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We numerically investigate the transport of a suspended overdamped Brownian particle which is driven through
a two-dimensional rectangular array of circular obstacles with finite radius. Two limiting cases are considered in
detail, namely, when the constant drive is parallel to the principal or the diagonal array axes. This corresponds to
studying the Brownian transport in periodic channels with reflecting walls of different topologies. The mobility
and diffusivity of the transported particles in such channels are determined as functions of the drive and the
array geometric parameters. Prominent transport features, like negative differential mobilities, excess diffusion
peaks, and unconventional asymptotic behaviors, are explained in terms of two distinct lengths, the size of single
obstacles (trapping length), and the lattice constant of the array (local correlation length). Local correlation effects
are further analyzed by continuously rotating the drive between the two limiting orientations.
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I. INTRODUCTION

The effective control of mass and charge transport in
artificial micro- and nanostructures requires a deep understand-
ing of the diffusive mechanisms involving small objects in
confined geometries. Such situations are typically encountered
when studying the transport of particles in, e.g., biological
cells [1] and zeolites [2], catalytic reactions occurring either
on templates or in porous media [3], chromatography or, more
generally, separation techniques of size-dispersed particles
on micro- or even nanoscales [4]. In many respects these
transport phenomena can be regarded as diverse manifestations
of geometrically constrained Brownian dynamics in one or
higher dimensions [5].

In this paper we focus on the dc driven transport of pointlike
Brownian particles in two dimensional (2D) arrays. Restricting
the volume of the phase space available to the diffusing par-
ticles by means of confining boundaries, or obstacles, causes
remarkable entropic effects [6–17]. In quasi-1D geometries
(narrow channels), driven transport of charged particles across
bottlenecks, such as ion transport through artificial nanopores
or biological channels, represents an ubiquitous situation,
where diffusion is effectively controlled by entropic barriers
[8]. Similarly, the operation of artificial Brownian motors and
molecular machines [9,10] also results from the interplay of
thermal diffusion and the pinning action by both energetic and
entropic barriers.

Higher dimensional geometries have recently attracted
broad interest in the context of separation of macromolecules
[18], like colloids [19], DNA fragments [20,21], or even
magnetic vortices [22–25], because of the occurrence of
induced transverse drifts, which separate different objects
depending on their bulk diffusivity [26–28]. Such systems
are essentially 2D arrays of impenetrable obstacles traversed
by diffusing particles subjected to external gradients. An
accurate modeling of real experiments, like those cited here
and many more, would require incorporating nontrivial effects
due to particle interactions [22,27], fluidics [28,29], chaos [30],

inertia [23], excluded volume [5,26], particle shape [31,32],
spatial asymmetries, and disorder [9,10], to mention but
a few. In other contexts the underlying planar constrained
geometries have been modeled also by arrays of traps [33,34],
or egg-carton potentials [35,36].

In order to attempt a first quantitative characterization
of forced transport across a 2D array, we used a simplified
model where a single Brownian particle of negligible size is
suspended in an unmovable interstitial fluid at fixed tempera-
ture (dilute suspension). The particle is free to diffuse in the
connected space delimited by circular reflecting obstacles of
finite radius, arranged in a rectangular lattice. The particle is
subjected to thermal fluctuations and large viscous damping
(as is often the case for biomolecules, colloids, and magnetic
vortices [9,10]), and a homogeneous constant force (Fig. 1).
Such a dc drive is applied from the outside by coupling
the particle to an external field (for instance, by assuming
that the particle carries a dielectric or magnetic dipole, or a
magnetic flux), without inducing drag effects on the suspension
fluid. To simplify our model even further, we neglected any
local spatial asymmetry, such as one obtains by lining up
noncircular obstacles in symmetric lattices or by arranging
circular obstacles in suitable anisotropic arrays [9,10]. Under
such conditions the dynamics of the driven particle is fully
described by an overdamped 2D Langevin equation, which
we encoded in our numerical simulation algorithm, or by the
corresponding 2D Fokker-Planck equation, which lends itself
to a more systematic analytical treatment [5]. All other effects,
including particle-particle and particle-obstacle interactions,
hydrodynamic corrections, chaotic and inertial dynamical
terms, particle size and shape, are thus ignored.

The properties of Brownian transport in the stationary
regime are well quantified by the particle mobility and
diffusivity as functions of the external drive (magnitude
and orientation) and of the array parameters (obstacle radius
and lattice constants). Thanks to the simplifications assumed in
the present model, we detected prominent transport features,
like negative differential mobilities, excess diffusion peaks,
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FIG. 1. (Color online) Sketch of a square array, Lx = Ly , of circular obstacles with radius r0. (a) The Brownian particle is driven by a dc
force �F oriented at an angle φ with the horizontal axis. Transport through the array can be reduced to transport along corrugated channels of
type I for F I, φ = 0, and type II for F II, φ = π/4, with appropriate compartment sizes. Channels I and II are sketched in (b) and (c), respectively;
y

I,II
L and x

I,II
L denote the width and the periodicity of the channel. The vertical distance between two opposite obstacles is 2�I,II = y

I,II
L − 2r0.

The trajectory drawn in (c) is the limiting noiseless trajectory for F II → ∞ pointing to the right. The central horizontal lines in (b) and (c) are
the channel symmetry axes, which suggest to further reduce the analysis of the problem to half the sketched channels (see Sec. II).

and unconventional asymptotic behaviors, which went unno-
ticed in earlier reports, experimental and computational alike.
We explain the properties of Brownian transport in 2D arrays
in terms of two distinct depinning mechanisms: (i) trapping
by a single obstacle, which the particle can overcome only by
diffusing a transverse distance of the order of the obstacle size,
while being driven the same longitudinal length; (ii) correlated
collisions against obstacle rows at an angle with the external
force, which tend to collimate the particle trajectories to form
stream lines connecting and flowing around the obstacles.
Such mechanisms correspond to two different length scales,
respectively: the obstacle radius (independent of the array
geometry) and the effective obstacle spacing (resulting from
the combination of array geometry and drive orientation).

This paper is organized as follows. In Sec. II we introduce
the Langevin equation formalism employed in our simulation
code. We show how for special orientations of the drive
the problem can be reduced to the transport in corrugated
1D channels. Mobility and diffusivity data are plotted in
Sec. III as functions of the drive, the obstacle radius, and
the array lattice constants for two such corrugated channels
corresponding, respectively, to orienting the drive along the
principal (Sec. III A) and the diagonal axes of a square
array (Sec. III B). Mobility and diffusivity dependence on the
system parameters are interpreted in Sec. IV in terms of the
two aforementioned depinning mechanisms. In Sec. V, local
correlation effects due to the array geometry are analyzed in
more detail by continuously rotating the drive between the
two limiting orientations of Sec. III. Finally, we summarize
our results in Sec. VI.

II. MODEL

Let us consider an overdamped Brownian particle of unit
mass diffusing in a suspension fluid contained in a 2D
rectangular array, Lx × Ly , of reflecting circular obstacles of
radius r0, as illustrated in Fig. 1(a). The particle is subjected
to a homogeneous force �F oriented at an angle φ with the

horizontal axis x. The overdamped dynamics of the particle is
modeled by the 2D Langevin equation,

d�r
dt

= �F +
√

D0�ξ (t), (1)

where �r = (x,y) and �ξ (t) = (ξx(t),ξy(t)) are zero-mean, white
Gaussian noises with autocorrelation functions 〈ξi(t)ξj (t ′)〉 =
2δij δ(t − t ′), with i,j = x,y. The noise strength D0 corre-
sponds to the particle free or bulk diffusivity in the absence of
geometric restrictions and is proportional to the temperature
of the suspension fluid. We numerically integrated Eq. (1) by
a Milstein algorithm [37]. The stochastic averages reported in
the forthcoming sections were obtained as ensemble averages
over 106 trajectories with random initial conditions; transient
effects were estimated and subtracted. To check the reliability
of our numerical simulations we solved the corresponding
Fokker-Planck equation by means of a finite-element algo-
rithm and obtained a good comparison with the Langevin
method.

The driven particle current across the array strongly
depends on the force orientation. The problem cannot be
reduced to a 1D problem, unless �F is oriented along a lattice
axis, i.e., φ = φn,m with φn,m = arctan(nLy/mLx) (n,m ∈ Z
and m 	= 0). Due to its spatial symmetry, the array can then be
regarded as consisting of identical periodic channels parallel to
�F and separated by reflecting walls. This allows to interpret the

stationary transport properties of the array in terms of transport
mechanisms through compartmentalized narrow (quasi-1D)
channels. In Fig. 1 we illustrate the two limiting cases with φ =
0 and φ = π/4 for a square lattice, Lx = Ly . For a rectangular
lattice, i.e., Lx 	= Ly , and φ = 0, the reduced channels are
horizontal and have rectangular compartments, x I

L × yI
L with

x I
L = Lx and y I

L = Ly . For φ = φ1,1 = arctan Ly/Lx , the
reduced channels are diagonal and their compartments have

width y II
L = 2LxLy/

√
L2

x + L2
y and period x II

L =
√

L2
x + L2

y .

For a square lattice, the latter channels coincide with the
channel II of Fig. 1(c), where y II

L = x II
L = Lx

√
2. Note that for
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symmetry reasons, the discussion of channels I and II can be
further simplified by halving the channel width; see Figs. 1(b)
and 1(c).

Motivated by these observations we investigated Brownian
transport in two categories of reduced periodic channels,
conventionally directed along the x axis (and parallel to �F ).
They correspond to cutting, respectively, channel I of Fig. 1(b)
and channel II of Fig. 1(c) along the central dotted line
and then varying the compartment length xL at will (note
that here and in what follows the superscripts are omitted).
Channels I are thus characterized by a corrugated and a
smooth wall, a geometry that lets straight particle trajectories
through, no matter what the radius of the circular obstructions.
Channels II have equally corrugated walls, though shifted by
half a period; for r0 > yL/4 the driven particle can cross the
channel only by circumventing the obstructions on either walls.
As a consequence, one expects distinct transport properties
for these two channel geometries [38–42]. Note that tuning
the compartment parameters corresponds to investigating
rectangular (channels I) and face-centered rectangular arrays
in two dimensions (channels II) with �F parallel to the principal
axes.

Two transport quantifiers that best illustrate the different
properties of channels I and II are the nonlinear mobility and
the effective diffusion coefficient. We characterize the response
of a Brownian particle dc driven along the channel axis by
computing its mobility μ,

μ(F ) = 〈ẋ(F )〉/F, (2)

where 〈ẋ(F )〉 = limt→∞[〈x(t)〉 − x(0)]/t , and its diffusivity
D,

D(F )/D0 = lim
t→∞[〈x2(t)〉 − 〈x(t)〉2]/2D0t, (3)

both as functions of F for different channel geometries. In the
absence of external drives, Einstein’s relation [43],

μ0 ≡ μ(0) = D(0)/D0, (4)

establishes the dependence of the transport quantifiers on
the channel geometry and temperature under equilibrium
conditions.

For a more compact presentation of our numerical data, we
remark that Eq. (1) can be conveniently rewritten in terms of
the rescaled units t → tD0 and F → F/D0. A straightforward
dimensional argument shows that both the particle mobility,
Eq. (2), and its diffusivity in units of D0, Eq. (3), are functions
of F/D0, only, for any given channel geometry.

III. CHANNEL TRANSPORT

Contrary to smoothly corrugated channels, also called
entropic channels [8], introduced first in Ref. [6] and further
investigated in Refs. [11–15], strongly compartmentalized
channels with narrow sharp bottlenecks, or pores, cannot
be analyzed in terms of an effective 1D kinetic process
directed along their axis [40]. Accordingly, driven transport in
such strongly constrained geometries exhibits distinct features
which cannot be reduced to known properties of Brownian
motion in 1D periodic systems [8,43].

We outline here the main differences between transport in
entropic and sharply compartmentalized channels. In entropic

channels μ(F ) increases from a relatively small value for
F = 0, μ0 of Eq. (4), up to the free-particle limit, μ∞ = 1, for
F → ∞ [14,15]. On the contrary, in coaxial compartmental-
ized channels μ(F ) decreases monotonically with increasing
F toward a geometry-dependent asymptotic value μ∞, equal
to the ratio of the pore to the channel cross section [40]. Such an
asymptote vanishes for eccentric compartmentalized channels
with off-axis, nonoverlapping pores [42].

Significant differences have also been reported for the
diffusivity. For entropic channels with smooth pores, the func-
tion D(F ) approaches the free-diffusion limit for F → ∞,
D(∞) = D0, after going through an excess diffusion peak
centered at an intermediate (temperature dependent [14,15])
value of the drive. Such a peak signals the depinning of
the particle from the entropic barrier array [44]. In coaxial
compartmentalized channels, instead, D(F ) exhibits a distinct
quadratic dependence on F [39,41], reminiscent of Taylor’s
diffusion in hydrodynamics. This observation suggests that the
particle never frees itself from the geometric constriction of
the compartment pores, no matter how strong F . The quadratic
divergence D(F ) can be cut off for suitably large F by
alternately shifting the pores off-axis (eccentric channels [42]).

Driven transport in channels I and II of Fig. 1 is charac-
terized by the superposition of, or sometimes the competition
between, the properties observed for the two opposite compart-
mentalization geometries considered in the earlier literature.
We remind here that, due to the mirror symmetry of the obstacle
geometries of Figs. 1(b) and 1(c), our analysis refers to the
irreducible channels I and II obtained by cutting the channels
sketched there along their axis (dotted line) and then varying
their spatial periodicity. Therefore the irreducible channels
discussed below have effective width yL/2 and transverse
bottleneck width � = yL/2 − r0.

A. Channels I

Channels I corresponding to square arrays, xL = yL, exhibit
transport properties apparently not much different from the
entropic channels. In particular, the mobility is an increasing
function of F ; the μ(F ) curves jump from μ0 to μ∞ = 1
sharper and sharper as the radius r0 of the obstacles is increased
[Fig. 2(a)]. The diffusivity curves develop an excess diffusion
peak in correspondence with the mobility surge; the height of
these peaks weakly depend on r0.

New features start to emerge when we consider channels
with rectangular compartments, i.e., xL > yL. These become
apparent in Fig. 3, where we display data for simulated
transport in channels I for different period lengths xL. The
occurrence of two distinct diffusion mechanisms is proved by
the two-step increase of the mobility and the corresponding
double diffusivity peaks. Such peaks merge as xL tends to yL.

B. Channels II

In Fig. 4 we plot the curves μ(F ) and D(F ) for channels II
with comparable compartment dimensions xL and yL and dif-
ferent obstacle radius r0. The mobility function μ(F ) develops
a nonmonotonic dependence on F , which becomes prominent
for narrow bottleneck widths, � = yL/2 − r0, but vanishes
altogether for � � yL/4 [Fig. 4(a)]. Negative differential
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FIG. 2. (Color online) Driven transport in channel I with xL =
yL = 1, D0 = 0.03, and different r0: particle mobility μ (a) and scaled
diffusivity D/D0 (b) vs the scaled force F/D0. Inset: mean exit time
through four pores, τ4, and two opposite pores, τ2. The numerical
data are compared with the analytical predictions in Eq. (8).

mobility is a peculiar feature of all sharp compartmentalized
channels [40] and eccentric channels, in particular [42].
Indeed, each compartment of the reduced channels II of
Fig. 2(c) has two off-axis bottlenecks, located alternately
against its top and bottom wall. The subsequent mobility surge
toward a horizontal asymptote with μ∞ < 1 indicates that on
increasing F the particle grows more sensitive to the pinning
action of the obstacles, which it overcomes initially by mere
Brownian diffusion and eventually with the assistance of the
drive itself.

103
0.6

0.8

1.0

100

Applied force, F/D
0

M
ob

ili
ty

μ

    x
L
 =
 1
 2
 5
 8

103

1

100

Applied force, F/D
0

D
iff

us
iv

ity
, D

/D
0

5

    x
L
 =
 1
 2
 5
 8

FIG. 3. (Color online) Driven transport in a channel I: particle
mobility μ (a) and scaled diffusivity D/D0 (b) vs the scaled force
F/D0 for different xL. Other simulation parameters are yL = 1,
D0 = 1, and r0 = 0.4.

Correspondingly, such change in the depinning mechanism
is signaled by a conspicuous diffusion peak [Fig. 4(b)]. In
comparison to Fig. 2(b), here the D(F ) peaks are more than one
order of magnitude larger than D0 and their position strongly
depends on � (or r0). Most remarkably, the asymptote D(∞)
is systematically larger than the free diffusivity D0 for � �
yL/4, like for eccentric compartmentalized channels [42]. Note
also that the slowly increasing branches of the curves plotted
in Fig. 4(b) tend to overlap and grow slower than for coaxial
compartmentalized channels, where D(F ) diverges like F 2

[39,42].
Like for channels I, two different transport mechanisms

become apparent as we space the circular obstacles out along
the channel axis, i.e., for xL � yL. The diffusivity curve D(F )
develops a secondary peak at lower F , which grows prominent
on further increasing xL [Fig. 5(b)]. At variance with the
high-F peak, the position of the emerging peak is rather
insensitive to xL. Correspondingly, the mobility curves shift
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FIG. 4. (Color online) Driven transport in a channel II with xL =
2, yL = 1, D0 = 0.03, and different r0: particle mobility μ (a) and
scaled diffusivity D/D0 (b) vs the scaled force F/D0. Dotted lines
represent μ∞, Eq. (9), in (a) and D∞, Eq. (10), in (b).

toward higher values, their most apparent feature remaining its
nonmonotonic F dependence. By closer inspection, for large
xL, in correspondence with the secondary D(F ) peak one
notices the appearance of a shoulder, or step, on the low-F
raising branch of μ(F ).

IV. DEPINNING MECHANISMS

The most remarkable property of transport in channels I
and II emerges for rectangular compartments with xL > yL. As
anticipated in Secs. III A and III B, the two-peaked structure of
D(F ) results from the competition between the two depinning
mechanisms illustrated in Fig. 6. The Brownian particle
overcomes the obstacle thanks to the combined action of
the drive F and the noise ξ (t). The drive, in particular, on one
side pushes the particle against the obstacles, thus enhancing
the low-F pinning by the array [raising D(F ) branch], on
the other side guides the particle around the obstacles, so
as to collimate its trajectories through a coaxial [channels I,
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FIG. 5. (Color online) Driven transport in a channel II with
yL = 1, D0 = 0.03, r0 = 0.4, and different period xL: particle mobil-
ity μ (a) and scaled diffusivity D/D0 (b) vs the scaled force F/D0.
Dotted lines represent μ∞, Eq. (9), in (a) and D∞, Eq. (10), in (b).

D(∞) = D0] or eccentric sequences of bottlenecks [channels
II, D(∞) > D0].

For relatively low drives, the particle circumvents a single
circular obstacle, irrespective of the array geometry and the
drive orientation, by diffusing a transverse distance r0 over
the time it takes to drift the same distance r0 [Fig. 6(a)].
On equating the transverse diffusing time, τ⊥ = r2

0 /2D0, and
the longitudinal drift time, τ‖ = r0/F , we locate the low-F
depinning threshold at

F (1)/D0 = 2/r0. (5)

We recall that excess diffusion peaks are characteristic sig-
natures of depinning thresholds [9,44]. We stress that this
estimate for F (1) is expected to apply to both types of channels,
I and II, and to any geometry and size of their compartments
(i.e., to any 2D array). As shown below, in the case of square
compartments, Figs. 2(b) and 4(b), low- and high-F peaks
cannot be separated. The estimate of Eq. (5) closely locates
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FIG. 6. (Color online) Depinning mechanisms. (a) The Brownian
particle circumvents a single obstacle by diffusing in the transverse
direction (vertical arrows) and then drifting along the axis driven by F

(horizontal arrow). (b), (c) Trajectory focusing along the channel lane
results from the competing action of longitudinal drift (horizontal
arrows) and transverse diffusion (vertical arrows) across the array.
The transverse diffusion length is of the order of half the channel
width in (b) and half the bottleneck width in (c). (d) Example of
minimum longitudinal mobility orientation in a rectangular 2D array;
see Sec. V.

the low-F peaks of all D(F ) curves reported in Figs. 3(b)
and 5(b). Note that in the limit of narrow bottlenecks, � → 0,
F (1)/D0 approaches 4/yL, irrespective of xL [Fig. 5(b)].

For large drives, channels I and II behave differently. The
bottlenecks in channels I are coaxial [Fig. 6(b)]. This means
that the driven Brownian particle gets trapped within a couple
of obstacles if, during the drift time it takes to cover the distance
separating the center of a bottleneck from the nearest pair of
obstacles, xL − r0, it diffuses a transverse distance of the order
of half the width of the (reduced) channel, yL/4. Equating the
corresponding times, τ⊥ = y2

L/32D0 and τ‖ = (xL − r0)/F ,
we obtain an estimate for the position of the high-F diffusivity
peaks in channels I, namely,

F (2,I)/D0 = 32(xL − r0)/y2
L . (6)

In channels II with � < yL/4, i.e., r0 > yL/4, the focusing
action of the drive forces the particle through a meandering
path. This action becomes effective when the particle drifts the
distance separating a bottleneck from the opposing obstacle
[Fig. 6(c)], xL/2 − r0, while diffusing across the lane passing
through the bottleneck of a (reduced) channel, i.e., a transverse
distance of the order of half its width, �/2. The corresponding
depinning threshold is thus estimated to be

F (2,II)/D0 = 4(xL − 2r0)/�2. (7)

Contrary to F (1), the thresholds F (2,I) and F (2,II) depend on
the channel geometry, being different for channels I and II,
and linearly shift to higher values with increasing the length
of the channel compartments xL, or shrinking the obstacle size
r0. Despite the rough estimate of the characteristic transverse
diffusing length, the thresholds of Eqs. (6) and (7) locate
quite closely the large drive diffusion peaks in panels (b) of
Figs. 2–5. For square channel compartments, xL = yL, with
narrow bottlenecks, r0 � yL/2, the two depinning mechanisms
are not clearly distinguishable, being the size of the obstacle
and the array lattice constant of the same order. Correspond-
ingly, the diffusivity curves exhibit only one peak.

The limiting values of μ(F ) and D(F ) for F = 0 and
F → ∞ are also of some interest. For F = 0, mobility and
diffusivity are related through Einstein’s identity, Eq. (4).
Analytical expression for μ0 in restricted geometries can be
obtained only under special conditions [38,41]. For instance,
in channels I and II corresponding to square arrays with narrow
bottlenecks, � → 0, μ0 can be expressed in terms of the mean
first exit time for the Brownian particle to escape the inter-
stitial region delimited by four nearest neighboring obstacles
[Fig. 2(b), inset]. Our numerical simulations show that, as
expected, the mean exit time through all four openings, τ4, is
half the mean exit time through any pair of opposite openings,
τ2, with both τ2 and τ4 decaying inversely proportional to the
pore width, i.e., like 1/

√
�. These results are well fitted by the

law

τ2 = 2τ4 �
(

1 − π

4

)
x2

Lπ

8D0
√

�/xL

, (8)

which is consistent with a recent analytical prediction [see
Eq. (13) of Ref. [45]]. Moreover, the mean sojourn time
in a square channel I compartment is 2τ2 and, accordingly,
μ0 = x2

L/4D0τ2, also in close agreement with the numerical
data for small � plotted in Fig. 2. This argument can
be easily generalized to rectangular arrays, as long as the
distance between neighboring obstacles remains sufficiently
small compared to the lattice constants.

The asymptotes μ(∞) and D(∞) in channels II with
� < yL/4 also deserve attention. In the limit F → ∞, the pore
eccentricity, which is responsible for the negative differential
mobility of channels II, is eventually superseded by the
funneling effect due to the rounded shape of the obstacles.
In such limit, the particle trajectories consist of straight
parallel segments, which a free particle traverses with speed
F , and arcs of the obstacle boundaries, as shown in Fig. 1(c),
where the driven particle slows down. On averaging out noise
fluctuations, the total time taken by the particle to cross one
channel compartment, τc, can be derived analytically, so that,
μ∞ = xL/τcF , that is

μ∞ =
[

1 − yL

xL

√
2ε − 1 + r0

xL

ln
ε + √

2ε − 1

ε − √
2ε − 1

]−1

, (9)

with ε = 2r0/yL and 1/2 < ε < 1. The predicted values for
μ∞ are indicated by dotted lines in Figs. 4(a) and 5(a). Note
that in channels II for � � yL/4 and in all channels I the
traversal time is τc = xL/F and therefore μ∞ = 1.

A full analytic calculation of D(∞) proved to be a
cumbersome task. As in channels II each bottleneck is faced
by a blocking obstacle, one would expect that for � < r0

the diffusivity D(∞) scales like r0/�, namely the ratio of
the obstacle diameter to the vertical distance between two
neighboring obstacles. Furthermore, on regarding the channel
as a 1D discretized structure with spatial constant xL, one
can formally express D(∞) as x2

L/2τ̄ , where τ̄ is a certain
diffusion time constant, which we know to be proportional to
the compartment volume [45]. Hence even without calculating
τ̄ , one concludes that D(∞) is proportional to xL. Therefore
we tried to reproduce our numerical data for D(∞) by means
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of the heuristic law

D(∞)

D0
= xL

2yL

r0

�
, (10)

which turns out to work well both in Fig. 4(b) and in Fig. 5(b).
Note that, in the case of larger xL, Fig. 5(b), where Eq. (10)
seems to work not as well, a conclusive estimate of the
asymptote D(∞)/D0 would require simulating even higher
F/D0 values, which in practice becomes very difficult to
implement numerically because this regime would require
exceedingly small time steps.

V. PARALLEL AND LATERAL TRANSPORT

We address now the practical situation [18–23,25–29] when
the orientation of the drive can be varied at will with respect to
the array principal axes. The angle φ in Fig. 1(a) can thus be
rotated between 0 and π/2. For a square lattice, Lx = Ly , this
corresponds to continuously switch from a channel I (φ = 0)
to a channel II (φ = π/4) and then back again to the initial
channel I geometry (φ = π/2). For a rectangular 2D lattice,
Lx 	= Ly , the two channels I have different width, that is,
Ly for φ = 0 and Lx for φ = π/2, while no channel II is
recovered. Indeed, as �F is directed along a diagonal of the
rectangular lattice cell, the corresponding reduced 1D channel
looks similar to channel II in Fig. 1(c), but for a relative shift
of the lower and upper obstacle rows. The transport properties
of such diagonal channels are qualitatively the same as for
channels II of Sec. III B.

In Fig. 7 we display some significant simulation data for
driven Brownian transport in square and rectangular arrays.
To this purpose we generalized the definitions of Eqs. (2) and
(3) to extract the mobility and the diffusivity in the direction
parallel and orthogonal to �F . The corresponding four transport
quantifiers are denoted by μ‖, D‖ for the longitudinal transport
and by μ⊥, D⊥ for the lateral or transverse transport.

The salient properties of directed transport in 2D arrays are
easily reconciled to the geometric properties of the particular
system at hand. With focus on the φ dependence of the
transport quantifiers, one notices the following:

(i) For square arrays and vanishingly small drives, D⊥(0) =
D‖(0) and μ⊥(0) = μ‖(0), irrespective of φ. This is consistent
with the D4 symmetry of the array lattice and with the fact
that the mobility and diffusivity components are defined in
the long-time limit. Applying a finite drive to a square array
breaks the D4 symmetry and leads to weaker angular symme-
try relations, D‖,⊥(ψ) = D‖,⊥(−ψ), μ‖(ψ) = μ‖(−ψ), and
μ⊥(ψ) = −μ⊥(−ψ), where ψ = φ − π/4. Note that the
lateral mobility is an odd function of ψ , all other transport
quantifiers being even functions.

(ii) Driven longitudinal transport in a square array is the
least efficient for two special orientations, ±ψ∗, or φ∗ and
π/2 − φ∗, as signaled by the occurrence of two symmetric dips
in μ‖ and peaks in D‖ and D⊥ [Figs. 7(b) and 7(c)]. The lateral
mobility μ⊥ vanishes for φ = 0,π/2 (channel I geometry) and
in correspondence with the diffusion peaks, ψ = ±ψ∗. The
interpretation of such angular dependence follows from the
argument leading to Eq. (9). A noiseless driven trajectory
consists of straight segments parallel to �F and circular arcs
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FIG. 7. (Color online) Angular effects. (a) Migration angle;
(b) longitudinal, μ⊥, and lateral mobility, μ‖; and (c) scaled
longitudinal, D⊥/D0, and lateral diffusivity, D‖/D0, of a Brownian
particle driven at an angle φ in rectangular arrays with different Lx

(see legends). All quantities are plotted vs φ for Ly = 1, r0 = 0.4,
and F/D0 = 103. In these simulations we set D0 = 1.
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running around the obstacles. Each straight segment is tangent
to the circumvented obstacle and impinges on the next obstacle
that stands on the particle’s way. The blocking action of
this second obstacle is the largest, i.e., μ‖ has a minimum,
when the incident segment runs along one of its diameters
[Fig. 6(d)]. Under these circumstances, the trajectory can
run around the blocking obstacle on either side with equal
probability, i.e., μ⊥ = 0, and the dispersion of the transport
current in both directions, i.e., D‖ and D⊥, is maximum.
For narrow bottlenecks a simple calculation yields φ∗ =
arccos

√
1 − (r0/Ly)2, in agreement with the plots of Fig. 7.

(iii) The lateral diffusivity in driven arrays is suppressed for
increasing F (not shown). This effect signals that the particle is
effectively channeled by oriented rows of bottlenecks [possibly
at an angle with �F , see Fig. 7(a)]. Such mechanism sets on
when the driven particle crosses an array unit cell in a time
much shorter than the time it takes to diffuse across a single
bottleneck. The effective migration angle [28], α, of a particle
driven across a 2D array does not necessarily coincide with the
drive orientation. In fact, α = φ + arctan(μ⊥/μ‖). This means
that α and φ coincide only for μ⊥ = 0, that is for ψ = ±ψ∗
and ±π/4. For a square lattice the angular dependence of
α(φ) is plotted in Fig. 7(a). Due to the angular symmetry of
μ⊥ and μ‖, it follows that α(ψ) + α(−ψ) = π/2. The steplike
structure of α(φ) is controlled by the commensuration of the
lattice constants, as first reported in Ref. [28].

(iv) For rectangular arrays, the angular symmetries of the
transport quantifiers in (i)–(iii) are broken. The nodes of
the curves μ⊥(φ) plotted in Fig. 7(b) increase in number
with the ratio Lx/Ly . Indeed, reflecting the lower rotational
lattice symmetry, there exist more distinct critical angles
φ∗ that satisfy the maximal blocking condition of item (ii).
However, as Lx grows much longer than Ly , the lateral
mobility for φ < π/4 gets suppressed, because channeling
in the horizontal direction becomes more effective than in the
vertical direction. Correspondingly, the migration angle α(φ)
develops more steps. For commensurate lattice constants, i.e.,
Lx/Ly = n with n an integer, we counted exactly n steps
of the α(φ) curves within the interval 0 < φ � π/4, each
corresponding to a node of μ⊥(φ). For π/4 < φ � π/2, the
step and node structure are smeared out when increasing the
radius of the obstacles. Eventually, in the limit Lx � Ly ,
lateral transport is appreciable only for φ > π/2 − φ∗. Under
such drive conditions, the curve μ⊥(φ) boils down to a brad
peak, which is seemingly independent of Lx . Correspondingly,
the longitudinal mobility μ‖ is suppressed and the longitudinal
diffusivity grows orders of magnitude larger than D0.

VI. SUMMARY

Forced transport across a 2D array was investigated for
a simplified model where a single overdamped Brownian

particle of negligible size is suspended in an unmovable
interstitial fluid at fixed temperature. The particle is free to
diffuse in the connected space delimited by circular reflecting
obstacles of finite radius, arranged in a rectangular lattice.
The particle is only subject to thermal fluctuations and a
homogeneous constant driving force.

Brownian particle transport in the stationary regime was
investigated by analyzing the dependence of the particle
mobility and diffusivity on the external drive (magnitude
and orientation) and the array geometry (obstacle radius and
lattice constants). Interesting transport properties, including
negative differential mobility, excess diffusion peaks, and
unconventional asymptotic behaviors, have been detected
by means of extensive numerical simulations. Such prop-
erties have been explained in terms of two distinct depin-
ning mechanisms: (i) trapping by a single obstacle, and
(ii) correlated collisions against obstacle rows at an angle with
the external force. The corresponding length scales have been
identified to be, respectively, the obstacle radius (independent
of the array geometry) and the effective obstacle spacing
(resulting from the combination of array geometry and drive
orientation).

All other effects, including asymmetry of the obstacles
and of their spatial arrangement, particle-particle and particle-
obstacle interactions, hydrodynamic corrections, chaotic and
inertial dynamical terms, particle size and shape, have been
ignored in this paper. The generalization of our analysis to
incorporate inertia and hydrodynamic corrections is the next
step of this research project.

Despite the various approximations and simplifications
discussed above, the effects investigated here are robust
enough to challenge experimenters investigating the dif-
fusion of extended objects [20,21,25,26,31,33,46] or even
pointlike charge carriers [47] in 2D arrays. Moreover, the
interplay of different diffusion length scales has been recently
invoked also to explain certain features of the long-time
self-diffusion of spherical tracer particles in periodic porous
nanostructures [48].
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