correlated. We designate
these two regions of the configuration space �2

ε the outer region
and inner region, respectively.

In the inner region, we set x1 = x̃1 and x2 = x̃1 + εx̃ and
define P̃ (x̃1,x̃,t) = P (x1,x2,t). With this rescaling, Eq. (5)
becomes

ε2 ∂P̃

∂t
(x̃1,x̃,t) = 2∇2

x̃ P̃ − ε2∇x̃1 · [f(x̃1)P̃ ] + ε2∇2
x̃1

P̃

+ ε∇x̃ · {[f(x̃1) − f(x̃1 + εx̃)]P̃ }
− 2ε∇x̃1 · ∇x̃P̃ , (8a)

with

2x̃ · ∇x̃P̃ = ε x̃ · {∇x̃1 P̃ + [f(x̃1 + εx̃) − f(x̃1)]P̃
}
, (8b)

on ||x̃|| = 1. As noted above, we can neglect the boundary
layer and hence assume that x̃1 is not close to ∂�; the region
in which the particles are close to each other and the boundary
is even smaller, and will affect only the higher-order terms.
In addition to Eq. (8b) the inner solution must match with the
outer solution as x̃ → ∞. In the outer region, by independence,

P (x1,x2,t) = q(x1,t)q(x2,t),

for some function q(x,t). Note that the invariance of P with
respect to a switch of particle labels means that in the outer
region both particles have the same distribution function q

(as happened in the point-particle case). The normalization
condition on P gives q(x1,t) = p(x1,t) + O(εd ). Expanding
this outer solution in inner variables gives

P (x1,x2,t) = q(x̃1,t)q(x̃1 + εx̃)

∼ q2(x̃1,t) + εq(x̃1) x̃ · ∇x̃1q(x̃1) + · · · . (8c)

Expanding P̃ in powers of ε, and solving Eqs. (8a) and (8b)
with the matching condition (8c) we find that the solution in
the inner region is simply

P̃ (x̃1,x̃,t) ∼ q2(x̃1,t) + εq(x̃1) x̃ · ∇x̃1q(x̃1) + · · · . (9)

Using this solution to evaluate the integrals in Eq. (7) we find,
to O(εd ),

∂p

∂t
(x1,t) = ∇x1 · [∇x1 (p + αdε

dp2) − f(x1) p
]
, (10)

where α2 = π/2 and α3 = 2π/3. The extension from two
particles to N particles is straightforward up to O(εd ), since at
this order only pairwise interactions need to be considered.
Particle 1 has (N − 1) inner regions, one with each of
the remaining particles. A similar procedure shows that the
marginal distribution function satisfies

∂p

∂t
(x1,t) = ∇x1 · {∇x1 [p + αd (N − 1)εdp2] − f(x1) p

}
.

(11)

Equation (11) describes the probability distribution func-
tion for finding the first particle at position x1 at time t . Since
the system is invariant to permutations of the particle labels,
the marginal distribution function of any other particle is the
same. Thus the probability distribution function for finding
any particle at position x1 at time t is simply Np.

D. Interpretation

We see from Eq. (11) that steric interactions lead to a
concentration-dependent diffusion coefficient, with the addi-
tional term proportional to the excluded volume. Equation (11)
is consistent with that derived by Felderhof [17], but extends it
to situations in which p is not close to uniform. We emphasize
that Eq. (11) is valid for any N . However, for large N such
that N − 1 ≈ N we can introduce the volume concentration
c = πNεdp/2d and rewrite Eq. (11) as [27]

∂c

∂t
(x1,t) = ∇x1 · {

D(c) ∇x1c − f(x1) c
}
, (12)

where D(c) is the concentration-dependent collective diffusion
coefficient, given by

D(c) = 1 + 4(d − 1)c. (13)

Note that the collective diffusion coefficient D(c) is
increased relative to point particles. This is in contrast to
the self-diffusion coefficient (which may be related to the
mean-squared displacement of a particular particle) which
is reduced relative to point particles [15]. This apparent
contradiction may be understood as follows: the diffusion
of any particular particle is impeded by its collisions with
other particles. However, these collisions bias the random walk
toward areas of low particle density, so that the overall spread
of all particles is faster. To analyze the self-diffusion coefficient
in the current framework we would need to label a particular
particle, rather than treating all particles as identical.

While the self-diffusion coefficient can be thought of as
a diffusion coefficient intrinsically attached to each particle,
the collective diffusion coefficient relates the diffusive flux to
the concentration gradient of all particles [28]: the distribution
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function p is the probability of finding any particle at a given
position, rather than the probability of finding a particular
particle there. Thus the collective diffusion coefficient is not
associated with an individual (tagged) particle or even a
representative particle. This also means that it cannot easily
be related to the mean-squared displacement of particles. This
distinction has important consequences when upscaling from
individual to collective behavior.

In Eq. (11) we have only included the leading-order nonlin-
ear term due to steric effects. There will be correction terms of
O(εd+1N ) due to higher-order terms in the two-particle inner
solution (9), as well as new inner regions where three particles
[O(ε2dN2)], or two particles and the boundary [O(εd+1N )],
are close. The most important of these corrections is that due
to interactions between three (or more) particles. Because our
asymptotic expansion is systematic, these correction terms
could in principle be calculated.

III. COMPARISON WITH THE FULL PARTICLE SYSTEM

In order to assess the validity of Eq. (11) we compare
its solution p(x1,t) (obtained by a simple finite difference
method) with Monte Carlo (MC) simulations of the 2N -
coupled SDE (1) in two dimensions. The particle-particle (and
particle-wall) overlaps are treated as in Ref. [29]. To test the
importance of steric interactions, we also compare with the
corresponding solutions with ε = 0.

In Fig. 2 we show the results of a time-dependent simulation
with f ≡ 0, � = [− 1

2 , 1
2 ]2, ε = 0.01, and N = 400, for which

the initial distribution is a Gaussian of zero mean and standard
deviation 0.09 (normalized so that its integral over � is one);
the figures correspond to time t = 0.05. The simulation time

FIG. 2. (Color online) Marginal distribution function p(x1,t)
at time t = 0.05 with normally distributed initial data and N =
400. (a) Solution p(x1,t) of Eq. (4) for point particles (ε = 0).
(b) Histogram for ε = 0. (c) Solution p(x1,t) of Eq. (11) for finite-
sized particles (ε = 0.01). (d) Histogram for ε = 0.01. Histograms
computed from 104 realizations of Eq. (1) with �t = 10−5. All four
plots have the same color bar.

step �t is chosen such that almost no collisions are missed. The
theoretical predictions for both point and finite-size particles
compare very well with their simulation counterparts, while
steric effects are clearly appreciable even though the volume
fraction of particles is only 0.0314. However, note that while
the average concentration is low, the local concentration is
considerably high at the origin: c = 0.617 at time t = 0 and
c = 0.0479 at time t = 0.05. The initial profile, in which
particles are concentrated in the center, spreads faster when
steric effects are included [Fig. 2(c)] than when they are not
[Fig. 2(a)], indicating that the overall collective diffusion is
enhanced.

When the force field f is the gradient of a potential, f(x1) =
−∇x1V (x1), we may write Eq. (11) as

∂p

∂t
= ∇x1 · (pu), (14)

with u = ∇x1 [ln p + 2αd (N − 1)εdp + V (x1)]. Equation (14)
has an associated free energy [30]

F (p) =
∫

�

p ln p + αd (N−1)εdp2 dx1 +
∫

�

V (x1) p dx1,

where the first integral corresponds to the internal energy and
the second integral is the potential energy. Note that excluded-
volume effects increase the internal energy of the system. The
stationary distribution, which we denote ps(x1), is obtained by
minimizing the free energy or by solving

ln ps(x1) + 2αd (N − 1)εdps(x1) + V (x1) = C, (15)

with the constant C determined by the normalization condition
on ps . For our second example we consider the volcano-shaped
potential V (x1) = −4.77e−100||x1||2 + 3.58e−50||x1||2 and we

FIG. 3. (Color online) Stationary marginal distribution function
ps(x1) under the external potential V for point particles and finite-
size particles, with N = 1000. (a) Point particles, ps ∝ e−V . (b)
Histogram for ε = 0. (c) Finite-size particles ps from Eq. (15)
(ε = 0.01). (d) Histogram for ε = 0.01. Histograms computed with
109 steps of the MH algorithm. All four plots have the same color
bar.
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compare the stationary distribution ps predicted by Eq. (15)
with simulations using the Metropolis-Hastings (MH) algo-
rithm [31]. Figure 3 shows the model and simulation results
with N = 1000 and � and ε as in Fig. 2 for both point and
finite-size particles (with volume fraction 0.079 and volume
concentration c = 0.189 at the origin). In this case there is
competition between the potential well and steric repulsion:
the particle density inside the well is reduced for finite-size
particles. Again, the agreement between the model (15) and
the stochastic simulations is excellent.

IV. DISCUSSION

We have derived systematically a nonlinear diffusion
equation which describes steric interactions in the limit of
small but finite particle volume fraction. Our method justifies,
for example, the ansatz made in Ref. [32] to account for the
finite size of the cells in the Keller-Segel model and prevent
aggregation, and unlike [17,33] does not rely on a closure
assumption.

The equation we have derived is for the one-particle
distribution function, which measures the probability of
finding any particle at a given position; the particles we
consider are identical and indistinguishable. This means that
we are examining collective diffusion, and we find that this
is enhanced by the finite size of the particles. We have not
considered the self-diffusion of a particular (tagged) particle,
which can be related to an individual particle’s mean-square
displacement. To analyze the self-diffusion coefficient in the
current framework we would need to label a particular particle,
rather than treating all particles as identical; we intend to do
this in a future work in which we consider multiple particle
populations.

We note that for point particles in one dimension (where
particles must move in single file and are not allowed to
pass) [34] has observed density dependence in the self-
diffusion (mean-square displacement) of a tagged particle.
Their interpretation is that the expansion of the whole system
from dense to dilute environments quickens the self-diffusion
of any tagged particle. This is a different effect to the one
we have observed, since, as mentioned in the Introduction,
the collective diffusion of point particles in one dimension
is linear, with a diffusion coefficient independent of the
density. In two dimensions self-diffusion is less sensitive to the
particle density, since, informally, there is much more space
for particles to pass each other.

The method we have developed was implemented here in its
simplest setting (hard-core identical spherical particles with an
external potential) but it can be extended in many directions.
Particles of different size (cf. [35]) or shape can easily be
incorporated, while the hard-core interaction between particles
can be replaced by any short-range soft-core interaction.

On the other hand, incorporating long-range effects such as
chemotaxis or electrostatic interactions is more challenging;
in such cases a system size expansion is likely to be needed in
addition to a small particle expansion.
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The authors also thank José Antonio Carrillo for valuable
discussions.

[1] J. Sun and H. Weinstein, J. Chem. Phys. 127, 155105
(2007).

[2] B. Hille, Ion Channels of Excitable Membranes (Sinauer,
Sunderland, MA, 2001).

[3] D. Gillespie, W. Nonner, and R. Eisenberg, J. Phys.: Condens.
Matter 14, 12129 (2002).

[4] P. M. Lushnikov, N. Chen, and M. Alber, Phys. Rev. E 78,
061904 (2008).

[5] J. Kim and A. Yethiraj, Biophys. J. 98, 951 (2010).
[6] S. C. Saxena, Prog. Energy Combust. Sci. 16, 55 (1990).
[7] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraula,

and E. Bonabeau, Self-Organization in Biological Systems
(Princeton University Press, Princeton, NJ, 2003).

[8] A. Schadschneider, Physica A 313, 153 (2002).
[9] A. Barrat, E. Trizac, and M. H. Ernst, J. Phys.: Condens. Matter

17, S2429 (2005).
[10] L. Lizana and T. Ambjörnsson, Phys. Rev. E 80, 51103 (2009).
[11] M. L. Henle, B. DiDonna, C. D. Santangelo, and A. Gopinathan,

Phys. Rev. E 78, 031118 (2008).
[12] O. Flomenbom, Phys. Rev. E 82, 031126 (2010).
[13] O. Flomenbom, Europhys. Lett. 94, 58001 (2011).

[14] A. P. Minton, J. Biol. Chem. 276, 10577 (2001).
[15] S. Hanna, W. Hess, and R. Klein, Physica A 111, 181 (1982).
[16] G. K. Batchelor, J. Fluid Mech. 74, 1 (1976).
[17] B. U. Felderhof, J. Phys. A 11, 929 (1978).
[18] B. Ackerson and L. Fleishman, J. Chem. Phys. 76, 2675 (1982).
[19] N. Muramatsu and A. Minton, Proc. Natl. Acad. Sci. USA 85,

2984 (1988).
[20] P. Degond, L. Navoret, R. Bon, and D. Sanchez, J. Stat. Phys.

138, 85 (2010).
[21] M. Burger, M. Di Francesco, J.-F. Pietschmann, and B. Schlake,

SIAM J. Math. Anal. 42, 2842 (2010).
[22] M. Simpson, K. Landman, and B. Hughes, Physica A 388, 399

(2009).
[23] J. D. Schmit, E. Kamber, and J. Kondev, Phys. Rev. Lett. 102,

218302 (2009).
[24] Note that � is the space available to a particle center, which is

slightly smaller than the container due to the finite size of the
particles.

[25] This would not be the case in a channel-like domain, for instance.
In two dimensions, if � = [0,1] × [0,L] with L = O(ε), the
wall-particle-particle interactions would become important.

011103-5

http://dx.doi.org/10.1063/1.2789434
http://dx.doi.org/10.1063/1.2789434
http://dx.doi.org/10.1088/0953-8984/14/46/317
http://dx.doi.org/10.1088/0953-8984/14/46/317
http://dx.doi.org/10.1103/PhysRevE.78.061904
http://dx.doi.org/10.1103/PhysRevE.78.061904
http://dx.doi.org/10.1016/j.bpj.2009.11.022
http://dx.doi.org/10.1016/0360-1285(90)90025-X
http://dx.doi.org/10.1016/S0378-4371(02)01036-1
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1088/0953-8984/17/24/004
http://dx.doi.org/10.1103/PhysRevE.80.051103
http://dx.doi.org/10.1103/PhysRevE.78.031118
http://dx.doi.org/10.1103/PhysRevE.82.031126
http://dx.doi.org/10.1209/0295-5075/94/58001
http://dx.doi.org/10.1074/jbc.R100005200
http://dx.doi.org/10.1016/0378-4371(82)90088-7
http://dx.doi.org/10.1017/S0022112076001663
http://dx.doi.org/10.1088/0305-4470/11/5/022
http://dx.doi.org/10.1063/1.443251
http://dx.doi.org/10.1073/pnas.85.9.2984
http://dx.doi.org/10.1073/pnas.85.9.2984
http://dx.doi.org/10.1007/s10955-009-9879-x
http://dx.doi.org/10.1007/s10955-009-9879-x
http://dx.doi.org/10.1137/100783674
http://dx.doi.org/10.1016/j.physa.2008.10.038
http://dx.doi.org/10.1016/j.physa.2008.10.038
http://dx.doi.org/10.1103/PhysRevLett.102.218302
http://dx.doi.org/10.1103/PhysRevLett.102.218302


MARIA BRUNA AND S. JONATHAN CHAPMAN PHYSICAL REVIEW E 85, 011103 (2012)

[26] M. H. Holmes, Introduction to Perturbation Methods (Springer,
New York, 1995).

[27] Of course, if we define c = π (N − 1)εdp/2d then Eq. (12) is
valid for all N , but c is not the volume concentration.

[28] R. M. Mazo, Brownian Motion: Fluctuations, Dynamics, and
Applications (Clarendon, Oxford, 2002).

[29] P. Strating, Phys. Rev. E 59, 2175 (1999).

[30] J. A. Carrillo, R. J. McCann, and C. Villani, Rev. Mat. Iberoam.
19, 971 (2003).

[31] S. Chib and E. Greenberg, Am. Stat. 49, 327 (1995).
[32] V. Calvez and J. A. Carrillo, J. Math. Pures Appl. 86, 155 (2006).
[33] C. W. J. Beenakker and P. Mazur, Physica A 120, 388 (1983).
[34] O. Flomenbom and A. Taloni, Europhys. Lett. 83, 20004 (2008).
[35] M. Bruna and S. J. Chapman (to be published).

011103-6

http://dx.doi.org/10.1103/PhysRevE.59.2175
http://dx.doi.org/10.4171/RMI/376 ignorespaces 1
http://dx.doi.org/10.4171/RMI/376 ignorespaces 1
http://dx.doi.org/10.2307/2684568
http://dx.doi.org/10.1016/j.matpur.2006.04.002
http://dx.doi.org/10.1016/0378-4371(83)90061-4
http://dx.doi.org/10.1209/0295-5075/83/20004

