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Difference of energy density of states in the Wang-Landau algorithm
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Paying attention to the difference of density of states, � ln g(E) ≡ ln g(E + �E) − ln g(E), we study the
convergence of the Wang-Landau method. We show that this quantity is a good estimator to discuss the errors of
convergence and refer to the 1/t algorithm. We also examine the behavior of the first-order transition with this
difference of density of states in connection with Maxwell’s equal area rule. A general procedure to judge the
order of transition is given.
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The Monte Carlo simulation has become a standard method
to study many-body problems in physics. However, we
sometimes suffer from the problem of slow dynamics in the
original Metropolis algorithm [1]. One attempt to conquer the
problem of slow dynamics is the extended ensemble method;
one uses an ensemble different from the ordinary canonical
ensemble with a fixed temperature. The multicanonical method
[2,3], the parallel tempering, or the exchange Monte Carlo
method [4,5] and the Wang-Landau (WL) algorithm [6]
are examples. The WL method is an efficient algorithm to
calculate the energy density of states (DOS), g(E), with high
accuracy and was successfully applied to many problems [7,8].
The refinement and convergence of the WL method were
argued [9,10], but the convergence property is still a topic
of discussions [11]. The search for an optimal modification
factor was discussed [12], and in connection with the WL
method, the 1/t algorithm [13,14] was proposed. Moreover,
tomographic entropic sampling scheme has been proposed as
an algorithm to calculate DOS [15].

In this paper we investigate the convergence properties of
the WL method, paying special attention to the difference of
DOS. We argue its relevance to the first-order transition. We
provide a general strategy to judge the order of transition.

Let us briefly review the WL algorithm. A random walk
in energy space is performed with a probability proportional
to the reciprocal of the DOS, 1/g(E), which results in a flat
histogram of energy distribution. Actually, we make a move
based on the transition probability from energy level E1 to E2:

p(E1 → E2) = min

[
1,

g(E1)

g(E2)

]
. (1)

Since the exact form of g(E) is not known a priori, we
determine g(E) iteratively. Introducing the modification factor
fi , g(E) is modified by

ln g(E) → ln g(E) + ln fi (2)

every time the state is visited. At the same time the energy
histogram h(E) is updated as

h(E) → h(E) + 1. (3)
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The modification factor fi is gradually reduced to unity by
checking the “flatness” of the energy histogram. The “flatness”
is checked such that the histogram for all possible E is not less
than some value of the average histogram, e.g., 80%. Then fi

is modified as

ln fi+1 = 1
2 ln fi, (4)

and the histogram h(E) is reset. As an initial value of fi , we
choose f0 = e; as a final value, we choose ln fi = 2−26, that
is, f26 � 1.00000001, for example.

We first treat the Ising model, whose Hamiltonian is given
by

H = −J
∑
〈i,j〉

σiσj . (5)

Here J is the coupling and σi is the Ising spin (±1) on the lattice
site i. The summation is taken over the nearest neighbor pairs
〈i,j 〉. Periodic boundary conditions are employed. Throughout
this paper, we measure the energy in units of J unless specified;
in other words, we put J = 1.

We calculate ln g(E) with the use of the WL method and
consider the difference of ln g(E), which is defined as

� ln g(E) ≡ ln g(E + �E) − ln g(E). (6)

For the Ising model, �E = 4J . The exact value of g(E) for the
two-dimensional (2D) Ising model is available due to Beale
[16]. The deviation of the calculated value of � ln g(E) from
the exact value of Beale [16] can be used as a measure of the
accuracy of the calculation.

We plot the overall behavior of � ln g(E) for the 2D Ising
model with system size L = 32 in Fig. 1. The data for the
modification step i = 14, 18, and 22 are given for a single
measurement. In the accuracy of this plot, little difference in
i is appreciable except for small and large E. The enlarged
plot near E = 0 is given in the inset of Fig. 1, and the data for
i = 14, 18, and 22 are compared to the exact value of Beale
[16]. We see that the calculated value of � ln g(E) approaches
the exact value as the modification factor fi approaches 1. The
deviation becomes smaller as i increases. The advantage of
using Eq. (6) is that we can directly discuss the error of DOS
without caring about the normalization of g(E). Since the
transition probability depends on the difference of ln g(E1)
and ln g(E2), this quantity of difference is essential in the
method calculating the energy DOS compared to g(E) itself.
We note that the quantity of difference was also used in the
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FIG. 1. (Color online) Plot of � ln g(E) for the 2D Ising model
with L = 32. Data for i = 14, 18, and 22 are given. In the inset, the
enlarged plot near E = 0 is shown. The exact value due to Beale [16]
is also given in the inset for comparison.

argument of accuracy and convergence of the WL method by
Morozov and Lin [17].

To see the convergence of errors more explicitly, we
consider the total sum of the squared error of � ln g(E) −
� ln g(E)exact:

�2 ≡ 1

N − 4

2JN−12J∑
E=−2JN+8J

[� ln g(E) − � ln g(E)exact]
2. (7)

For the 2D Ising model, we note that � ln g(−2JN +
8J )exact = −� ln g(2JN − 12J )exact = ln 2.

In Fig. 2 we plot �2, Eq. (7), as a function of the
modification step i up to 26 for L = 32. The average is taken
for 10 samples. We see that �2 becomes smaller with the
increase of i. However, the errors are saturated even though
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FIG. 2. (Color online) Convergence of errors, �2, for the 2D
Ising model with L = 32 as a function of the modification step i. The
convergence of the original WL algorithm is compared with that of
1/t algorithm. In the 1/t algorithm after the rule of modification is
changed, the meaning of i is such that MCS is 2i .

we repeat the iteration process up to i = 26. Such saturation of
convergence of the WL method was pointed out by Yan and de
Pablo [18]. To overcome this difficulty, a modified version of
the WL algorithm in which the refinement parameter is scaled
down as 1/t (with t the Monte Carlo time) was proposed
[13,14]. It is interesting to compare the performance of the 1/t

algorithm and that of the original WL method in this quantity
of difference of DOS. In the 1/t algorithm, starting from the
same condition as the original WL algorithm, the modification
factor ln fi is reduced as 1/t instead of checking the flatness
condition after the condition ln fi � 1/t is satisfied. The final
value of ln f should be fixed from the outset. In Fig. 2 we also
plot the data for the 1/t algorithm. In the case of L = 32, the
modification process is changed from the original WL scheme
to the 1/t one around i = 21 or 22. In the range of 1/t scheme
the actual MCS is fixed as 2i , which is different from the case of
the original WL scheme. We clearly confirm the efficiency of
the 1/t algorithm. In the discussion of the convergence of 1/t

algorithm, the quantity ln g(E) − ln g(Eground) was used [11].
The quantity given by Eq. (6) is more flexible as it can be
treated even if the ground state of the system is unknown as
spinglass problems.

We can consider the deviation from the exact value, as in
Eq. (7), for the 2D Ising model. In order to investigate the
convergence behavior of the system whose exact g(E) is not
available, we may employ another strategy. For example, we
may consider the relative error of the data for i and those for
i − 1. We leave the detailed analysis to a separate publication.

Next we deal with the 2D ten-state Potts model, which
is a typical model to exhibit the first-order transition. This
model was used to show the effectiveness of the multicanonical
simulation by correctly estimating the interfacial free energy
[3], which was later proved by the explicit formula [19]. The
Hamiltonian of the q-state Potts model is given by

H = J
∑
〈i,j〉

[
1 − δSi ,Sj

]
. (8)

Here Si is the Potts spin, which takes 1, . . . ,q. We note that
for q = 2 the Potts model becomes the Ising model, although
the unit of J in Eq. (8) for the Potts model is twice J in Eq. (5)
for the Ising model.

We plot the difference of DOS, Eq. (6), of the 2D ten-state
Potts model in Fig. 3. The data for L = 64 (upper) and those
for L = 128 (lower) are given as a function of E/N . We show
how the data converge as i increases by giving the data for
i = 14, 18, and 22 with a single measurement. We clearly see
the convergence of errors with the increase of i.

The systems that show the first-order transition have double
maximum structure in the thermodynamic limit at the first-
order transition temperature Tc when we plot the free energy
−βF = ln g(E) − βE as a function of E. Then, � ln g(E),
which is defined as Eq. (6), has an S-like structure with
minimum and maximum. We clearly find this structure in
Fig. 3. We note that the overall size dependence is small in
this plot, but the detailed analysis is given later.

The first-order transition temperature, Tc = 1/βc, can be es-
timated by Maxwell’s rule as in thermodynamics. A schematic
illustration of Maxwell’s rule is shown in Fig. 4. The value of
β, which separates the shaded region and gives the same area,
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FIG. 3. (Color online) Plot of � ln g(E) of the 2D ten-state Potts
model for L = 64 (upper) and L = 128 (lower) as a function of E/N .
The data for the modification factor fi with i = 14, 18, and 22 are
given.

becomes the first-order transition temperature βc. This equal
area rule is proved by the following. The condition that the
two areas of the shaded region are equal is given by

−
∫ E2

E1

d ln g(E)

dE
dE + β(E2 − E1)

=
∫ E3

E2

d ln g(E)

dE
dE − β(E3 − E2), (9)

which leads to the condition that the double maxima in
ln g(E) − βE take the same value. In the thermodynamic
limit, the difference � ln g(E) becomes the differential
d ln g(E)/dE. The area of the shaded region, Eq. (9), is related
to the interfacial free energy [3,19].

Δ
 ln

 g
(E

)

E

E1 E2 E3

βc

FIG. 4. (Color online) Schematic illustration of Maxwell’s equal
area rule.
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FIG. 5. (Color online) Enlarged plot of � ln g(E) of the 2D
ten-state Potts model for L = 64 (upper) and 128 (lower). The
modification step i is 22. The smoothed values with moving-average
method are given. The first-order transition temperature βc = ln(1 +√

10) = 1.42606 in the thermodynamic limit is also shown by the
straight line for convenience.

To see the S-like structure explicitly, we make an enlarged
plot along y axis of � ln g(E) for L = 64 (upper) and 128
(lower) in Fig. 5. The modification step i is 22. In this plot
we use the data with the smoothing process, [f (E − 2�E) +
4f (E − �E) + 6f (E) + 4f (E + �E) + f (E + 2�E)]/16
with f (E) = � ln g(E), to reduce fluctuations. For the 2D
ten-state Potts model, the first-order transition temperature is
given by βc = ln(1 + √

10) = 1.42606. We give this value
in Fig. 5 for convenience; we see that Maxwell’s rule works.
We can estimate βc and the interfacial free energy from the
S-like curve for each size. We observe the size dependence
in Fig. 5; the area of the shaded region illustrated in Fig. 4 is
proportional to 1/L, which reflects on the finite-size scaling
of the first-order transition.

We may provide a general strategy to judge the order
of transition for any system. We plot � ln g(E) and check
whether there is an S-like structure. If the system shows the
first-order transition, we can locate the transition temperature
by Maxwell’s rule. The behavior of the first-order transition
can be observed in the early stage of WL iteration, that is,
for small i. If we investigate ln g(E) − βE as in usual way,
we have to search for β that gives the same value for two
maxima.

To summarize, we have shown that the difference of ln g(E)
is a good quantity for the WL method. Less attention has been
given to the quantity � ln g(E) so far, although some efforts
were made in the discussion of accuracy and convergence
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of the WL method [17]. Comparing with the exact value
of the 2D Ising model, we have shown the convergence
property of the WL method. That is, we have shown how
errors become smaller for larger i, where i is the step of the
modification factor fi for the criterion of “flatness” condition.
We have confirmed the efficiency of the 1/t algorithm; we
have shown that the quantity � ln g(E) is a good estimator for
the analysis of errors of the simulation method to calculate the
energy DOS.

We have also shown that � ln g(E) is a good estimator
for the first-order transition. We have investigated the 2D
ten-state Potts model. The first-order transition is observed
in the S-like behavior of � ln g(E). We have shown that
Maxwell’s equal area rule determines the first-order transition
temperature. Although the statement is rigorously realized
in the thermodynamic limit, we observe the behavior of the
first-order transition even for small system size and for small i

of the modification step. We assert that we provide a general
procedure to study the order of transition for any system.

The extension of this calculation to continuous spin models
is straightforward [20]. The application to quantum Monte
Carlo simulation [21] for checking the order of transition is
highly desirable. The application to first-principle calculation
of electric structure [22] and to protein systems [23] may be
other interesting topics.

Before closing, we mention the calculation techniques.
We have used the parallel calculation with multiple random
walkers for the WL algorithm using the graphic processing unit
(GPU) with common unified device architecture. The details
of the GPU-based calculation will be given elsewhere.

We thank Tasrief Surungan for valuable discussions. This
work was supported by a Grant-in-Aid for Scientific Research
from the Japan Society for the Promotion of Science.
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