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Two-ball Newton’s cradle
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Newton’s cradle for two balls with Hertzian interactions is considered as a hybrid system, and this makes
it possible to derive return maps for the motion between collisions in an exact form despite the fact that the
three-halves interaction law cannot be solved in closed form. The return maps depend on a constant whose value
can only be determined numerically, but solutions can be written down explicitly in terms of this parameter, and
we compare this with the results of simulations. The results are in fact independent of the details of the interaction
potential.
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The aim of this Brief Report is to analyze the two-ball
Newton’s cradle and show that, if the pendulums are linear,
an exact return map after collisions can be derived which
is independent of the details of the complicated ball-ball
interaction during collisions. This return map can be solved
explicitly and the motion is either periodic or, more typically,
quasiperiodic. The collision interaction contributes a parame-
ter to the solution which could be measured experimentally, so
it might be possible to infer the details of the interaction from
measurements of this parameter for different initial conditions
and pendulum parameters. Finally, since the linear pendulum
model (with nonlinear collisions) can be solved, we compare
results with simulations of the nonlinear pendulum.

The multiple-ball Newton’s cradle is a paradigm for the
treatment of Newtonian impulses. It consists of N balls
(usually five) fixed to a frame as pendulums so that they can
oscillate in one direction and, when hanging in equilibrium
under gravity, they are just touching. If one of the end balls
is set in motion it strikes the line and an impulse travels
through the line and the ball at the other end lifts off, with the
others stationary and the cycle continues. This is a standard
theoretical narrative, but experiments show that what actually
happens is considerably more complicated: all the balls move
and the subsequent motion is heavily influenced by the breakup
of the line.

A more realistic model of Newton’s cradle will involve
including at least one of either the interaction of the pendulums
via the frame or a more detailed model of the short-time
interactions of the balls in collision. Following [1–3] we
adopt the latter modification. One of the standard visco-elastic
models of this interaction is a Hertzian three-halves power-law
force, and the approach below applies to this and indeed any
other potential force which satisfies some mild conditions. A
second principle when faced with complicated behavior is to
consider the simplest case in some detail. Thus we consider the
dynamics of a two-ball Newton’s cradle. This was analyzed
in Ref. [3] by making simplifying assumptions about the
interaction terms (essentially that the contact interaction is
linear and gravity can be ignored), which makes it possible to
see that the likely outcome of the model is slow modulation
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between a cradle-like dynamics (with each ball approximately
at rest during half a cycle) and a more symmetric collision and
bounce in which both balls oscillate significantly during a half
period.

More complicated collisions between balls have also been
considered recently [4], but the aim of this Brief Report is to
show that a slightly more sophisticated analysis, considering
the collisions and the motion when the balls are not in
contact as defining a hybrid system [5], makes it possible
to derive explicit return maps for the state of the system
immediately after collisions if gravity is considered as a
linear potential in the angle of the pendulums (the small-
displacement limit). This return map is completely determined
by standard parameters of the system except for the appearance
of one free parameter which depends on the details of the
interaction potential and the initial conditions.

Choose one-dimensional coordinates y1 and y2 for the
center of mass of the two equal balls labelled by 1 and 2 in the
obvious way, with ball one to the left of ball two. In equilibrium
the balls are separated by 2R, where R is the radius of the
balls, so it is natural to write y1 = x1 and y2 = 2R + x2, where
xi represents the displacement of ball i from its equilibrium
position. The distance between the centers of mass is

y2 − y1 = 2R − (x1 − x2),

so the balls are in contact, and the interaction potential comes
into play, if x1 − x2 > 0.

If x1 − x2 < 0 then the balls are not in contact and each
behaves as a pendulum, with the linear model

ẍ1 = −ω2x1, ẍ2 = −ω2x2, (1)

and ω2 = g/�, where g is the acceleration due to gravity and
� is the vertical length of the pendulum wires.

If x1 − x2 > 0, then the balls are in contact and there is an
elastic force (we ignore dissipation until later) in addition to
the gravitational force and

ẍ1 = −ω2x − V ′(x1 − x2), ẍ2 = −ω2x2 + V ′(x1 − x2), (2)

where the potential V models the visco-elastic forces (per unit
mass) so, for the Hertzian case,

V (s) = K

1 + α
s1+α. (3)
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In the simulations below we use the standard Hertzian force,
α = 3

2 . In what follows we can treat more general potentials
having the properties

V ′(0) = 0, V ′(s) > 0 if s > 0 (4)

and

V (s) → ∞ as s → ∞. (5)

It is natural to work in the center-of-mass frame (times two)
and relative position coordinates

Q = x1 + x2, q = x1 − x2, (6)

in terms of which

Q̈ = −ω2Q, (7)

independent of the sign of q and

q̈ =
{−ω2q if q < 0

−ω2q − V ′(q) if q > 0.
(8)

Note that, if q > 0, the relative position equation is the
Hamiltonian with

H = 1
2p2 + U (q), U (q) = 1

2ω2q2 + V (q), (9)

and U satisfies the same conditions (4) and (5) as V .
To describe solutions of (7) and (8) we will assume that

the values of Q and q are known immediately after the
nth collision, together with the corresponding velocities, and
derive a recursion equation for their values immediately after
the following collision. Suppose that immediately after the nth
collision, t = tn and

Q = Qn, Q̇ = Pn, q = 0, q̇ = pn < 0 (10)

(noting that, at the beginning and end of a collision interaction,
q = 0, with q̇ > 0 at the beginning of the collision and q̇ < 0
at the end of the collision). Since q̇ < 0, q begins to decrease
and, whilst q < 0, the evolution is defined by (7) and the first
of equations (8), and so

Q = Qn cos ω(t − tn) + Pn

ω
sin ω(t − tn),

P = −ωQn sin ω(t − tn) + Pn cos ω(t − tn),
(11)

q = pn

ω
sin ω(t − tn),

p = pn cos ω(t − tn),

and these remain valid until the first time t ′n > tn such that
q(t ′n) = 0. Due to the simple form of q this implies

t ′n = tn + π

ω
,

at which value the cosine is −1 and so p(t ′n) = −pn > 0 and
the corresponding values of Q and P are −Qn and −Pn,
respectively. Since p > 0, q increases and the (q,p) dynamics
is determined by the Hamiltonian system with Hamiltonian (9).
The potential U satisfies conditions (4) and (5) so the solutions
are symmetric under reflections p → −p and cannot tend to
a stationary point in q > 0 [as U ′(q) > 0] nor to infinity [as
U (q) → ∞ as q → ∞]; see, for example, Ref. [6]. Hence
there exists a time τ > 0 such that q = 0 again for the first

time and p = −(−pn) = pn < 0. Thus, after this time τ , t =
tn+1 = tn + π

ω
+ τ and

Q = Qn+1 = −Qn cos ωτ − Pn

ω
sin ωτ,

P = Pn+1 = ωQn sin ωτ − Pn cos ωτ,
(12)

q = 0,

p = pn+1 = pn < 0.

Since p does not change from one collision to another, the
same τ is used in each collision, and this is determined by both
pn and the details of the potential U , but once fixed it does not
change from collision to collision.

It is not hard to solve this difference equation. In terms of
the complex variable Zn = ωQn + iPn, the first two equations
of (12) are Zn+1 = −Zne

−iωτ and so

Zn = (−1)nZ0e
−inωτ . (13)

This exact solution shows that the dynamics is equivalent to
a solid rotation of phase in the complex plane with a sign
oscillation that could also be included in the phase, and so
the qualitative behavior depends only on ωτ . If ωτ = 2πk/�,
where k and � are coprime integers, then all solutions are
periodic with marginal stability, whilst if ωτ is not a rational
multiple of 2π , as is typically the case, then solutions are
quasiperiodic.

In terms of the variables Qn, Pn, and pn, the exact solution
(13) is

Qn = (−1)nQ0 cos(nωτ ) + (−1)n
P0

ω
sin(nωτ ),

Pn = −(−1)nωQ0 sin(nωτ ) + (−1)nP0 cos(nωτ ), (14)

pn = p0 < 0,

or, in terms of the original variables x1 and x2 using (6) and
the fact that q = 0 just after a collision,

x1(tn) = x2(tn) = 1
2Qn,

ẋ1(tn) = 1
2 (Pn + p0), (15)

ẋ2(tn) = 1
2 (Pn − p0).

Equations (13)–(15) provide a general solution to the two-
ball Newton’s cradle, but the classic Newton’s cradle solution
would correspond to initial conditions after the first collision
(having set ball one in motion first) of

x1 = x2 = ẋ2 = 0, ẋ2 = v > 0,

and this translates to

Q0 = q0 = 0, P0 = v, p0 = −v. (16)

Substituting these values into (14) and (15) gives

x1(tn) = x2(tn) = v

2ω
(−1)n sin(nωτ ),

ẋ1(tn) = −v

2
[1 − (−1)n] cos(nωτ ), (17)

ẋ2(tn) = v

2
[1 + (−1)n] cos(nωτ ).

On the reasonable assumption that ωτ is small (as the contact
time τ is small), these solutions have an interesting interpre-
tation. If nωτ ≈ kπ then the behavior is like the classically
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described Newton cradle: there is negligible oscillation from
the vertical of the collision point, and immediately after the
collision one ball is at rest and the other moves off, with the
balls interchanging roles at each collision. On the other hand, if
nωτ ≈ (2k + 1)π

2 then the position of the collision oscillates
and after the collision both balls recoil back and swing with
approximately equal initial speeds.

Thus there is a slow periodic oscillation having approx-
imately π/(ωτ ) collisions [since there is no discernible
difference between the cases cos(nωτ ) ≈ 1 and cos(nωτ ) ≈
−1 apart from an odd-even n exchange, we consider the period
of these oscillations to be half the full period of oscillation of
the trigonometric functions] each taking time π

ω
+ τ , so the

total time of the full period is
π

ω2τ
(π + ωτ ) ,

representing a modulation of frequency

2ω2τ

π + ωτ
.

This is the same expression as derived by [3], but crucially their
derivation relies on an assumption of constant small contact
time (which is proven above in the general case) with the
collision being modelled by a potential 1

2kq2 in q > 0, which
also means that they associate a frequency and spring constant
to the collision interaction.

To investigate this behavior numerically we have chosen
units with

ω2 = 1, K = 5000, α = 3
2 ,

where the value of K [the Hertzian constant, cf. (3)] is chosen
so that the contact time is small enough to make the slow drift
described above observable. The equations were integrated
using a fixed step (h = 0.000 06) third-order Verlet method
that preserves the symplectic structure of solutions. A sample
trajectory projected onto the (x1,x2) plane is shown in Fig. 1,
which has initial conditions x1(0) = −2, with ẋ1(0) = x2(0) =
ẋ2(0) = 0, integrated for time equal to 60 units. A classic
Newton’s cradle solution would move close to the x1 axis in
x1 < 0 and then up the x2 axis and return. As shown in Fig. 1,
the actual behavior is a drift out to a region with both x1

and x2 large, and if the solution had been extended it would
have returned close to the ideal Newton’s cradle solution. The
noncradle motion [cos(nωτ ) close to zero in the terminology
of (17)] moves between a collision in x1 > 0 through x2 large
and x1 large and negative, back to a collision in x1 < 0.

Of course, the model described here is for small displace-
ment; for larger displacements both the nonlinear nature of
the gravitational force on the angle of displacement and the
effect of geometry due to the balls no longer striking each
other symmetrically because of the offset at the hanging
points would need to be modelled. However, the advantage
of having a simple model that can be accurately analyzed
makes the approach here worth taking into account. The
addition of nonlinearity in the pendulum does change the
dynamics when the angle is large. Figures 2 and 3 shows
the results of simulations of the equations (1) and (2) with the
small-amplitude ω2x approximations replaced by ω2 sin x and
the same values of the other parameters. Figure 2 has initial
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FIG. 1. Trajectory of a solution projected onto the (x1,x2) plane.
Initial conditions and parameters are given in the text.

conditions x1 = −0.1 with ẋ1 = x2 = ẋ2 = 0, and the result
is similar in nature to the simulation of the linear system,
as would be expected from the small amplitude of the initial
condition. Interestingly, Fig. 3 shows a solution with initial
condition x1 = −2 and the other variables all zero. In this case
the solution is closer to the ideal Newton’s cradle solution than
the linear approximation studied above. A fuller investigation
of this case might prove worthwhile.

Another feature of the dynamics of the two-ball Newton’s
cradle that can be described using this framework is the effect
of dissipation. Assuming that most of the dissipation is in
the collisions, so that these are inelastic rather than elastic,
then the natural model would be to replace the conclusion
that p is simply reversed during a collision to a reversal
with a reduction in the modulus. In this case, the inelastic
collisions would lead eventually to p = 0 with q = 0, and
hence the asymptotic dynamics has both balls touching, with
the pendulums swinging in phase. This of course would then
decay due to friction.

Using a commercial cradle (e.g., by Zeon Tech, endorsed
by the Science Museum, UK) it is easy to confirm the
asymptotic in-phase oscillation and also to observe solutions

0-0.1 x1

0

0.1

x2

FIG. 2. Projection onto (x1,x2) plane of trajectory of solution to
model with nonlinear term ω2 sin x replacing the linearization ω2x .
The initial condition has small amplitude (x1(0) = −0.1; see text)
and parameters are otherwise the same as in Fig. 1.
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FIG. 3. Same as Fig. 2 except that initial conditions and parame-
ters are the same as in Fig. 1.

corresponding to the motion described by Figs. 1 and 2
provided the base is kept clamped (a heavy hand will do!).
In the latter case the key observation is that the every other
collision moves from being in one phase of the swing to the
other on a slow timescale, passing close to an ideal cradle
solution in the process. In other words the even collisions will

occur in x1 > 0 for a while, and then in x1 < 0, and so on; this
can be observed by viewing a film of the interaction in slow
motion. However, the system does not spend long close to the
ideal cradle motion, but passes through it fairly rapidly and so
it is hard to detect. This would, of course, also be true of the
motion depicted in the figures.

The analysis reported here uses the hybrid nature of the
collisions to derive return maps that can be solved explicitly
and, through this, a very accurate description of the motion is
possible. The analysis is not hard, but it is revealing. Although
this deals with a situation that is considerably simpler than
the many-ball Newton’s cradle, it shows that in the two ball
case the finer details of the interactions between the ball are
unimportant to the outcome of any experiment except insofar
as they determine τ for a given p0. This suggests that an
experiment could be made to determine the dependence of τ

and p0, and then this in turn could be fit to different powers of
α in the Hertzian model as a means of assessing the effective
α independent of the classical Hertzian-force arguments.

I am grateful to David Harris for pointing out the potential
application of these results to a more careful experimental
verification of the Hertzian interaction. This work is partially
funded by EPSRC grant EP/E050441/1.
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