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Comment on “Numerics of the lattice Boltzmann method: Effects of collision models
on the lattice Boltzmann simulations”
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Critical comments on the entropic lattice Boltzmann equation (ELBE), by Li-Shi Luo, Wei Liao, Xingwang
Chen, Yan Peng, and Wei Zhang in Ref. [1], are based on simulations, which make use of a model that, despite
being referred to as the ELBE by the authors, is in fact equivalent to the standard lattice Bhatnagar-Gross-Krook
equation for low Mach number simulations. In this Comment, a concise review of the ELBE is provided and
illustrated by means of a three-dimensional turbulent flow simulation, which highlights the subgrid features of
the ELBE.
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In a recent paper [1], authors Luo et al. claimed that
the entropic lattice Boltzmann equation (ELBE) “does not
improve the numerical stability of Lattice Bhatnagar-Gross-
Krook (LBGK) model.” They also stated that “the ELBE
scheme . . . is unfit for carrying out numerical simulations in
practice.”

In this Comment, we point out that the above statements in
Ref. [1] do not bear scientific relevance. The reason is simple:
what Luo et al. have implemented in Ref. [1] is not the ELBE,
but a model that is equivalent to the standard LBGK for low
Mach number simulations.

Since the correct description of the ELBE was not presented
in Ref. [1], let us remind that in the ELBE scheme, populations
associated with the discrete velocities vi evolve according to
the following kinetic equation:

fi(x + vi ,t + 1) − fi(x,t) = αβ
(
f

eq
i − fi

)
. (1)

In the above, f eq
i is the local equilibrium, which minimizes the

entropy function, H (f ) = ∑
i fi ln(fi/Wi), where the weights

Wi are lattice-specific constants. In Eq. (1), α is the maximal
over-relaxation, which is operationally available as the positive
root of the entropy condition

H (f + α(f eq − f )) = H (f ). (2)

This entropy estimate is the key, as it assures the discrete-
time H theorem: For β ∈ [0,1], the total entropy H̄ (t) =∑

x H (f (x,t)) is not increasing, H̄ (t + 1) � H̄ (t). Note that
the validity of the H theorem requires not just the equilibrium
to be evaluated through the minimization of H but also, and
most importantly, the fulfillment of the entropy condition (2).
For readers’ convenience, we note a few implications of the
entropy condition (2):
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(i) Over-relaxation: Thanks to convexity of the entropy
function, the solution to (2) always leads to over-relaxation,
α > 1;

(ii) Duality: Let f be a population vector, and f (α) ≡
f + α(f eq − f ) its entropic mirror state, with the same value
of the entropy, H (f (α)) = H (f ). If the entropy estimate is
applied to f (α) instead of f , then the initial state is recovered
in the form f = f (α) + α′(f eq − f (α)), with another over-
relaxation α′ > 1, which satisfies a duality relation

α′α = α′ + α. (3)

Equation (3) implies that whenever α ≶ 2, the opposite holds
for the mirror state, α′ ≷ 2.

Finally, whenever the simulation is resolved (populations
stay close to the local equilibrium), the maximal over-
relaxation parameter α becomes fixed automatically to the
value α = 2 [and so is also the mirror value, α′ = 2, according
to (3)]. Then the ELBE [Eqs. (1), (2)] self-consistently
becomes equivalent to the LBGK equation and recovers
Navier-Stokes equations with the kinematic viscosity ν =
c2

s ( 1
2β

− 1
2 ), where cs is speed of sound [an O(1) lattice-

dependent constant].
The above is a direct implication of the built-in H theorem.

Indeed, the resolved simulation, on the kinetic level, is
characterized by the fact that all populations are asymptotically
close to the local equilibrium. Then, the entropy function
becomes well represented by its second-order approximation:
At fixed locally conserved fields (density and momentum
here), if δf = f − f eq, |δf/f eq| � 1, then H (f ) ≈ H eq +
(1/2)

∑
i δf

2
i /f

eq
i . The levels of the entropy are then asymptot-

ically close to the levels of the above quadratic form. It is under
such condition that the entropy estimate (2) results in α = 2.
Note that the standard Chapman-Enskog approximation is
valid under precisely the same condition of closeness to the
local equilibrium, thereby the viscosity ν is the same for both
ELBE and LBGK.

ELBE exploits the self-adaptive mechanism of stabilization
by choosing automatically the over-relaxation α at each node,
which guarantees the H theorem at all sites and all discrete
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time steps. When the grid is coarsened, over-relaxation α

becomes smeared in an interval, [αmin,αmax], with 1 < αmin <

2, and αmax > 2. The self-adapted over-relaxation set up
by (2) results in two oppositely directed effects: If α < 2,
the relaxation parameter ω = αβ in (1) is less than the
corresponding standard LBGK parameter ω0 = 2β (set by
the viscosity), and hence the ELBE relaxation will tend
to smoothen any flow perturbation. On the other hand, if
α > 2, the flow perturbation is enhanced (ω > ω0). In ELBE
simulations, these two effects act simultaneously on various
nodes, with the net effect combining stabilization (through
smoothing, α < 2) with the preservation of the resolution
(through enhancement, α > 2).

Instead of implementing the ELBE (1), which, by definition,
requires the self-adjusted relaxation through the entropy
estimate (2), calculations by Luo et al. make use of a constant
relaxation time τ = ω−1

0 , that is

fi(x + vi ,t + 1) − fi(x,t) = 2β
(
f

eq
i − fi

)
. (4)

The only remaining input from the ELBE in the above, is the
local equilibrium f

eq
i , given by Eq. (14) in Ref. [1]. At this

point, however, Eq. (4) is no longer ELBE, as it is in fact
to all effects and purposes equivalent to the standard LBGK
scheme (this is well understood, see, e.g., Refs. [2,3]). Indeed,
the authors correctly state that “one difference between the
ELBE and MRT-LBE is the O(u3) terms in the odd-order
equilibrium moments,” and “. . . the difference in the even-
order equilibrium moments . . . is of the terms of the order
O(u4).” This implies that the entropic equilibrium differs from
its standard polynomial approximation only on the order of
the overall errors of the lattice Boltzmann method for the low
Mach number flows, and therefore Eq. (4) is equivalent to
the standard LBGK method. The authors could have opted
to replace the equilibrium by a polynomial approximation, to
at least second order, thereby completing in full the identity
between the standard LBGK and Eq. (4). The crucial point of
ELBE is not the equilibrium by itself, but the entropy condition
(2). The equilibrium can be used as an exact result of entropy
minimization, whenever available, or as approximation thereof
(see, e.g., Ref. [3] where standard polynomial approximations
to equilibria were used in ELBE simulations). The discrete
time H theorem cannot be proven for the fixed relaxation
LBGK (4), with neither exact nor approximate equilibrium.
More precisely, the H theorem is trivially valid on the
uninteresting half of the linear stability interval, 0 < β � 1/2,
but for the most important case of low viscosity, 1/2 < β < 1,
that is, for the LBGK over-relaxation, one even cannot prove
that populations stay non-negative after the collision (4).

With this assessment, and fulfilling the usual low Mach
number restrictions, the authors cannot make a “comparison
of ELBE with LBGK,” as the difference between (4) and the
LBGK is of the overall order of errors of the LB method for
low Mach number simulations. Instead, the authors continue
as follows: “. . . it is unclear theoretically how the ELBE with
a constant relaxation parameter τ can improve the numerical
stability of the LBGK scheme, as it has been advocated [3,4].”
However, neither in [3] nor in [4] (Refs. [4] and [5] here), is
there any claim about constant relaxation parameter improving
stability, and whenever stability of the ELBE was discussed in

these papers, the entropy estimate (2) has always been provided
(Eqs. (10) in [4] and (37) in [5]). In practice, the standard
LBGK and Eq. (4) perform so similarly that Luo et al. state
that “they are so similar to each other” that “only the results
obtained by using ELBE are shown in Fig. 4” ([1], page 6).
This twin behavior alone should have warned the authors, that
the two allegedly different methods were basically the same.

Summarizing, for low Mach number simulations, ELBE
with a constant relaxation time is equivalent to the standard
LBGK model. The implementation of ELBE by Luo et al.
missed its key component, the entropy estimate (2) (as stated
in [1], “We did not test the ELBE with a variable relaxation
time. . .”). Thus, what the authors achieve in the end is a circular
result (i.e., a cross comparison of minor LBGK variants).

When the grid is coarsened, local instabilities due to lack
of resolution typically lead to a collapse of LBGK. It is in this
situation that ELBE proceeds with the adaptive relaxation. In
this regard, we wish to point out that there has never been
any mystery as to the fact that ELBE is a natural extension
of LBGK into subgrid simulations with the distinctive trait
that the stabilization mechanism is directly informed through
the second principle (H theorem). This is well reflected
by the specific way ELBE mends instabilities; most of the
time during the simulation the relaxation parameter remains
constant everywhere, so that indeed ELBE collapses to LBGK.
It is only at the onset of a local instability, that ELBE deploys
its built-in entropic stabilization capability. These stabilization
events may be rare in time and very localized in space (so are
incipient instabilities) but they make the whole difference. This
local self-adaptive stabilization (no fine tuning of parameters)
is what makes ELBE distinct from other LB methods.

As a practical illustration, we consider a three-dimensional
turbulent flow in periodic domain, evolving from a symmetric
initial condition (Kida vortex, see Refs. [3,6] for details). The
flow is initialized by the velocity profile,

ux(x,y,z,0) = U0 sin x(cos 3y cos z − cos y cos 3z),

uy(x,y,z,0) = U0 sin y(cos 3z cos x − cos z cos 3x), (5)

uz(x,y,z,0) = U0 sin z(cos 3x cos y − cos x cos 3y).

The Reynolds number is defined as Re = U0N/ν, where N

is the number of grid points in each direction, and U0 =
0.05 was used in all simulations. For the standard D3Q15
lattice, equilibrium was used in the product form [7]; for the
ELBE implementation, the entropy condition (2) was realized
via bisection method, with the tolerance ε = 10−5 (a few
simulations were run with a tolerance ε = 10−8 to confirm
robustness). The LBGK simulation was produced through Eq.
(4) (i.e., by switching off the ELBE root solver and setting
α = 2 instead). Two series of numerical experiments were
performed to demonstrate ELBE as a method for subgrid
simulation.

In the first set of simulations, we considered a low Reynolds
number regime (although still turbulent), fixing Re = 4000.
Two grids of the size N = 350 and N = 110 were used.
The former grid (N = 350) was used in Ref. [6] to compare
the LBGK with spectral element direct numerical simulation
(DNS); the latter (N = 110) is the coarsest grid at which
LBGK simulation is numerically stable at Re = 4000. First,
in Fig. 1, snapshots of the velocity field are reported for
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FIG. 1. (Color online) Isocontours of the z component of the
velocity on a slice through the simulation domain at x = 20, at
Re = 4000. Grid size 3503. One quarter of the slice is shown due
to flow symmetry. Solid line: ELBE; Dashed: LBGK.

both the LBGK and ELBE on the fine grid (N = 350).
Results are in agreement within even the finest flow structures,
thus demonstrating that ELBE has the correct limit of DNS
when simulation is sufficiently resolved. Second, in Fig. 2,
the energy spectrum for both ELBE and LBGK simulations
on the coarse grid (N = 110) are compared with the DNS
[6]. ELBE compares well with the resolved simulation for
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FIG. 2. (Color online) Energy spectrum at Re = 4000. Solid line:
Resolved DNS [6] (LBGK, grid 3503); Dashed: ELBE, grid 1103;
Dot-dashed: LBGK, grid 1103. Accumulation of energy at the short-
wave end of the spectrum for LBGK is a precursor of numerical
instability, which terminates the LBGK simulation on the grid 1003.
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FIG. 3. (Color online) Energy spectrum at Re = 40 000. ELBE
simulations on grids 1103 (double dot-dashed), 2203 (dot-dashed) and
3503 (solid line). Line with the slope −5/3: Kolmogorov’s scaling.

almost the entire range of scales available. Note that ELBE
slightly underpredicts the energy at smaller scales, as it is
expected for a viable subgrid simulation. On the contrary, the
LBGK significantly overpredicts the energy at the same scales;
accumulation of the energy toward the end of the spectrum is
not sustainable for LBGK, and is the reason for its collapse if
the grid is further reduced (e.g., at N = 100).

It is important to realize that the range of Reynolds numbers
for performing simulations dramatically increases with ELBE.
In order to demonstrate this, in the second simulation, the
Reynolds number was increased by order of magnitude,
Re = 40 000, and a series of grids was used to probe the
subgrid capability of ELBE. Results are presented in Fig. 3. It is
clearly visible that: (i) The larger (nonuniversal) scales are well
matched even on a coarse grid (N = 110) and (ii) The inertial
regime becomes well captured starting with the reasonably
coarse grid (N = 220). Thus, already with N � 220, ELBE
provides a reliable subgrid simulation.

Note that ELBE remains stable for much coarser grids
and/or extreme Reynolds numbers. However, at such extreme
regimes, the flow physics becomes corrupted, and therefore the
grid resolution has to be kept reasonable. It is also important to
stress that ELBE becomes efficient for the simulations at high
rather than at low Reynolds numbers. In the present example,
the LBGK would require a grid of the order of N ∼ 1000 for
Re ∼ 40 000. It should be mentioned that for a given grid size,
ELBE is typically 3–6 times slower than LBGK [depending on
optimization of solution to Eq. (2)]. Since the computational
time and memory scale as the fourth and the third power of N ,
respectively, a conservative estimate for Re ∼ 40 000 makes
ELBE (N ∼ 300) no less than 10 times faster than LBGK
(N ∼ 1000), with about a factor 30 savings in memory.

Summarizing, the above simulations demonstrate a reliable
subgrid capability of ELBE for a range of high Reynolds
numbers. In fact, ELBE just features the same trend of
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improvement, as LBGK, under grid refinement but at much
higher Reynolds numbers.

In conclusion, we summarize the entropic lattice Boltzmann
method (ELBM). Entropy considerations were first invoked
in Ref. [8] in order to explain why conventional LB models
are reliable only in well-resolved simulations. And ever since
ELBM was proposed, a decade ago in Refs. [2,9], it has
grown into a consolidated framework that explains LBM and
its relation to the Boltzmann and Navier-Stokes equations.
ELBM can be understood on three different levels: (i) ELBM
provides entropy function H for the LBM, which restores
thermodynamic consistency and ensures its compliance with
second law of thermodynamics. The advantages of defining
LBM through an entropy function are multiple. It gives us the
relation of LBM to the Boltzmann equation and provides us
with a systematic description of higher order lattices [10].
(ii) The equilibrium in the entropic LB is given as the
minimizer of entropy function under fixed local conservations.
As already mentioned, this implies the standard LBGK, once
the equilibrium is expanded to second order. Exact solution for
equilibria were found [11], a subsequent development of this
approach has led to a product and Maxwell forms for equilibria
[7]. Product-form equilibria offer an efficient way to perform

LB simulations on higher-order lattices [6]. Applications of
ELBM equilibria include LB models with energy conservation,
multicomponent mixtures, and microflows. Extension of the
ELBM equilibrium delivered a thermodynamically consistent
LB model with tunable bulk viscosity [12]. (iii) Subgrid
simulations: It must be understood that LBGK is a fast
and efficient DNS method for low Mach number isothermal
simulations [6]. However, the reduction in grid resolution
leads to a breakdown of LBGK simulation. This is largely
(and inappropriately) interpreted as a problem with LBM
simulations. In that respect, ELBE [Eqs. (1), (2)] provides
a means for subgrid simulations by bringing the entropy
nonadhering nodes back to entropy-compliant conditions.

All of the above demonstrates that ELBM is a diverse
and consolidated framework for constructing LB models and
performing simulations, of which the subgrid ELBE is one
important facet. It comes unwarranted that Luo et al. [1]
categorically negate ELBM, without studying even a single
aspect of it.
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