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Breatherlike electromagnetic wave propagation in an antiferromagnetic medium
with Dzyaloshinsky-Moriya interaction
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We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium
with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin
coupling with the magnetic field component of the EMW has been studied by solving Maxwell’s equations
coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion
of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive
perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear
Schrödinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and
the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially
and temporally coherent localized modes under the influence of DM interaction parameter.
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I. INTRODUCTION

In the past few years the nonlinear behavior of electro-
magnetic waves in nonlinear magnetic materials has risen to
some prominence in the literature because of the progress
in developing the technologically important magneto-optic
recording and high density data storage devices [1–3]. Many
interesting results have been obtained, which not only exposed
the interaction between light and materials but also provided
new ideas to develop new devices [4,5]. In a similar context,
propagation of electromagnetic waves (EMWs) through or-
dered magnetic medium has also assumed a lot of importance
in recent times [6,7]. In this case, the magnetic field component
of the electromagnetic field is found to excite the magnetiza-
tion of a ferromagnetic medium in the form of solitons and also
the small amplitude plane electromagnetic wave propagates in
the form of EM solitons [8]. Nakata [9,10] and Leblond and
co-workers [11,12], showed that the EMW propagates in the
form of soliton in a ferromagnetic medium using the reductive
perturbation method, however, by neglecting the spin-spin
exchange energy. Recently, Veerakumar and Daniel [13]
investigated in this direction by taking into account the basic
magnetic interactions, namely the spin-spin exchange interac-
tion in isotropic and anisotropic ferromagnetic and antiferro-
magnetic media [14,15]. In addition to the dominant magnetic
interactions, such as exchange, anisotropy, etc., which involve
integrable spin models with soliton spin excitations, there exist
certain magnetic interactions that are less spoken about in
the literature of nonlinear dynamics due to the mathematical
complexity of their representations in the Hamiltonian and in
the governing dynamical equations [16–19]. Notable among
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them is the Dzyaloshinsky-Moriya (DM) interaction, which
has been reexamined by several authors in recent times
[20,21]. This interaction is essentially an antisymmetric spin
coupling interaction that occurs when the symmetry around
the magnetic ions is not high enough, thus leading to the
mechanism of weak ferromagnetism, which is due to the
combined effect of spin-orbit coupling and spin-spin exchange
interactions. Weak ferromagnets play an important role in
describing insulators, spin glasses, low-temperature phases of
copper oxide superconductors, phase transitions, etc. [22,23].

The DM interaction that is often present in the models
of many low-dimensional magnetic materials is known to
generate many spectacular features [24,25]. Though ferromag-
netic spin systems have been studied extensively, the study of
nonlinear dynamics of antiferromagnetic systems is still in
its infant stage. In antiferromagnets, the adjacent spins are
aligned antiparallel to each other and hence the dynamics
is governed by highly nontrivial coupled nonlinear partial
differential equations. However, some progress has been made
by identifying the problem as a two-sublattice model and
formulating the governing equations of motion.

The study of breathers has attracted growing attention
in the past several years in a wide variety of physical
systems. Breathers are characterized by spatially and
temporally localized excitations in nonlinear and periodic
systems. Rigorous proof has been given for the existence
of breathers [26], and their properties have been studied
extensively [27,28]. However, their experimental observation
has been reported only recently. Recent evidence points
to the important role of breathers in an impressive variety
of contexts, including low-dimensional materials [29],
macroscopic-mechanical systems [30], spin lattices [31], spin
waves in antiferromagnets [32], Josephson arrays [33] and
Josephson ladders [34], molecular chains [35], Bose-Einstein

066608-11539-3755/2011/84(6)/066608(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.066608


L. KAVITHA, M. SARAVANAN, B. SRIVIDYA, AND D. GOPI PHYSICAL REVIEW E 84, 066608 (2011)

condensates [36], dispersion managed optical fibers [37], and
finally optical breathers in photonic-crystal waveguides [38].
Recent experiments on the quasi-one-dimensional
antiferromagnetic Heisenberg spin chain (AFHC) Cu
benzoate Cu(C6H5COO)2 · 3H2O, in the presence of magnetic
field revealed the existence of breather mode excitations
directly by an electron spin resonance investigation [39].

In view of the above, in the present paper we explore
the breatherlike nature of EMW propagation in an antiferro-
magnetic medium with antisymmetric DM interaction, in the
presence of crystal field anisotropy. The outline of the paper is
as follows. In Sec. II, we present the mathematical model for
the weak antiferromagnetic system and construct the equations
of motion. In Sec. III, we employ the reductive perturbation
technique on the equations of motion and formulate a nonlinear
evolution equation that describes EMW propagation in the
form of solitons. In Sec. IV, by invoking the Jacobi elliptic
function method, we attempt to construct a set of solitary and
breatherlike wave solutions and explore the influence of DM
parameters on the same. The results are concluded in Sec. V.

II. WEAK ANTIFERROMAGNETIC SPIN DYNAMICS
AND EMW EQUATION

The Heisenberg Hamiltonian describing the anisotropic
antiferromagnetic spin chain can be written as

H = −
∑

n

[
J (Sn · Sn+1) + Dn · (Sn × Sn+1)

−A
(
Sz

n

)2 + γ Sn · H
]
, J < 0, (1)

where Sn denotes the classical spin vector at the lattice site
n and J represents the exchange integral between the nearest
neighbors. The first term in Eq. (1) is associated with the
bilinear spin-spin exchange interaction and in order to have an
appreciable overlapping of wave function we need to consider
the nearest neighboring spins. The second term is the DM
interaction term and is proportional to the vector product of
interacting spins and is allowed by symmetry in noncentric
crystal structures. The antisymmetric spin coupling was first
suggested by Dzyaloshinsky [40] to explain the mechanism
of weak ferromagnetism of antiferromagnetic crystals from a
purely symmetry ground state and was later derived theoreti-

cally by Moriya [41,42]. This DM interaction is of interest in its
own right and is known to be the cause of weak ferromagnetism
in certain materials such as Hematite α − Fe2O3 [42]. This
interaction is also found to enhance the fluctuation of the spin
components in the plane perpendicular to D. The vector D
denotes the intensity of DM interaction imposed along the
chain. To understand what is going on, we first note that for two
spins S1 and S2, interacting via isotropic exchange and the DM
term, the interaction energy is minimized at −√

J 2 + D2S2

when both spins S1 and S2 are perpendicular to D in the
absence of an external magnetic field. As shown by Moriya, the
cross-product term Dn · (Sn × Sn+1) originates from spin-flop
hopping, which made the possible existence of spin-orbit
interactions resulting in a canted spin system. The parameter A
characterizes the strength of the crystal field anisotropy along
the easy axis of magnetization. The external magnetic field
H(r,t) here is the magnetic field component of the propagating
EMW, γ = gμB , where g is the gyromagnetic ratio and
μB represents the Bohr magneton. In antiferromagnets the
neighboring spin vectors will have a strong tendency to align
antiparallel to each other due to energetic considerations and
hence the problem can be conveniently studied by dividing the
lattice into two sublattices corresponding to the “up” (Su,n)
and “down” (Sd,n) spins. As a result, we have two lattices with
a ferromagnetic state with spin up and a ferromagnetic state
with spin down. The equation of motion corresponding to the
spin Hamiltonian (1) can be constructed from

dSn

dt
= {Sn,H }PB. (2)

The Poisson bracket on the right-hand side of Eq. (2) for any
two arbitrary functions F and G of spins is defined as

{F,G}PB =
N∑

i=1

3∑
α,β,γ=1

εαβγ

∂F

∂Sα
i

∂G

∂S
β

i

S
γ

i , (3)

where εαβγ is the complete antisymmetric Levi-Civita tensor.
The above spin Poisson bracket satisfies the same algebraic
relations as that of the usual canonical Poisson bracket. On
using our spin Hamiltonian Eq. (1) in Eq. (2), we obtain two
equations of motion for the spin vectors Su,n and Sd,n−1 on up
and down lattices as

dSu,n

dt
= Su,n × [

J (Sd,n+1 + Sd,n−1) + Dz
n

[(
S

y

d,n+1 − S
y

d,n−1

)
î − (

Sx
d,n+1 − Sx

d,n−1

)
ĵ
] − 2A

(
Sz

u,n

)
n̂ + γ H

]
, (4)

dSd,n−1

dt
= Sd,n−1 × [

J (Su,n + Su,n−2) + Dz
n

[(
Sy

u,n − S
y

u,n−2

)
î − (

Sx
u,n − Sx

u,n−2

)
ĵ
] + 2A

(
Sz

d,n−1

)
n̂ + γ H

]
. (5)

The structure of Eqs. (4) and (5) demand that the length of the spin vector does not change with time and hence all the spins are
assumed to have unit length (S2

n = 1). Now, in order to understand the associated antiferromagnetic spin dynamics, we have to
solve the discrete spin equations. However, in the low temperature and long wavelength limit one can go to the continuum limit
by assuming that the lattice constant is very small compared with the length of the lattice. Therefore it is appropriate to make a
continuum approximation and by making use of the Taylor series expansion with z = nλ, where λ is the lattice parameter, we get

∂Su

∂t
= Su ×

{
2J

(
Sd + λ

∂Sd

∂z

)
+ Dz

[
2λ

(
∂S

y

d

∂z
î − ∂Sx

d

∂z
ĵ

)]
− 2ASz

un̂ + γ H
}

, (6)

and
∂Sd

∂t
= Sd ×

{
2J

(
Su + λ

∂Su

∂z

)
+ Dz2λ

[(
∂S

y
u

∂z
î − ∂Sx

u

∂z
ĵ

)]
+ 2ASz

d n̂ + γ H
}

. (7)
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The above set of equations describes the dynamics of weak antiferromagnetic canted spin system of two sublattices up and down
in the classical continuum limit, which is analogous to the Landau-Lifshitz equations for ferromagnets. Addition of Eqs. (6) and
(7) yields

∂(Su + Sd )

∂t
= 2Jλ

[
Su × ∂Sd

∂z
+ ∂Su

∂z
× Sd

]
+ 2λDz

[
Su × ∂

(
S

y

d î − Sx
d ĵ

)
∂z

+ Sd × ∂
(
S

y
u î − Sx

u ĵ
)

∂z

]

+ 2A
[(

Sd × Sz
d n̂

) − (
Su × Sz

un̂
)] + γ (Su + Sd ) × H (8)

and subtraction of Eq. (7) from Eq. (6) gives

∂(Su − Sd )

∂t
= 4J (Su × Sd ) + 2Jλ

[
Su × ∂Sd

∂z
− ∂Su

∂z
× Sd

]
+ 2λDz

[
Su × ∂S

y

d

∂z
î − Sd × ∂S

y
u

∂z
î

]

+ 2λDz

[
Sd × ∂Sx

u

∂z
ĵ − Su × ∂Sx

d

∂z
ĵ

]
− 2A

[(
Sd × Sz

d n̂
) + (

Su × Sz
un̂

)] + γ (Su − Sd ) × H. (9)

In order to make the above two equations in a more standard form, we define [43]

(Su − Sd ) = 2
√

(1 − ε2)SM, (Su + Sd ) = 2εSM′, (10)

where M and M′ are unit vectors with M · M′ = 0, ε2 = 1
2 (1 + Su·Sd

S2 ) and S is the magnitude of the spin. Further, substitution of
Eq. (10) in Eq. (9) and calculating individually the terms in the right hand side of the above Eq. (9) yields

Su × Sd = 2ε
√

1 − ε2S2(M × M′), Su × ∂Sd

∂z
− ∂Su

∂z
× Sd = S2

[
2ε2

(
M′ × ∂M′

∂z

)
− 2(1 − ε2)

(
M × ∂M

∂z

) ]
, (11)

Su = S(εM′ +
√

1 − ε2M), Sx
u î + Sy

u ĵ + Sz
uk̂ = S{ε(M ′x î + M ′y ĵ + M ′zk̂) +

√
1 − ε2(Mxî + Myĵ + Mzk̂)}, (12)

Sd = S(εM′ −
√

1 − ε2M), Sx
d î + S

y

d ĵ + Sz
d k̂ = S{ε(M ′x î + M ′y ĵ + M ′zk̂) −

√
1 − ε2(Mxî + Myĵ + Mzk̂)}. (13)

Substituting the above set of equations (11)–(13) in Eq. (9) and at low energy configurations |Su − Sd| ≈ 2S and |Su + Sd| � 0
corresponding to ε � 1 yields

2S
∂M
∂t

= 2JλS2

[
−2

(
M × ∂M

∂z

)]
+ 2λDzS2

{
−

(
M × ∂My

∂z
î

)
−

(
M × ∂Mx

∂z
ĵ

)
−

(
M × ∂My

∂z
î

)
−

(
M × ∂Mx

∂z
ĵ

)}

− 4AS2(M × Mzn̂) + 2γ S(M × H). (14)

After cumbersome algebraic calculations and suitable rescaling of t → 2St with redefinition of parameters, we obtain the
magnetization density M, which is governed by the torque equation given as

∂M
∂t

= M ×
[
γ̂ H − Jλ

∂M
∂z

− AMzn̂ − λDz ∂(Myî − Mxĵ )

∂z

]
, (15)

where γ̂ = γ /2S and Eq. (15) has been written under the
assumption of the low energy configurations in the presence of
weak ferromagnetism when ε � 1. Equation (15) is analogous
to the Landau-Lifshitz equation for ferromagnets [44]. How-
ever, the contribution of spin-spin exchange interaction to the
effective field in ferromagnets appears to be ∂2M

∂z2 , whereas in
our case of a weak antiferromagnet the effective field from bi-
linear interaction appears to be ∂M

∂z
, since the continuum model

approximation is treated for the two sublattices individually.
We consider the propagation of electromagnetic waves in

a magnetic material medium in the presence of an external
magnetic field. The governing Maxwell’s equations are the
following [45]:

∇ × E = −∂B
∂t

, (16)

∇ × H = ∂D
∂t

. (17)

In Eqs. (16) and (17), E, D, H, and B are, respectively, the
electric field, the electric induction, the magnetic field, and
the magnetic induction. The constitutive equation for E and
D is

D = ε0E, (18)

where we shall assume that ε0 is the scalar permittivity of the
magnetic medium, whereas the constitutive equation for H and
B is

B = μ0(H + M), (19)

where μ0 is the magnetic permeability of the medium and
M is the magnetization density in the magnetic medium of
propagation. Eliminating E, D, and B, from Eqs. (16)–(18),
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we have

∂2

∂t2
[H + M] = c2

[
∂2H
∂z2

− ∂2Hz

∂z2
n̂

]
, (20)

where c = 1√
μ0ε0

is the velocity of the EMWs propagating in
the magnetic medium with n̂ = (0,0,1). The set of coupled
equations (15) and (20) completely describe the propagation
of EMWs in an anisotropic ferromagnetic medium with DM
interaction especially when the adjacent antiparallel spin pairs
are locked under the low energy configurations.

III. PERTURBATION SCHEME AND THE GOVERNING
DYNAMICAL EQUATION

Having derived the equations of motion, the task now lies in
solving them to understand the underlying spin excitations. We
find Eqs. (15) and (20) as a set of highly nontrivial nonlinear
coupled partial differential equations which are not amenable
to exact analysis in general. In this section, we attempt to solve
the coupled Landau-Lifshitz equations for magnetization and
the Maxwell’s equations for electromagnetic field within the
framework of reductive perturbation method along the lines of
Taniuti and Yajima [46]. This technique adopts the nonlinear
modulation of the slowly varying envelopes of EM plane waves
of small but finite amplitude in the antiferromagnetic medium.
In order to carry out this perturbation, the magnetization of the
medium and the magnetic induction of the EM field have to
be expanded nonuniformly in the anisotropic weak antiferro-
magnetic medium. Since the easy axis of magnetization of the
anisotropic medium lies parallel to the direction of propagation
(z direction), we assume that at the lowest order of expansion,
the magnetization of the medium and the magnetic induction
lie parallel to the propagation axis and turn around to the (x −
y) plane at higher orders. Therefore writing M = (Mx,My,Mz)
and H = (Hx,Hy,Hz) and expressing the Fourier components

of M and H in powers of a small parameter ε, we write

Mx = ε1/2[Mx
1 + εMx

2 + · · · ],
My = ε1/2

[
M

y

1 + εM
y

2 + · · · ], (21)

Mz = M0 + εMz
1 + ε2Mz

2 + · · · ,
and

Hx = ε1/2
[
Hx

1 + εHx
2 + · · · ],

Hy = ε1/2
[
H

y

1 + εH
y

2 + · · · ], (22)

Hz = H0 + εHz
1 + ε2Hz

2 + · · · .
Thus the magnetization and magnetic field intensity have been
expanded about uniform values M0 and H0, respectively, along
the direction of propagation of the EMWs.

We now introduce the stretching variables ξ = ε(z − vt)
and τ = ε3t , which characterize the shape of the pulse
propagating at the speed v and time variable accounts for
the evolution of the propagating pulse. We now substitute the
expansions for M and H as given in Eqs. (21) and (22) in
the component form of Eqs. (15) and (20). After collecting
and solving the coefficients at different orders of ε, we get the
following:

At the order ε0

Hx
1 = kMx

1 , (23a)

H
y

1 = kM
y

1 (23b)
where

k ≡ H0

M0
= 1

ε0(c2 − v2)
. (23c)

At the order ε1

∂

∂ξ

[
Hx

2 − kMx
2

] = −∂Hx
1

∂τ
, (24a)

∂

∂ξ

[
H

y

2 − kM
y

2

] = −∂H
y

1

∂τ
, (24b)

also

∂Mz
1

∂ξ
= Jλ

v

[
Mx

1
∂M

y

1

∂ξ
− M

y

1

∂Mx
1

∂ξ

]
+ 1

v

[
Mx

1

∫ ξ

−∞

∂M
y

1

∂τ
dξ ′ − M

y

1

∫ ξ

−∞

∂Mx
1

∂τ
dξ ′

]
+ λDz

[
Mx

1
∂Mx

1

∂ξ
− M

y

1

∂M
y

1

∂ξ

]
, (25a)

∂Mx
1

∂ξ
= γ̂ k

v

(
Mz

1M
y

1

) − Jλ

v

(
M0

∂M
y

1

∂ξ

)
+ A

v

(
M

y

1 M0
) − λDz

v

(
M2

0
∂M

y

1

∂ξ

)
+ M0

v

∫ ξ

−∞

∂M
y

1

∂τ
dξ ′, (25b)

∂M
y

1

∂ξ
= − γ̂ k

v

(
Mz

1M
x
1

) + Jλ

v

(
M0

∂Mx
1

∂ξ

)
− A

v

(
Mx

1 M0
) + λDz

v

(
M2

0
∂Mx

1

∂ξ

)
− M0

v

∫ ξ

−∞

∂Mx
1

∂τ
dξ ′. (25c)

Without loss of generality, we assume a new complex field
q in order to identify Eqs. (25b) and (25c) with a more standard
nonlinear evolution equation by defining

q = (
Mx

1 − iM
y

1

)
; (26)

using q in the relation for the conservation of length of the
magnetization vector

Mz
1 = −Hz

1 = 1

2M0

[(
Mx

1

)2 + (
M

y

1

)2]
, (27)

we obtain

|q|2 = −2M0M
z
1 . (28)

After a single differentiation of Eqs. (25b) and (25c) and using
the new complex field as given in Eqs. (26) and (28) with
the transformation of Z = ξ + Aτ , we obtain the resultant
equation after some lengthy algebra as

i
∂q

∂τ
+ η

∂2q

∂Z2
+ iβ

∂

∂Z
|q|2q = 0, (29a)
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where
η = (1 − iβ ′Dz), (29b)

β = −γ̂ k

[
M0

(
iJλ + v

M0

)]−1/2

, (29c)

β ′ = −iλ[(iJλM0 + v)]−1/2, (29d)

while writing Eq. (29a), we have rescaled Z → (−iJλ −
v

M0
)1/2Z. Equation (29a) resembles the well known completely

integrable derivative nonlinear Schrödinger (DNLS) equation,
which has been solved for soliton solutions by Kaup and
Newell [47] using the inverse scattering transformation (IST)
method in the absence of DM interaction (Dz = 0).

IV. PROPAGATING ELECTROMAGNETIC SOLITON

In this section, we make our attempt to construct a set of
exact propagating electromagnetic solitons for the derivative
NLS Eq. (29a) in the presence of DM interaction. The
completely integrable DNLS equation was first given by
Rogister [48] for the nonlinear evolution of parallel Alfvén
waves in plasmas and later encountered in many different
contexts by other authors, emerging as one of the canonical
nonlinear equations in physics. Kundu demonstrated the
explicit auto-Bäcklund relation for the DNLS equation through
gauge transformation in the absence of weak ferromagnetism
[49] when the velocity of the propagating magnetization pulse
v = γ̂ 2k2 − iM0Jλ and find the one-soliton solution as

q = ±4
sin γ ′
{

exp[(2η′ − 2iξ )x − iμ+]

exp(4η′x) + exp(±iγ ′)

}
, (30)

for ε = −1, η′ = 
2 sin γ ′; ξ = ∓
2 cos γ ′.
More recently the DNLS equation, which governs the

propagation of the femtosecond optical pulse in a monomodal
optical fiber, is analytically studied [50] and breather as well as
double-pole solutions are derived from the two-soliton solution
with the choices of certain physical parameters. The periodic
wave solutions and the solitary wave solutions in terms of
Jacobi elliptic functions for the nonlinear partial differential
equations attract considerable interest [51–54], because of the
elegant properties of elliptic functions. We employ the Jacobi
elliptic function method aided with the symbolic computation
to find a series of exact solutions governing the electromagnetic
solitons and will explore the role of DM interaction parameter
on the propagation of EMWs. Symbolic computation, as a new
branch of artificial intelligence, has been playing an important
role in dealing with a large amount of complicated and tedious
algebraic calculations. Let us assume for the sake of simplicity
Z → z and τ → t , so that Eq. (29a) becomes

i
∂q

∂t
+ η

∂2q

∂z2
+ iβ

∂

∂z
|q|2q = 0. (31)

We seek the traveling wave solution of the form

q(z,t) = u(ξ ′) exp[i(rz + st)], (32)

where ξ ′ = k1z + ωt , k1 and ω represent the wave number
and wave speed, respectively, whereas r and s are arbitrary
constants. Using the Jacobi elliptic function method, u(ξ ′)

can be expressed as a finite series of Jacobi elliptic functions
sn(ξ ′|m) or cn(ξ ′|m) using the following ansatz:

u = u(ξ ′) =
n∑

j=0

aj cnj (ξ ′|m), (33)

or

u = u(ξ ′) =
n∑

j=0

aj snj (ξ ′|m), (34)

where sn(ξ ′|m) and cn(ξ ′|m) are the Jacobi elliptic sine
and cosine functions, respectively. The parameter m is
the modulus (0 < m < 1) and when m → 1,sn(ξ ′|m) →
tanh(ξ ′),cn(ξ ′|m) → sech(ξ ′). Upon substituting Eq. (32) in
Eq. (31) the real and imaginary parts of the equation can be
expressed as follows:

−su(ξ ′) + k2
1
d2u(ξ ′)
dξ ′2 − r2u(ξ ′)

+ 2β ′Dzrk1
du(ξ ′)
dξ ′ − βru(ξ ′)3 = 0, (35a)

ω
du(ξ ′)
dξ ′ + 2rk1

du(ξ ′)
dξ ′ − β ′Dzk2

1
d2u(ξ ′)
dξ ′2 + β ′Dzr2u(ξ ′)

+ 3βk1u(ξ ′)2 du(ξ ′)
dξ ′ = 0. (35b)

Here the highest degree of dpu
dξ ′p is taken as

O

(
dpu

dξ ′p

)
= n + p,O

(
uq dpu

dξ ′p

)
= (q + 1)n + p, (36)

where p = 1,2,3, . . . and q = 0,1,2,3, . . . . Balancing the
higher order linear term with the nonlinear term in
Eqs. (35a) and (35b) will yield the value of n = 1 in Eq. (36).
Upon substituting Eq. (33) in Eqs. (35a) and (35b) with n = 1,
we obtain a system of algebraic equations as presented in
Appendix A. Now solving the set of equations with the aid of
symbolic computation yields

ω = ω, a0 = a0, s = −r2 + k2
1m

2sn(ξ ′|m)2

−k2dn(ξ ′|m)2 − 3βra2
0,

a1 = 1

2

a0
( − k2

1m
2sn(ξ ′|m)2dn(ξ ′|m)2 + 2βra2

0

)
β ′Dzrk1dn(ξ ′|m)sn(ξ ′|m)

.

Thus the exact soliton solution of Eq. (31) is given by

q(z,t) =
(

a0 + 1

2

a0
[ − k2

1m
2sn(ξ ′|m)2dn(ξ ′|m)2 + 2βra2

0

]
β ′Dzrk1dn(ξ ′|m)sn(ξ ′|m)

)
× exp[i(rz + st)]. (37)

As m → 1, the Jacobi solution as represented in Eq. (37)
degenerates into the solitary wave solution given as

q(z,t)

=
(

a0 + 1

2

a0
[ − k2

1tanh2(ξ ′) + k2
1sech2(ξ ′) + 2βra0

]2

β ′Dzrk1sech(ξ ′)tanh(ξ ′)

)
× exp[i(rz + st)]. (38)

In Fig. 1, we have plotted q(z,t) represented as Eq. (38)
as a function of the DM interaction parameter Dz for the
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FIG. 1. (Color online) Snapshots of EM soliton Eq. (38) propagating in the antiferromagnetic medium with parametric values a0 = 0.000 05,
k1 = 0.01, β = 1.5, β ′ = 0.5, r = 1.5, ω = 0.5; (a) Dz = 0.1, (b) Dz = 0.5, (c) Dz = 1.0, and (d) Dz = 2.5 depict the modulation of soliton
amplitude in accordance with the DM interaction parameter.
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FIG. 2. (Color online) Snapshots of breathing localized modes (BLMs) of Mx
1 [Eq. (40)] with parametric values a0 = 0.001, k1 = 0.01,

β = 1.0, β ′ = 1.5, r = 1.5, ω = 0.5; (a) Dz = 0.5, (b) Dz = 1.5, (c) Dz = 2.0, and (d) Dz = 2.5 portray the significant effect of spin canting
on the amplitude of breathing modes.
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FIG. 3. (Color online) Snapshots of breathing localized modes of M
y

1 [Eq. (41)] with parametric values a0 = 0.001, k1 = 0.01, β = 1.0,
β ′ = 1.5, r = 1.5, ω = 0.5; (a) Dz = 0.5, (b) Dz = 1.0, (c) Dz = 2.0, and (d) Dz = 2.5 confirm the inverse relationship between the amplitude
of BLMs and the degree of spin canting.
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FIG. 4. (Color online) Evolution of antisymmetric BLMs of Mz
1 for the choices of parameters a0 = 0.001, k1 = 0.01, β = 1.5, β ′ = 2.0,

r = 1.5, ω = 0.5, M0 = 0.03; (a) Dz = 0.5, (b) Dz = 1.0, (c) Dz = 2.0, and (d) Dz = 2.5 show an appreciable effect of DM interaction on
the amplitude.
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parameteric values a0 = 0.000 05, k1 = 0.01, β = 1.5, β ′ =
0.5, r = 1.5, and ω = 0.5. At the outset it is interesting to
observe from the snapshots that the EMW soliton propagates
in the weak antiferromagnetic medium without any change
in its shape. However, when the DM interaction parameter
Dz is slowly enhanced from 0.1 to 2.5, the amplitude of the
EMW soliton remarkably decreases anyhow keeping the bell
shape intact. It is also evident that the amplitude of EMW
soliton is inversely proportional to the strength of the DM
interaction. The stronger the DM interaction is, the shorter
the EMW soliton appears. Thus physically it is realized
that in the antiferromagnetic medium, the spin canting as a
result of weak ferromagnetism modulates the amplitude of
the EMW soliton without distorting the robust nature of the
same.

Further, using the Jacobi sine function method we con-
struct the other type of soliton solution as (for details see
Appendix B)

q(z,t)

=
(

a0 − 1

2

a0
[
2k2

1sech2(ξ ′) + 2βra0
]2

β ′Dzrk1sech2(ξ ′)

)
exp[i(rz + st)].

(39)

The solution Eq. (39) also exhibit the localized solitary
nature of the EMW propagation in the weak antiferromagnetic
medium. Upon substituting the solution Eq. (38) in Eq. (26),
we can write down the one-soliton solution for the x,y, and z

components of the magnetization (M1) or in another way the
magnetic field components of EM field (H1) from Eqs. (26)
and (27).

Mx
1 =

(
a0 + 1

2

a0
[ − k2

1tanh2(ξ ) + k2
1sech2(ξ ) + 2βra2

0

]
β ′Dzrk1sech(ξ )tanh(ξ )

)

×cos(rz + st), (40)

M
y

1 =
(

a0 + 1

2

a0
[ − k2

1tanh2(ξ ) + k2
1sech2(ξ ) + 2βra2

0

]
β ′Dzrk1sech(ξ )tanh(ξ )

)

×sin(rz + st), (41)

Mz
1 = − 1

2M0

(
a0 + 1

2

× a0
[ − k2

1tanh2(ξ ) + k2
1sech2(ξ ) + 2βra2

0

]
β ′Dzrk1sech(ξ )tanh(ξ )

)2

. (42)

In Fig. 2, we have exhibited the snapshots of the evolution
of Mx

1 for the choices of parameters a0 = 0.001, k1 = 0.01,
β = 1.0, β ′ = 1.5, r = 1.5, and ω = 0.5. We vary the value of
the DM interaction parameter and thus physically the degree of
canting of spins in the antiferromagnetic medium. It is surpris-
ing to observe that as we vary the DM parameter, the soliton
amplitude evolves periodically along the longitudinal direction
and subsequently develops into breatherlike collective period-
ically oscillating localized modes. Figure 3 corresponds to the
evolution of M

y

1 , which also exhibits the same type of breather-
like spatially and temporally localized modes. From the figures
it has been realized that the intrinsic antisymmetric coupling
present in the antiferromagnetic medium can significantly
influence the properties of nonlinear excitations. Therefore

under the influence of antisymmetric DM spin coupling, the
magnetization of the magnetic medium generates breathing
modes of excitations and also the propagating plane EMW is
modulated in the form of breatherlike stable excitations. The
z component of the magnetization of the antiferromagnetic
medium displays a similar but antisymmetric breathing mode
with a lesser frequency rather than x and y components as
shown in Fig. 4. In Cu benzoate AFHC, besides the dynamical
incommensurability expected in high fields, an unexpected
energy gap in the magnetic excitation spectrum of Cu benzoate
was observed to develop as a function of the applied magnetic
field and Dender et al. [50] suggested that the unexpected
gap could be due to the staggered magnetic field generated
by the alternating g tensor in Cu benzoate. Later Affleck and
Oshikawa [55] and subsequently Essler and Tsvelik claimed
that these effects were caused by the staggered fields gener-
ated by the Dzyaloshinski-Moriya interaction acting between
neighboring spins in Cu benzoate antiferromagnetic spin
chain. The experimental proof of the existence of breatherlike
excitations in a Cu benzoate antiferromagnetic spin chain with
DM interaction in the presence of magnetic field has been
observed by Asano et al. [39]. Thus experimentally the well
defined breatherlike excitation modes were observed directly
by an electron spin resonance investigation performed on the
Cu benzoate AFHC exposed to a staggered field arising from
DM interaction. To conclude, our theoretical investigations
bring out a similar breatherlike nonlinear excitation in an
antiferromagnetic spin chain in the presence of DM interaction
and in the presence of magnetic field which is a compo-
nent of electromagnetic wave propagating in the magnetic
medium.

V. CONCLUSIONS

We performed a systematic analysis on the EMW prop-
agation in an anisotropic antiferromagnetic medium with
Dzyaloshinskii-Moriya (DM) interaction. The coupled evo-
lution equations governing the dynamics of EMWs and the
magnetization of the antiferromagnetic medium have been
mapped onto a generalized derivative nonlinear Schrödinger
(GDNLS) equation using reductive perturbation method. We
solve the GDNLS equation by invoking the Jacobi elliptic
function method, and it is found that the electromagnetic
wave propagation is supported by the collective coherent
breatherlike solitary excitations. We observed that the spin-
orbit induced Dzyloshinsky-Moriya interaction has a profound
effect on the nonlinear excitations of the magnetic field
component of EMWs and the magnetization of the antiferro-
magnetic medium in agreement with the earlier experimental
observation. Obviously, the antisymmetric nature of the canted
antiferromagnetic medium supports breathing stable solitary
modes of EMW propagation.
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APPENDIX A

In this appendix, we derive explicitly the soliton solution of
Eq. (31) using the Jacobi elliptic function method as explained
briefly in Sec. IV. We assume the following ansatz for u(ξ ′):

u(ξ ′) = a0 + a1cn(ξ ′|m),

and substituting this ansatz in Eq. (31) will yield a system of
algebraic equations by collecting various powers of cn(ξ ′|m)
as follows:

cn(ξ ′|m)3 : −βra3
1 = 0,

cn(ξ ′|m)2 : −3βra0a
2
1 = 0,

cn(ξ ′|m)1 : −r2a1 − sa1 + k2
1[a1m

2sn(ξ ′|m)2

−a1dn(ξ ′|m)2] − 3βra2
0a1 = 0,

cn(ξ ′|m)0 : −sa0 − 2β ′Dzrk1a1dn(ξ ′|m)sn(ξ ′|m)

−βra3
0 − r2a0 = 0,

and,

cn(ξ ′|m)2 : −3βk1a
3
1dn(ξ ′|m)sn(ξ ′|m) = 0,

cn(ξ ′|m)1 : −β ′Dzk2
1[a1m

2sn(ξ ′|m)2 − a1dn(ξ ′|m)2]

+β ′Dzr2a1 − 6βk1a0a
2
1dn(ξ ′|m)sn(ξ ′|m) = 0,

cn(ξ ′|m)0 : β ′Dzr2a0 − (
ωa1 + 2rk1a1 + 3βk1a

2
0a1

)
dn(ξ ′|m)sn(ξ ′|m) = 0.

On solving the above system of equations, we find

ω = ω, a0 = a0, s = −r2 + k2
1m

2sn(ξ ′|m)2

− k2dn(ξ ′|m)2 − 3βra2
0,

a1 = 1

2

a0
[ − k2

1m
2sn(ξ ′|m)2dn(ξ ′|m)2 + 2βra2

0

]
β ′Dzrk1dn(ξ ′|m)sn(ξ ′|m)

,

and consequently we construct the exact soliton solution as
presented in Eq. (38).

APPENDIX B

In a similar way, we construct another type of solution
for the Jacobi sine function by assuming the ansatz for u(ξ ′)
as u(ξ ′) = a0 + a1sn(ξ ′) and performing a similar analysis
as above will yield a system of equations corresponding to
Eq. (31) as follows:

sn(ξ ′|m)3 : −βra3
1 = 0,

sn(ξ ′|m)2 : −3βra0a
2
1 = 0,

sn(ξ ′|m)1 : −r2a1 − sa1 + k2
1[−a1dn(ξ ′|m)2

− a1cn(ξ ′|m)2] − 3βra2
0a1 = 0,

sn(ξ ′|m)0 : −sa0 + 2β ′Dzrk1a1cn(ξ |m)dn(ξ |m)

−βra3
0 − r2a0 = 0,

also,

sn(ξ ′|m)2 : 3βk1a
3
1cn(ξ ′|m)dn(ξ ′|m) = 0,

sn(ξ ′|m)1 : −β ′Dzk2
1[−a1dn(ξ ′|m)2 − a1cn(ξ ′|m)2m2]

+β ′Dzr2a1 + 6βk1a0a
2
1cn(ξ ′|m)dn(ξ ′|m) = 0,

sn(ξ ′|m)0 :
(
ωa1 + 2rk1a1 + 3βk1a

2
0a1

)
cn(ξ ′|m)dn(ξ ′|m)

+β ′Dzr2a0 = 0.

Further, we solve the above system of equations using
symbolic computation and we find

ω = ω, a0 = a0, s = −r2 − k2
1dn(ξ ′|m)2 − k2

1cn(ξ ′|m)2m2

−3βra2
0,

a1 = −1

2

a0
[
k2

1dn(ξ ′|m)2 + k2
1cn(ξ ′|m)2m2 + 2βra2

0

]
β ′Dzrk1dn(ξ ′|m)cn(ξ ′|m)

,

and substituting these values we obtain the other exact soliton
solution as presented in Eq. (39).
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