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We analyze static point-to-set correlations in glass-forming liquids. The generic idea is to freeze the position
of a set of particles in an equilibrium configuration and to perform sampling in the presence of this additional
constraint. Qualitatively different geometries for the confining set of particles are considered and a detailed
comparison of resulting static and dynamic correlation functions is performed. Our results reveal the existence of
static spatial correlations not detected by conventional two-body correlators, which appear to be decoupled from,
and shorter-ranged than, dynamical length scales characterizing dynamic heterogeneity. We find that the dynamics
slows down dramatically under confinement, which suggests new ways to investigate the glass transition. Our
results indicate that the geometry in which particles are randomly pinned is the best candidate to study static
correlations.
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The collective nature of the dynamics of supercooled liquids
approaching the glass transition is well established [1]. A
recent key advance was the study of multipoint dynamical
correlation functions instead of traditional two-point correla-
tion functions such as the intermediate scattering function. A
central outcome is the determination of a dynamical length
scale increasing by a factor of about 5–10 when glass formers
are cooled from normal liquid conditions to temperatures
around the glass temperature Tg . This raises the question of
the underlying existence of nontrivial structural correlations,
which also grow when the glass transition is approached, and
how they relate to dynamic ones [2]. However, just as two-time
dynamic correlation functions do not detect directly dynamic
heterogeneity, two-point density correlation functions (pair
correlation functions) seem unable to capture the relevant
structural correlations, as these functions only show a mild
temperature dependence. There are proposals that three-body
orientational order parameters might give insight for some
specific glass formers [3,4], or that local geometric structures
might be significant [5,6], but generic methods to detect static
order still need to be devised.

Recently, the idea emerged that some form of “amorphous
order” should develop in viscous liquids, which could be
detected through “point-to-set” correlation functions [7–11].
Point-to-set (PTS) correlations probe static multipoint corre-
lations since they are determined by fixing the position of a
“set” of k particles and measuring the probability to find a
(k + 1)th particle at position rk+1. It can be hoped that if the
geometry of the frozen set is well chosen, these multipoint
functions yield spatial information without measuring how
the correlation function depends on all its k + 1 arguments.
For a spherical cavity of radius d, for instance, one expects
to detect a change of physical behavior when d is of the
order of the relevant structural length scale [8]. Although first
motivated in the context of the random first order transition
(RFOT) theory [12], the setup is actually more general and
does not rely on any hypothesis regarding the microscopic
nature of the measured correlations. The generality of the
approach thus strongly suggests that it is important to explore
in detail these PTS correlations in different geometries for the
set as well as for various models of glassy systems. Although

reminiscent of studies of glass formers in confined geometries
[13], we emphasize that PTS correlations probe genuine bulk
correlations, with no contribution from an external substrate
[7,14]. While difficult to implement for molecular systems,
investigations along the lines suggested in the present work
could be performed in colloidal materials where it is possible
to freeze the position of a selected set of particles using for
instance optical tweezers.

In this work we show that PTS correlations can be detected
using a broad variety of qualitatively distinct geometries, see
Fig. 1, which all reveal information on static correlations not
included in conventional pair correlations. As a first step we
present the results of computer simulations of a simple glass
former in which we investigate how the geometry of the pinned
particles influences the measured correlations at a single state
point. Our results suggest that the cavity geometry considered
in earlier studies might not be the optimal choice to study
static correlations. Another surprising outcome of our analysis
is that static length scales appear to be decoupled from, and
smaller than, dynamical length scales characterizing dynamic
heterogeneity in the mildly supercooled regime typically
studied in computer simulations.

For each of the geometries shown in Fig. 1 we first
equilibrate a three-dimensional bulk system composed of N

particles. At t = 0 we permanently pin k particles (filled
circles in Fig. 1), whereas the remaining N − k particles
(open circles) move as before. Since the pinned particles were
chosen from the equilibrated fluid, the thermodynamics of
the free particles is strictly unperturbed, provided an average
is performed over both thermal fluctuations and different
realizations of the pinning disorder [14,15]. For the wall
shown in Fig. 1(d), the average density profile is for instance
strictly constant 〈ρ(z)〉 = ρ0 with no layering. We use constant
temperature molecular dynamics simulations to study a 50:50
binary mixture of harmonic spheres with size ratio 1.4, all
particles having the same mass m [16]. The unit of length
is given by σ , the diameter of the small particles, the unit
of time by

√
mσ 2/ε, where ε is the interaction strength, and

temperature in units of 10−4ε, setting the Boltzmann constant
kB = 1.0. We work at fixed density ρ0 = 0.675. For these
parameters [17], slow dynamics sets in when T � 10, a fit to a
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FIG. 1. Four qualitatively different geometries to investigate
point-to-set correlations in glass-forming liquids.

mode-coupling divergence yields Tc ≈ 5.2, and the harmonic
spheres behave as quasihard spheres, as discussed in detail in
Refs. [16]. Thus our system is a canonical model for studies
of the glass transition phenomenon. As announced, we present
a comparative study of the various confinement shown in
Fig. 1 for a single, moderately low temperature, T = 8 > Tc,
a temperature at which the intermediate scattering function of
the bulk system already shows two-step relaxation.

In all cases we wish to answer the following question:
How does the presence of a pinned set of particles affect the
structure and dynamics of the remaining free particles? To
quantify these effects we define two overlap functions, akin to
the collective and self-intermediate scattering functions. The
collective overlap reads

Q(t) =
∑

i

〈ni(t)ni(0)〉
/ ∑

i

〈ni(0)〉, (1)

where the sum runs over the cells (of volume v ≈ 0.533,
comparable to the particle volume) of a cubic grid, and
ni(t) ∈ {0,1} is the occupation number of cell i at time t . We set
ni = 0 if cell i contains a pinned particle. The overlap Q(t) is
close to 1 if configurations at time 0 and t are similar, but Q(t)
is unaffected by particle exchanges. The long-time limit of
the overlap Q∞ ≡ Q(t → ∞) provides direct information on
static correlations. We also define the single particle function

Qself (t) =
∑

i

〈
ns

i (t)n
s
i (0)

〉/ ∑
i

〈
ns

i (0)
〉
, (2)

where ns
i (t) = 1 if the same particle occupies the cell i at times

0 and t , and ns
i (t) = 0 otherwise.

We now describe the various geometries of Fig. 1.
(a) Particles outside a cubic cavity of linear size 2d are
frozen. The overlaps are measured at the center of the cavity,
using the 43 central cells to improve the statistics; eight
independent realizations are studied for each d. A similar
(spherical) geometry has been studied in Ref. [10,11]. (b)
Particles outside the range 0 < z < 2� are frozen, such that
the free particles are “sandwiched” between two infinite walls

separated by a distance 2�. The overlap is averaged over cells
located in the plane parallel to the walls in the middle of the
sandwich; 10 independent realizations are studied for each �,
with Lx = Ly = 13.68. (c) A finite fraction c of particles is
randomly selected in the fluid, with a typical distance between
them 2l = c−1/3 [18]. The overlap is averaged over all cells. By
using a large isotropic system L = 16.3, only few realizations
(typically 2–3) are needed to yield statistically accurate results.
(d) Particles in the semi-infinite space z < 0 are frozen. The
overlap is averaged over cells belonging to planes parallel to
the wall at distance z from it. This geometry has been studied
in more detail (including different temperatures) in Ref. [17].
For (b) and (d) we also included a hard wall at the boundary
between the wall(s) and the fluid to prevent free particles to
penetrate the walls [14]. To perform quantitative comparisons,
we define a “confining length” ξ , respectively, as ξ = d, �,
l, or z: a smaller ξ means stronger confinement. Physically, ξ

represents for each geometry the typical distance between the
point where the overlap is measured to the pinned set of frozen
particles. Note finally that geometry (a) is peculiar since the
number of confined particles is always finite, while it scales
with system size and diverges in the thermodynamic limit in
cases (b)–(d).

In Fig. 2 we gather our results for the four geometries, both
overlaps (1) and (2), and various degrees of confinement. In
all geometries the time correlation functions have a similar
qualitative behavior. When ξ → ∞, bulk behavior of the
overlap Q(t) is recovered with a two-step decay and at long
times a relaxation to the random value Qrand ≈ 0.110595 ≈
ρ0v. When confinement increases, the time dependence of
Q(t) slows down, while the long-time limit increases Q∞(ξ ) >

Qrand. In practice we extract Q∞(ξ ) by fitting the long-time
decay of Q(t) to a stretched exponential form. The quality
of the fit is very good, as examplified in Fig. 2(b). In
order to see that such a fit does indeed allow us to obtain
Q∞(ξ ) with high precision, we show in Fig. 3 the time
dependence of Q(t) − Qrand on a logarithmic scale as well
as the corresponding fits. Finally we note that the evolution of
Qself(t) is similar, showing a dramatic slowing down with
increasing confinement, but its long-time limit is always
zero.

A comparison between both functions shows that Q(t)
roughly reaches Q∞ when Qself(t) approaches zero, that is,
essentially when all particles have escaped the position they
occupy at t = 0. Thus, when Q∞ > Qrand, nonrandom local
density fluctuations persist even though particles diffuse and
explore the available space. By monitoring the ξ dependence
of Q∞, we can quantify the amount of static order imposed
by the confinement and have direct quantitative access to
the influence of the set of frozen particles on the fluid
structure to obtain bulk, equilibrium, many-body information
not contained in pair correlations [7–11,17].

From Fig. 2 we also conclude that measuring the evolution
of the static overlap Q∞ is more difficult than previously
thought [8,10,19], because the dynamics slows down consid-
erably with increasing confinement [14]. Whereas the bulk
dynamics at T = 8 corresponds to a moderately viscous state,
there exists in all four geometries a maximal confinement
above which Q(t) does not reach its long-time limit in the
time window of our simulations, and hence large values of Q∞

011102-2



STATIC POINT-TO-SET CORRELATIONS IN GLASS- . . . PHYSICAL REVIEW E 85, 011102 (2012)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t

0.0

0.2

0.4

0.6

0.8

Q
(t

) 
an

d 
Q

se
lf(t

)

wall, T=8.0 (d)
z=0.27
z=0.47
z=0.67
z=0.87
z=1.07
z=1.27
z=1.47
z=1.87
z=2.27
z=2.87
z=4.27
z=6.27
z=15.67

0.0

0.2

0.4

0.6

0.8

Q
(t

) 
an

d 
Q

se
lf(t

)

(c)pinned, T=8.0

bulk

c=0.69
c=0.34
c=0.27
c=0.21
c=0.17
c=0.14
c=0.103
c=0.068
c=0.02
bulk

0.0

0.2

0.4

0.6

0.8

Q
(t

) 
an

d 
Q

se
lf(t

)

Δ=2.0

bulk

sandwich, T=8.0 (b)

Δ=2.0
Δ=2.25
Δ=2.75
Δ=3.25
Δ=4.0
Δ=6.0
bulk

0.0

0.2

0.4

0.6

0.8

1.0

Q
(t

) 
an

d 
Q

se
lf(t

)

box, T=8.0 (a)

d=2.5
d=3.5
d=4.25
d=5
d=6
d=7
bulk

wall

bulk

FIG. 2. (Color online) Time dependence of the overlaps Q(t) (full
lines) and Qself (t) (dashed lines) for T = 8.0. The panels correspond
to the four geometries of Fig. 1. In (b) we have also included the results
of fits with a stretched exponential to the Q(t) data for � = 2.25 and
� = 3.25 (dashed-dotted lines).

cannot be accessed. This difficulty gets even more pronounced
at lower T [17], meaning that the measurement of point-to-set
correlations closer to Tc is at present extremely challenging.

In Fig. 4 we present the evolution of the average overlap
Q∞(ξ ) as a function of the confining length ξ in all geometries
(a), and the evolution of the corresponding relaxation times
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FIG. 3. (Color online) Time dependence of the overlap Q(t) −
Qrand (symbols) and the stretched exponential fits (lines) for the
sandwich geometry and different values of �.

τ (ξ ) (b), defined from the time decay of Qself (t) to the
value 1/e. In the latter figure we normalize the data by
the bulk value τ∞ = τ (ξ → ∞). The static profiles confirm
that the average overlap becomes increasingly nonrandom
by increasing the confinement since at a given confinement
length we find that Q∞ increases for the sequence pinned,
wall, sandwich, box. Note that for the first three geometies
the values of Q∞ are similar, whereas the ones for the
box are significantly larger. This indicates that the effect of

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
confining length

10
-1

10
0

10
1

ln
(τ

/τ
∞
)

(a)

(b)

box
sandwich
wall
pinned

10
-3

10
-2

10
-1

10
0

Q
∞
-Q

ra
nd

box
sandwich
wall
pinned

FIG. 4. (Color online) (a) Dependence of the overlap Q∞ on the
confining length for all geometries at T = 8 (symbols) fitted with an
exponential decay at long distances (straight lines). (b) Relaxation
time of the self-overlap normalized by its bulk value.
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confinement is highly nonlinear. In cases (b) and (d) we find
that the large ξ decay of Q∞ is compatible with an exponential
decay Q∞(ξ ) − Qrand ≈ exp(−ξ/ξstat), which defines a PTS
static length scale ξstat. For geometry (d) this dependence holds
for temperatures as low as T = 5.0 < Tc [17]. A compressed
exponential decay was reported for a closed cavity in Ref. [10],
which is unfortunately the geometry for which our data is the
most limited. For randomly pinned particles, one expects the
nonrandom part of the overlap to scale as c = 1/ξ 3 for large
ξ , and an exponential decay is not expected in that case, which
requires a separate analysis (see also [20]).

Regarding dynamics, we find that decreasing ξ at constant
T leads to a strong slowing down of the dynamics for both
self and collective quantities. In absolute values, τ (ξ ) strongly
increases with the number of confining walls which shows
that relaxation is nonlinearly suppressed by adding more
constraints (see also Ref. [14]). For a given confining length,
pinned particles have of course much less impact on the
dynamics as a single particle has obviously less effect than
an entire wall. For the cavity (a), the slowing down is in fact
so dramatic that the range of ξ where Q∞ can be measured
is very small: The overlap is too small when ξ is large, but
dynamics is much too slow when ξ is small, which only leaves
a narrow range to measure the static profile. We conclude that
measuring PTS correlations in a closed cavity is in practice a
difficult task in the interesting supercooled regime.

For a single wall, τ (ξ ) can be followed down to ξ → 0,
while for the other geometries small values of ξ are not
accessible due to a much stronger slowing down. All dynamic
profiles in Fig. 4(b) are well described by an exponential decay
ln(τ/τ∞) ≈ exp(−ξ/ξdyn), which directly allows one to extract
a dynamic correlation length scale ξdyn [14,21]. In Ref. [17]
we have explored its temperature dependence for a single
wall and discussed how ξdyn relates to previous measures of
dynamic length scales. From Fig. 4(b) we see that the slowing
down of the dynamics is the least pronounced for the pinned
geometry. Therefore we suggest that this geometry might be
best suited for the investigation of the T dependence of static
correlations.

By comparing the two panels in Fig. 4, it is obvious that
for all geometries the dynamics seems to be affected over
a broader range of confinement than statics, which suggests
that generically ξdyn > ξstat. In fact we have frequently found
parameters for which clear deviations from bulk dynamics are
observed while the static overlap is still random, suggesting
a clear decoupling between static and dynamic correlations.
This decoupling is strong for a single wall and becomes
less pronounced for randomly pinned particles. Our study
thus seems to confirm [9,17] that static correlation length
scales are generically decoupled from dynamic ones and
smaller, at least over the range of temperature we can explore
numerically.

We finally discuss our results in a broader context. Theo-
retical progress on the glass problem is slowed by the lack of
an obvious structural indicator to distinguish a glass from a
fluid. It has only recently been realized that in the framework
of RFOT theory the “ideal glass” phase below the Kauzmann
transition TK is characterized by an infinite static PTS length
scale [8,9]. This implies for instance that below TK freezing a
semi-infinite space as in Fig. 1(d) determines the position of the
particles in the entire z > 0 space [6]. Spatially extended static
profiles, such as shown in Fig. 4, thus uniquely characterize
fluids approaching the glass transition [10,17], and do not
provide valuable information for liquids at high temperatures.

Within RFOT theory, a static length ξRFOT(T ) emerges
from a spatial interpretation of the (mean-field) concept of
metastable states [12]. This “mosaic” length scale plays a
role similar to that of a nucleation length scale in first-order
transitions, because it is set by the competition between the
entropic gain of exploring different states and the energy cost of
having interfaces between them [12]. This should be reflected
in the closed cavity of Fig. 1(a) as a crossover between a small
Q∞ when d > ξRFOT to a large Q∞ when d < ξRFOT since
for decreasing confinement the surface tension eventually
dominates [8]. A qualitatively similar crossover holds for
geometries (b) and (c) as well, but not for a single wall in
(d) where bulk behavior with Q∞ = Qrand is recovered far
from the wall and an interface must always be present.

In contrast to closed cavities, the crossover set by ξRFOT

involves in geometries (b) and (c) a number of particles that
diverges in the thermodynamic limit. This “crossover” should
therefore more properly be described as a genuine freezing
transition toward an ideal glass phase where Q∞ is large and
density fluctuations do not relax (see also [22]). A glass phase
can then be approached either by decreasing T in the bulk, or by
increasing the confinement at constant T , which opens exciting
perspectives to study the glass transition. We are presently
pursuing the exploration of the glass phase obtained at large
pinning density, but the results go much beyond the theme
of the present article and will be presented elsewhere. Our
results also motivate further analysis of the phase diagram of
viscous liquids in confined geometries (b) and (c). Analytical
calculations for randomly pinned particles exist for hard sphere
systems within mode-coupling theory [23], while the present
results have motivated both an RFOT analysis [22] and some
numerical investigation [20]. Future work should characterize
and compare in more detail the temperature evolution of
the static and dynamic length scales introduced in this work
beyond the case of the single wall studied in Ref. [17].
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