
PHYSICAL REVIEW E 84, 066602 (2011)

Reorientational versus Kerr dark and gray solitary waves using modulation theory
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We develop a modulation theory model based on a Lagrangian formulation to investigate the evolution of dark
and gray optical spatial solitary waves for both the defocusing nonlinear Schrödinger (NLS) equation and the
nematicon equations describing nonlinear beams, nematicons, in self-defocusing nematic liquid crystals. Since it
has an exact soliton solution, the defocusing NLS equation is used as a test bed for the modulation theory applied
to the nematicon equations, which have no exact solitary wave solution. We find that the evolution of dark and gray
NLS solitons, as well as nematicons, is entirely driven by the emission of diffractive radiation, in contrast to the
evolution of bright NLS solitons and bright nematicons. Moreover, the steady nematicon profile is nonmonotonic
due to the long-range nonlocality associated with the perturbation of the optic axis. Excellent agreement is
obtained with numerical solutions of both the defocusing NLS and nematicon equations. The comparisons for
the nematicon solutions raise a number of subtle issues relating to the definition and measurement of the width
of a dark or gray nematicon.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation

i
∂u

∂z
+ 1

2

∂2u

∂x2
+ |u|2u = 0 (1)

is a nonlinear wave equation arising in a broad range of
physical settings, including water waves and nonlinear optics
[1,2]. This equation is of special interest because it possesses
an exact solution in terms of the inverse scattering transform
[1], which implies that it has soliton (rather than just solitary
wave) solutions, an infinite number of conservation laws, etc.
The distinction between solitary wave and soliton solutions
is that when any number of solitons interact they do not
change form, and the only outcome of the interaction is a
phase shift. Various generalizations of the NLS equation (1)
arise in optics [2] and possess solitary wave, but not soliton,
solutions, including nonlinear beams in reorientational media
such as nematic liquid crystals, which is of particular relevance
to the present work [3–5].

The most common version of the NLS equation (1) contains
the so-called Kerr self-focusing term, by which a higher
intensity corresponds to a proportionally higher refractive
index, so that an optical beam self-focuses [1,2,6]. When Kerr
self-focusing balances diffraction the solution is referred to
as a bright soliton as it is an isolated self-confined beam on
a dark background of zero intensity. Conversely, if the sign
of the nonlinearity in Eq. (1) is reversed, the defocusing NLS
equation

i
∂u

∂z
+ 1

2

∂2u

∂x2
− |u|2u = 0 (2)

results, which models a medium for which there is a reduction
in refractive index wherever there is an increased intensity,
leading to self-defocusing of light beams and, eventually,

to the formation of dark and gray soliton solutions, i.e.,
propagation invariant dips on a finite background level [2].
For a dark soliton the intensity goes to zero on axis, while
for a gray soliton it reduces to a nonzero level below the
background. In this work we consider dark and gray NLS
solitons and dark and gray nematicons, the latter being the
solitary wave solutions of the self-defocusing nematicon
equations. While nematic liquid crystals are self-focusing,
the addition of suitable dyes (e.g., azo molecules) can turn
them into defocusing media [7]. Modulation theory will be
used to find a variational approximation to the steady dark
and gray nematicon solutions. In addition, the same approach
will be used to analyze how dark and gray nematicons evolve
from a fairly general initial condition. Neither the focusing
nor the defocusing nematicon equations possess an exact
solitary wave solution. Modulation theory has proven to be
a useful approximate technique for analyzing the evolution
of bright solitary waves governed by equations, particularly
focusing NLS-type equations, which do not possess an exact
solution for these solitary waves. While it has been extensively
applied to focusing NLS-type equations, it has not been applied
to the equations governing nonlinear beam propagation in
defocusing media. Modulation theory is based on the choice of
a suitable trial function for the unknown solitary wave profile
in a Lagrangian formulation of the governing equations [8].
For NLS equations that do possess an exact solitary wave
solution, this modulation theory approach reduces to standard
perturbation theory [8]. Modulation theory has proven to be a
successful approximate analytical theory providing solutions
in excellent agreement with numerical [9,10] and experimental
results [5,11,12], even for the refraction of nematicons in
nonuniform media [12–15]. In addition, it has been found to
give excellent results for more complicated structures, such as
undular bores [16] and optical vortices [17–20]. An advantage
of using modulation theory to develop approximate solutions is
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that the diffractive radiation shed when a solitary wave evolves
can be incorporated [8,9,21]. Accounting for this diffractive
radiation is crucial in the present work as the evolution of
dark and gray solitary waves is fundamentally determined by
it. In previous studies using averaged Lagrangian techniques
dark solitons evolved due to perturbation terms added to the
defocusing NLS equation (2), so that radiation played little
role [22,23]. In contrast to the evolution of a bright NLS soliton
[8], however, ignoring this radiative loss yields modulation
equations that show no evolution. To understand the role of
radiation on the evolution of a dark (gray) nematicon, we first
develop the required tools and understanding for the simpler
defocusing NLS equation. Indeed, for both the defocusing NLS
and nematicon equations the modulation equations show the
evolution of an initial condition to dark and gray solitary waves
and provide simple exact solutions in excellent agreement with
numerical ones.

II. DARK AND GRAY NLS SOLITONS

Before considering the dark and gray solitary waves of the
defocusing nematicon equations, let us consider the (1 + 1)-D
Kerr case, e.g., the defocusing NLS equation (2). This has the
soliton solution

u = [B tanh B(x − Az) + iA]e−iu2
0z, A2 + B2 = u2

0, (3)

which is dark for A = 0 and B = u0 and gray for A �= 0 [2].
While the defocusing NLS equation yields exact dark and gray
solitons, the defocusing nematicon equations to be considered
in Sec. IV do not possess such solutions. In the absence of exact
solutions, a useful approach consists of using trial functions in
a variational formulation of the governing equations [8,9,24].
In the limit of a slowly varying wave train, this variational
approach is the same as Whitham modulation theory [1]. A
commonly used trial function is the chirped solitary wave of
Anderson [24], which gives good results for a wide variety of
NLS-type equations [25]. However, a drawback of this chirped
form is that there is no way to include radiative losses, so that
the solitary wave under this approximation does not evolve
to a steady state. An alternative approach accounting for this
radiative loss has been developed [8,9,21], with the radiative
terms derived from perturbed inverse scattering [8]. The form
of these terms has independently been obtained using standard
soliton perturbation theory [26–28].

The NLS equation (2) has the Lagrangian

L = i(u∗uz − uu∗
z ) − |ux |2 − |u|4 − u4

0 (4)

with the asterisk superscript denoting the complex conjugate.
To find approximations to the dark and gray NLS soliton
solutions, we use the trial function

u =
(

B tanh
x − ξ

w
+ iA

)
e−iu2

0z, A2 + B2 = u2
0, (5)

which is based on the exact solution (3), as in Refs. [22,23].
The parameters w, A, and B are now functions of z. The waist
is w0 at z = 0 and w0 �= 1/B in general, so that the initial
condition will evolve in a self-similar fashion to the exact
soliton (3). The trial function (5) does not contain a shelf term,
as for an evolving bright NLS soliton [8]. The long-wavelength
radiation shed by an evolving soliton has low group velocity

and so accumulates under the soliton, forming a shelf [8,28].
If such a shelf term were included in the trial function (5),
at first order it would give zero contribution as all integrals
involving the even shelf and the odd dark soliton integrate
to zero in the averaged Lagrangian. The “chirp” variational
method [24] cannot be used for the dark or gray solitons
as the integrals involving the chirp are divergent. Moreover,
since it will be found that the dark (gray) soliton evolution is
driven completely by the emitted diffractive radiation, which
cannot be incorporated in the chirp method, this method is
unsuitable for analyzing the evolution of dark or gray solitons,
even if no divergent integrals were involved. Substituting
the trial function (5) into the Lagrangian (4) and averaging
by integrating in x from −∞ to ∞ results in the averaged
Lagrangian

L = −4

(
AB − u2

0 tan−1 B

A

)
ξ ′ − 4

3

B2

w
− 4

3
B4w. (6)

It should be noted that the tan−1 B/A term has been added to
disentangle the background carrier wave from the actual dark
soliton [22,23].

Variations of the averaged Lagrangian (6) with respect to
B, w, and ξ give

dξ

dz
= A

3Bw
+ 2

3
ABw, (7)

w = B−1, (8)
dB

dz
= 0. (9)

The variational equations then give the exact dark soliton
solution (3) and no evolution occurs, because the radiation
loss has not been included and so the parameters of (5)
cannot adjust. This behavior is unlike that for the bright NLS
soliton for which the amplitude and waist undergo a harmonic
oscillation without evolving to a steady state when radiation
loss is ignored [8]. The form of this radiation loss and the
consequent modification of the variational equations will be
considered next.

III. RADIATION LOSS FOR DARK
AND GRAY NLS SOLITONS

The radiation shed by an evolving dark or gray soliton
has an amplitude much lower than that of the soliton. Hence,
it is governed by the NLS equation (2) linearized about the
background carrier wave. Let us linearize with

u = u0e
−iu2

0z + u1e
−iu2

0z, (10)

where |u1| � |u0|. Substituting this linearized expansion into
the NLS equation (2) and neglecting terms quadratic and
higher in u1 results in

i
∂u1

∂z
+ 1

2

∂2u1

∂x2
− u2

0(u1 + u∗
1) = 0. (11)

This linear equation will be solved using Laplace transforms.
Before doing this, let us consider what is needed to calculate
the radiation loss from the dark soliton, dominated by mass
loss as for bright solitons [8].
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The NLS equation (2) has the mass conservation equation

i
∂

∂z
(|u|2 − |u0|2) + 1

2
(u∗ux − uu∗

x) = 0. (12)

As for a bright NLS soliton, long-wavelength linear radiation
has low group velocity, so it forms a shelf of size � under
the evolving dark soliton [8]. The existence of this radiation
shelf has also been proven using perturbation theory [28].
Integrating from the edge of the shelf at ξ + �/2 to ∞ gives
the mass lost to radiation, which propagates to the right of the
soliton as

d

dz

∫ ∞

ξ+�/2
(|u|2 − |u0|2) dx

= Im u∗ux |x=ξ+�/2 = Im(u0 + u∗
1)u1x |x=ξ+�/2, (13)

on using the linearization (11). A similar expression holds for
radiation propagating to the left. We then just need to determine
Im(u∗

1u1x) at x = ξ + �/2 to calculate the soliton mass lost to
shed radiation.

To solve the linearized radiation equation (11) it is con-
venient to convert it into a system of equations by setting
u1 = f + ig, where f and g are real. Then

∂g

∂z
− 1

2

∂2f

∂x2
+ 2u2

0f = 0,
∂f

∂z
+ 1

2

∂2g

∂x2
= 0. (14)

This system can be solved using Laplace transforms, on
noting that there is no initial radiation, so that f = g = 0
at z = 0. The radiation is matched to the shelf at x = ξ + �/2.
If the shelf has height r at x = ξ + �/2, then from the
expansion (10) we obtain

u1 = reiϕeiu2
0z at x = ξ + �/2, (15)

where ϕ is the phase of the shelf at x = ξ + �/2. The shelf
height r can be estimated by noting that the mass in the shelf
at z is ∫ ∞

−∞
(|u|2 − |u0|2) dx = −2B2w. (16)

The shelf of size � contains the excess mass that the soliton
sheds in order to reach its steady-state mass −2B2

f wf [21].
Hence

r2 = 2B2w − 2B2
f wf

�
. (17)

On taking Laplace transforms of the system (14) the resulting
linear system has four eigenvalues. The two that give decay as
x → ∞ are

λ± = −
√

2

√
u2

0 ±
√

u4
0 − s2, (18)

where s is the Laplace transform variable. Expanding for large
s shows that the root λ+ corresponds to incoming waves, so it
is neglected. It is then found that

ū1 = f̄ + iḡ = D

(
i − λ2

−
2s

)
eλ−x, (19)

where the overbar denotes the Laplace transform, D is an
integration constant, and λ− is given by (18). It is not possible
to invert this Laplace transform, but a large z expansion, i.e., a

small s expansion, can provide the asymptotic behavior of the
radiation. For s → 0

ū1x ∼ − s

u0
ū1, (20)

so that

u1x ∼ −u−1
0 u1z (21)

as z → ∞. Substituting this asymptotic limit for the radiation
into (13) and using the boundary condition (15) we find

d

dz

∫ ∞

ξ+�/2
(|u|2 − |u0|2) dx = −u0r

2, (22)

on noting that the dominant z derivative comes from the phase
iu2

0z in Eq. (15) and that the contribution of the u1z term
alone averages to zero. Finally, adding the loss (22) and its
counterpart in x < ξ − �/2 to the rate of change of the soliton
mass (16) gives the mass conservation equation with radiation
loss

d

dz
(B2w) = −2u0

B2w − B2
f wf

�
. (23)

The variational equation (9) shows that the depth B of the
dark (gray) soliton is fixed. Let us denote fixed-point values
by the subscript f . The mass-loss equation (23) can then be
integrated to provide

w = wf + (w0 − wf )e−2u0z/�, where wf = B−1
0 , (24)

and w = w0 and B = B0 at z = 0. The steady-state value wf

is just the relation for the exact dark (gray) soliton solution (3).
Finally, the modulation equations for the evolution of a dark
(gray) NLS soliton have a simple analytical solution, unlike
those for the evolution of a bright NLS soliton [8].

IV. DARK AND GRAY NEMATICONS

Let us now apply the theory developed for the defocusing
NLS equation to the defocusing nematicon equations:

i
∂u

∂z
+ 1

2

∂2u

∂x2
− 2θu = 0, (25)

ν
∂2θ

∂x2
− 2qθ = −2|u|2, (26)

with u the envelope of the electric field of the light beam
and θ the angular orientation of the optic axis (or director)
of the nematic liquid crystals with respect to the beam wave
vector along z [4,5]. The dark and gray nematicons will form
on a linear carrier wave. The linear solution of the nematicon
equations (25) and (26) is

u = u0e
−2iu2

0z/q, θ = u2
0

q
. (27)

Hence, the system (25) and (26) has the Lagrangian

L = i(u∗uz − uu∗
z ) − |ux |2 − 4θ |u|2 + νθ2

x

+ 2qθ2 − 2u4
0

q
. (28)

A trial function for a modulation theory of the electric field
u can be developed in analogy with that for the defocusing
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NLS equation (Sec. II). A suitable function matching with the
carrier wave is

u =
(

B tanh
x − ξ

w
+ iA

)
e−2iu2

0z/q, B2 + A2 = u2
0. (29)

A trial function for θ needs more care as it must match with
the solution of the director reorientation equation (26) as x →
±∞, based on u given by (29). Such a suitable trial function
is

θ = 1

q

(
α2 tanh2 x − ξ

β
+ γ 2

)
, α2 + γ 2 = u2

0. (30)

Due to nonlocality, the width of the director distribution is
larger than that of the beam and β 
 w in the highly nonlocal
limit (ν large) [4,29]. As for the dark and gray solitons of
the defocusing NLS equation, the trial functions (29) and (30)
are now substituted into the Lagrangian (28), which is then
averaged by integrating in x from −∞ to ∞ (see Ref. [1]),
resulting in

L = −4

(
AB − u2

0 tan−1 B

A

)
ξ ′ − 4

3

B2

w

− 4
√

πC1C2B
2α2βw

q

√
C2

1β
2 + C2

2w
2

+ 16ν

15

α4

q2β
+ 8

3q
α4β. (31)

Here

C1 = 2
√

6

π3/2
and C2 = 2√

π
(32)

in the limit ν large, which is the relevant case for light beams
in nematic liquid crystals [7,29]. Again, the tan−1 B/A term
has been added to subtract out the momentum of the carrier
wave [22,23].

Variations with respect to B, ξ , α, and β give

B

A

dξ

dz
= 1

3w
+

√
πC1C2α

2βw

q

√
C2

1β
2 + C2

2w
2
, (33)

dB

dz
= 0, (34)

4

3

(
1 + 2ν

5qβ2

)
α2 =

√
πC1C2B

2w√
C2

1β
2 + C2

2w
2
, (35)

and

2

3

(
1 − 2ν

5qβ2

)
α2 =

√
πC1C

3
2B

2w3(
C2

1β
2 + C2

2w
2
)3/2 , (36)

respectively. The last two modulation equations can be solved
to provide

2C2
1β

2 = 2νC2
1

5q
+ C2

2w
2

+
[ (

2νC2
1

5q
+ C2

2w
2

)2

+ 24νC2
1C2

2w
2

5q

]1/2

. (37)

Variations with respect to w can also be found. However, as
for the defocusing NLS equation of Sec. II, these variations
only lead to the fixed-point, or steady dark nematicon, relation
as loss to shed radiation has not yet been included. Mass

loss to radiation again drives the evolution of a dark or gray
nematicon. Variations with respect to w give

w−2
f = 3

√
πC3

1C2α
2
f β3

f

q
(
C2

1β
2
f + C2

2w
2
f

)3/2 . (38)

The steady-state nematicon is found by solving the transcen-
dental equations (35), (37), and (38) for the quantities αf , βf ,
and wf .

V. RADIATION LOSS FOR DARK
AND GRAY NEMATICONS

As previously noted, the effect of the radiation lost as the
dark nematicon evolves must be included in the modulation
equations of the previous section in order for the solution to
evolve to a fixed point, giving the steady-state dark nematicon.
The simplest way to include radiation loss in the modulation
equations is again to consider the mass equation (13), which
also holds for the dark nematicon equations (25) and (26). As
the amplitude of the shed radiation is much smaller than that
of the nematicon (as for the NLS equation of Sec. III), away
from the nematicon we have

u = u0e
−2iu2

0z/q + u1e
−2iu2

0z/q, (39)

θ = u2
0

q
+ θ1, (40)

with |u1| � u0 and |θ1| � u2
0/q. The perturbation u1 is the

shed radiation, with θ1 being the effect of the radiation on the
orientation of the optic axis. With these linearizations the same
mass-loss expression (13) applies.

Substituting the linearizations (39) and (40) into the
nematicon equations (25) and (26), we have at first order

i
∂u1

∂z
+ 1

2

∂2u1

∂x2
− 2u0θ1 = 0, (41)

ν
∂2θ1

∂x2
− 2qθ1 = −2u0(u1 + u∗

1). (42)

The solution of these equations for the shed radiation is then
matched at x = ξ ± �/2 with the shelf of radiation under the
nematicon, so that at x = ξ ± �/2, u1 = |u1| exp[iψ(z)], with
ψ(z) a slowly varying function (see Ref. [8]), and θ1 is to be
determined consistently due to the equation for θ1 (42) being
elliptic. At z = 0, u1 = 0 and θ1 = 0 as initially there is no
radiation. Let us first consider the region x � ξ + �/2 to the
right of the evolving nematicon. Again, the linear system (41)
and (42) is most easily solved by splitting u1 into real and
imaginary parts, u1 = f + ig, where f and g are real. We
thus have

∂g

∂z
− 1

2

∂2f

∂x2
+ 2u0θ1 = 0, (43)

∂f

∂z
+ 1

2

∂2g

∂x2
= 0, (44)

ν
∂2θ1

∂x2
− 2qθ1 = −4u0f. (45)
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The boundary conditions for this system are

f = fb = |u1| cos
(
ψ + 2u2

0z/q
)
,

(46)
g = gb = |u1| sin

(
ψ + 2u2

0z/q
)

at x = ξ ± �/2. The real system (43)–(45) can be solved using
Laplace transforms in z. The resulting system can be shown to
have solutions that decay for x > 0. As the Laplace transform
solution cannot be inverted exactly, it is expanded for small
transform variable s, which is equivalent to large z, to obtain
the large z behavior of the shed radiation. In this manner we
obtain

a = P be−λ1(x−x0) + Qb∗e−λ∗
1(x−x0) + Rc, (47)

where x0 = ξ + �/2,

a = (f̄ ,ḡ,θ̄1)T , b =
(

1,
2s

λ2
1

,λ1

)T

,

(48)

c =
(

1, − 2u2
0

qs
, − 2u0

qνs2

)T

,

and

λ1 = eiπ/4

(
q

ν
+

√
q2

ν2
+ 16u2

0

ν

)1/2

(49)

for ν large. Here the overbar again denotes the Laplace
transform, and P , Q, and R are constants of integration, which
are functions of s. The constants of integration are determined
from the boundary conditions after Eq. (42), giving

R = qs

2u2
0

ḡb, P = Q = f̄b

2
− qs

4u2
0

ḡb. (50)

Unlike the dark NLS soliton of Sec. III, the contribution to
the mass flux in Eq. (13) from u0u1x is zero, so that the mass
lost to radiation that propagates to the right of the nematicon
is

d

dz

∫ ∞

ξ+�/2
(|u|2 − |u0|2) dx = gfx |x=ξ+�/2. (51)

The large z (small s) solution (47) is now used to evaluate the
flux term in this mass-loss equation. The terms involving the
s multiplicative factor are approximated to leading order in
terms of the z derivative of g at the boundary, as in Eq. (21).
These then give a contribution proportional to g2, which is
then averaged over the fast 2u2

0z/q time scale imposed by the
boundary condition on g in Eq. (46). In a similar manner to the
derivation of the mass loss (22) for the dark NLS soliton, we
find that after this averaging the final result for the equation
of mass conservation for the dark (gray) nematicon, including
loss to diffractive radiation, is

d

dz
(B2w) = −�

B2w − B2
f wf

�
,

where � = 1

2

(
q

ν
+

√
q2

ν2
+ 16u2

0

ν

)1/2

. (52)

As for the dark soliton of Sec. II, the depth B of the dark (gray)
nematicon is fixed from the variational equation (34), so the
mass-loss equation (52) can be integrated to give

w = wf + (w0 − wf )e−�z/�, (53)

where w0 is the initial value of w. The modulation equations
for the evolution of a dark (gray) nematicon comprise the
explicit solution for w (53), together with the transcendental
equations (35) and (37) for α and β. Hence the solution for w

has the same simple form as for the defocusing NLS equation.
There is no simple expression for the fixed-point width wf ,
however, as the fixed-point relation (38) has to be solved in
conjunction with the algebraic equations (35) and (37).

VI. RESULTS AND DISCUSSION

The numerical solutions of the defocusing NLS and
nematicon equations (2), (25), and (26), respectively, were
obtained using a hybrid Runge-Kutta finite difference scheme
for the NLS or NLS-type equations (2) and (25), and
Gauss-Seidel iteration with successive over-relaxation for the
director equation (26). The scheme details are described in
the Appendix. For all the numerical solutions presented here
the discretizations �x = 0.1 and �z = 1 × 10−2 were used.

A. Dark and gray NLS solitons

We shall compare results of the modulation theory with
numerical solutions for both the width and the position of
evolving dark and gray solitons. For the dark and gray NLS
solitons, numerical solutions show that the trough depth A

and far field amplitude u0, and hence B, do not evolve
and only the width w and the position ξ of the soliton
evolve, in agreement with the modulation theory of Sec. II.
To obtain these comparisons between numerical solutions
and modulation theory, we measure the soliton width at an
amplitude |u| = (u0 + A)/2, which is half of its total depth.
Such an analytical width is

wm = 2w tanh−1 um,
(54)

where um = [(u0 + A)2 − A2]
1
2

2B
.

The modulation solution for the width evolution of the dark
and gray NLS solitons is (24). As A and B are constant in
the modulation theory, the position (7) can be found explicitly.
The width and position of dark and gray NLS solitons are then
given by (24) and

ξ = 2

3
AB

[
wf z − �

2u0
(w0 − wf )e−2u0z/�

]

+ A

3

{
z + �

2u0
ln[wf + (w0 − wf )e−2u0z/�]

}
− ξ0,

(55)

where

ξ0 = − 2�

3u0
AB(w0 − wf ) + A�

3u0
ln(w0). (56)

In the following discussion of results for dark and gray Kerr
solitons and nematicons the quantity w shall be referred to as
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FIG. 1. (Color online) The beam half-waist vs propagation
distance, wm vs z, for a dark NLS soliton. Shown are the analytical
solution from modulation theory [solid lines (red)] and numerical
solution [dashed lines (green)]. The upper pair of curves is for
w0 = 1.5 and the lower pair for w0 = 0.5. The other parameters
are A = 0 and B = 1.

the waist and wm as the half-waist. The shelf width � [28] was
chosen to be � = wf as this gives the correct decay rate of the
soliton waist onto the steady-state value for a broad range of
initial conditions. This value differs from that for bright NLS
beam evolution, for which � ≈ 3wf [8].

Figure 1 shows the beam half-waist versus propagation dis-
tance, wm versus z, for a dark NLS soliton. Two examples are
shown for the initial values w0 = 1.5 and w0 = 0.5. The other
parameters are A = 0 and B = 1, so the background amplitude
is u0 = 1. In this example the final waist is wf = B−1 = 1,
with the initial half-waists being wm0 = 1.68 and wm0 = 0.549
and the final half-waist being wmf = 1.10. The figure shows
that for both initial conditions the half-waist relaxes quickly
to the steady-state value, being within 1% of the steady-state
value by z ≈ 5.8. The results also confirm the modulation
theory prediction that A and B remain constant, as analytical
and numerical values of the steady-state half-waist differ by
less than 0.1%. It can be seen that, for the initial condition w0 =
1.5, initially the numerical half-waist does not change greatly.
The soliton undergoes some initial internal rearrangement that
is not captured by the modulation trial function (5). However,
the final decay rate of the soliton onto the steady state is well
captured by the modulation theory. A dark NLS soliton remains
stationary at the initial location ξ = 0 for all z.

Figure 2 shows the beam half-waist versus propagation
distance, wm versus z, for a gray NLS soliton. Two examples
are shown for the initial conditions w0 = 1.8 and w0 = 0.6.
The other parameters are A = 0.6 and B = 0.8, so again
the background amplitude is u0 = 1. For this example
the final waist is wf = B−1 = 1.25, the initial half-waists
are wm0 = 2.86 and wm0 = 0.954, and the final half-waists
are wmf = 1.99. The figure shows that for both examples the
half-waist relaxes quickly onto the steady-state value, being
within 1% of it by z ≈ 9.4. The analytical and numerical
values of the steady-state half-waist differ by less than 0.3%,
which again confirms the accuracy of the modulation equations
and their prediction that the depth of a gray soliton does not
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FIG. 2. (Color online) The beam half-waist vs propagation
distance, wm vs z, for a gray NLS soliton. The analytical solution
from modulation theory [solid lines (red)] and the numerical solution
[dashed lines (green)] are graphed. The upper pair of curves is for
w0 = 1.8 and the lower pair for w0 = 0.6. The other parameters are
A = 0.6 and B = 0.8.

change, so that A and B are constant. For the wide initial beam
there is again some initial reshaping that is not well captured
by the modulation trial function (5). However, the comparison
is still very good, with the final decay rate of the solitons onto
the steady state well predicted by the modulation theory.

Figure 3(a) shows the beam position versus propagation
distance, ξ versus z, while Fig. 3(b) shows the beam velocity
versus propagation distance, ξ

′
versus z, for a gray NLS

soliton. The same two examples considered in Fig. 2 are
displayed, for which w0 = 1.8 and w0 = 0.6. The initial
displacement of the soliton for z � 1 is (55)

ξ = Az − AB�

6u0
ln(B) − ξ0 + O(z2), (57)

which shows that the initial velocity differs little from its
steady-state value A. The modulation theory then explains the
small change in the velocity of the soliton seen in Fig. 3(b).
Figure 3(a) shows that the difference between the analytical
and numerical positions, during the soliton evolution, is very
small, as expected since the difference in velocity between the
two solutions is small. At z = 13 the position difference is less
than 1%, confirming the excellent comparison for all z values.
Figure 3(b) shows that there are some initial differences be-
tween the analytical and numerical velocities, but the velocities
settle down quickly to the steady-state values by z ≈ 5. The
numerical steady-state velocities are about 4% less than the
analytical values of ξ

′ = A = 0.6. The relatively large initial
differences between the analytical and numerical velocities
are associated with initial rearrangements of the shape of the
soliton, which are not captured by the modulation theory.

B. Dark and gray nematicons

A major difference between the evolution of a dark or gray
NLS soliton and a dark or gray nematicon is the amount of
diffractive radiation produced as they evolve. This is illustrated
in Fig. 4, where the greater amount of radiation for the evolving
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FIG. 3. (Color online) (a) Beam position vs propagation distance,
ξ vs z, and (b) beam velocity vs propagation distance, ξ ′ vs z, for
a gray NLS soliton. The analytical solution from modulation theory
[solid lines (red)] and the numerical solution [dashed lines (green)]
are shown. The upper pair of curves is for w0 = 1.8 and the lower
pair is for w0 = 0.6, but with −ξ or -ξ

′
shown. The other parameters

are A = 0.6 and B = 0.8.

nematicon is clearly visible. The shelf of low wave-number
radiation under the dark nematicon can also be seen in this
figure as the beam has been shifted off |u| = 0, in agreement
with theory [28]. The interaction between the nematicon, shelf
and radiation changes the nematicon waist in a periodic manner
as waves are periodically shed from the edge of the shelf.

The other major difference between a dark or gray Kerr
soliton and a dark or gray nematicon is visible in Fig. 5. The
steady dark (gray) NLS soliton (3) has a monotonic profile on
either side of the notch, while the steady nematicon has two
humps, these humps having the same extent as the transverse
distribution of the molecular director, i.e., the (extraordinary)
refractive index profile. The humps are standing waves trapped
by the director profile, and their existence can be explained
by linearizing the nematicon equations (25) and (26). The
linearized equations (41) and (42) around the background level
for the radiation have a steady solution of the form

u0 + C exp[−Re(λ1)(x − x0)] (58)
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FIG. 4. (Color online) Numerical solutions for NLS dark soliton
and dark nematicon. Solution of nematicon equations (25) and (26):
solid line (red); solution of NLS equation (2): dashed line (green). The
initial parameters are w = 2, B = 1, u0 = 1, ν = 200, and q = 2.

in x > 0, with a symmetric solution in x < 0, where Re(λ1)
is the rate of decay of the optical axis and is given by (49).
The humps in the steady solution of Fig. 5 involve this
steady mode, whose width is imposed by the optic axis
distribution, typically larger than that of the inner core of the
dark nematicon. In Fig. 5 these modes are visible as it is clear
that the rate of decay Re(λ1) matches the decay of the humps.
These humps, which cannot occur for the dark NLS soliton
but are forced by the optic axis (i.e., index) perturbation via
the reorientational nonlinear response, match in a nonlinear
fashion to the dark nematicon core.

The existence of the trapped linear mode complicates the
comparison of the modulation theory of Secs. IV and V
with numerical solutions. The nonlinear transition from the
dark nematicon to the trapped mode alters the waist of the
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FIG. 5. (Color online) Numerical solutions of nematicon
equations (25) and (26). |u|: solid line (red); θ : dashed line (green).
Eigenfunctions are (58) with C = 0.09 and x0 = 7 in x > 0 and
the symmetric mode in x < 0: dot-dashed line (blue). The initial
parameters are w = 2, B = 0.5, A = 0, u0 = 0.5, ν = 200, and
q = 2.
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FIG. 6. (Color online) Properties of the steady-state dark nemati-
con vs the nonlocality ν. Modulation and numerical solutions for
the inverse waist w−1

f [solid line and squares (green)], the inverse
half-waist w−1

mf [dashed lines and triangles (blue)], and the director
minimum θ (0) [dot-dashed lines and circles (red)] are shown. The
other parameters are A = 0, u0 = B = 0.5, and q = 2.

former. While a trapped mode could possibly be incorporated
in the trial function (29) [30], this would result in a much
more complicated and extensive set of modulation equations,
destroying the simplicity of the solution (33), (35), (37),
and (53), which will be found to agree well with numerical
solutions. So, as well as the half-waist comparisons for the
dark NLS soliton, an integral definition of the waist will be
used. The mass in the dark (gray) nematicon

M =
∫ x2

x1

(
u2

0 − |u|2) dx (59)

will be evaluated from numerical data. To avoid the contribu-
tion of the trapped mode, x1 is the value of x to the left of
the minimum of the dark nematicon at which |u| = u0 and x2

is the corresponding point to the right. For the trial function
(29) this integral is 2B2w. There are alternative methods for
separating out the effect of the trapped linear mode on the
beam, for instance, scaling the beam tanh profile to reach the
top of the linear mode. These alternatives lead to very similar
results to those obtained from the integral (59).

Figure 6 displays the properties of the steady-state dark
nematicon versus the nonlocality ν, i.e., the modulation
solution (35), (37), and (38), and results from the numerical
solution at large z = 200. The other parameters are A = 0,
u0 = B = 0.5, and q = 2. Shown are two measures of the
inverse waist of the electric field u, w−1

f using the integral

(59) and the half-waist w−1
mf , and the director minimum

θ (0) = (u2
0 − α2)/q. The half-waist wm is measured from the

numerical solution at the point at which |u| = u0/2 = 0.25.
In the local limit ν → 0 the defocusing nematicon equations

(25) and (26) reduce to the defocusing NLS equation (2). The
modulation solution in this local limit has θ (0) = 2.16 × 10−2,
w−1

f = 0.468, and w−1
mf = 0.426. This can be contrasted with

the corresponding exact dark NLS soliton solution, which
has w−1

f = 0.5, w−1
mf = 0.455, and θ (0) = 0. The errors in

the dark nematicon solution in the local limit are due to the
approximation for large ν of the integral of 4θ |u|2 in the
Lagrangian (28) for the nematicon equations, which lead to
(32). This integral does not have an exact, closed form, and the
approximation used is valid in the experimental nonlocal limit
[7,29]. For physically realistic experimental scenarios ν =
O(100) [11], in which case the used approximation is accurate.

The waist of the electric field distribution u increases (and
the inverse waist decreases) as ν increases, as for a bright
nematicon [4,9]. The director profile width (not shown) also
increases and becomes much broader than the dark (gray)
beam in the nonlocal limit (ν large). This is a characteristic
effect of the nonlocality, which results in a broad director
(optic axis) response to the electric field, and also occurs for
bright nematicons [4,9,29]. The director minimum angle θ (0)
increases as ν increases, again due to nonlocality spreading the
director response [4]. The numerical solutions for the waist w

and the minimum θ (0) in director distribution compare very
well with the modulation theory predictions over the full range
of ν. As ν increases, however, the analytical half-waist wmf

is about 20% smaller than the numerical half-waist. This is
due to the trapped linear mode seen in Fig. 5, which widens
the nematicon at its top end, increasing the half-waist of the
combination nematicon beam plus trapped mode. As expected,
this widening increases with ν due to the more pronounced
director response, resulting in an increasing difference be-
tween numerical and modulation half-waists with nonlocality
ν. The depth θ (0) of the director profile is not affected by
the trapped linear mode, so the agreement between numerical
and modulation solutions is excellent for all ν, except near
ν = 0, for the reason stated above. In detail, the modulation
solutions for the waist and the director minimum at ν = 200 are
w−1

f = 0.402, w−1
mf = 0.366, and θ (0) = 9.18 × 10−2, while

the values from numerical solutions are w−1
f = 0.404, w−1

mf =
0.297, and θ (0) = 9.76 × 10−2. The inverse waists and direc-
tor depths are extremely accurate, with differences of less than
5%. However, the difference in the half-waist is much greater,
of order 20%, due to the trapped wave effect described above.

Figure 7(a) shows the beam waist, w, versus the prop-
agation distance, z, for a dark nematicon. The waist w is
calculated from the numerical solution using the integral (59).
Two examples are displayed for the initial values w0 = 3
and w0 = 1.8, the other parameters being A = 0, B = 0.5,
q = 2, and ν = 200, so that the carrier amplitude is u0 = 0.5.
Figure 7(b) is for the same initial conditions and parameter
values but shows the half-waist wm. The initial half-waists
are wm0 = 3.30 and wm0 = 1.98. For this example the final
waists are wf = 2.49 and wmf = 2.73. The integral definition
of the waist (59) cannot be used for small z before the shelf
has formed. Before the shelf forms x1 = −∞ and x2 = ∞. As
total mass, i.e., the beam mass and that of the shed radiation, is
conserved, this integral is constant and provides no evolution
in w. The shelf first forms at z = 6.2 for w0 = 3 and z = 2 for
w0 = 1.8, so the numerical curves in Fig. 7(a) begin at these
values. The numerical solutions show that, for both initial
conditions, the waists undergo damped oscillations as they
relax to the steady state, unlike the modulation solutions which
exhibit a monotonic decay. The numerical steady-state waists
are wf = 2.48 and wmf = 3.35. The modulation solution for
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FIG. 7. (Color online) Width evolution for a dark nematicon.
Analytical solution from modulation theory [solid lines (red)] and
numerical solution [dashed lines (green)] are displayed. In each figure
the upper pair of curves is for w0 = 3 and the lower pair for w0 = 1.8.
(a) Waist w vs z, (b) half-waist wm vs z. The other parameters are
A = 0, u0 = B = 0.5, q = 2, and ν = 200.

w follows the mean of the numerical damped oscillations for
w in Fig. 7(a). The steady integral waist wf is very close to
the analytical solution, but, due to the trapped linear mode, the
steady half-waist wmf differs by 20%. The oscillatory nature
of the numerical solution is due to the trapped linear mode, as
illustrated in Fig. 5. As already discussed, this trapped mode
increases the overall waist of the combined beam and linear
mode, which is why the agreement in Fig. 7(b) is not as good
as that in Fig. 7(a). A proper inclusion of the linear mode in the
trial function (29) is not straightforward [30] and would result
in a much more involved system of modulation equations. The
present modulation equations capture all of the features of
the numerical solution. The evolution of the director profile
minimum is not shown as it reaches a near steady state for
small z because its evolution is not affected by the trapped
linear mode of the electric field u. As for the dark NLS soliton,
the dark nematicon remains stationary for all z.

Figure 8(a) shows the beam waist, w, versus the propagation
distance, z, for a gray nematicon. The waist w is calculated
from the numerical solution using the integral (59). Two

 2

 2.5

 3

 3.5

 0  50  100  150

w

z

(a)

 3

 4

 5

 6

 0  50  100  150

w
m

z

(b)

FIG. 8. (Color online) Width evolution for a gray nematicon.
Analytical solution from modulation theory [solid lines (red)] and
numerical solution [dashed lines (green)] are displayed. In each
figure the upper pair of curves is for w0 = 3.2 and the lower pair
for w0 = 2.0. (a) Waist w vs z, (b) half-waist wm vs z. The other
parameters are A = 0.2, B = 0.458, u0 = 0.5, q = 2, and ν = 200.

examples are presented for the initial waists w0 = 3.2 and
w0 = 2, the other parameters being A = 0.2, B = 0.458, q =
2, and ν = 200, so that the carrier wave amplitude is u0 = 0.5.
Figure 8(b) is for the same initial conditions and parameter
values but shows the half-waist wm. The initial half-waists are
then wm0 = 4.71 and wm0 = 2.94. For this example the final
waists are wf = 2.66 and wmf = 3.92. As for the dark case,
the integral definition of the waist (59) cannot be used for
small z before the shelf has formed. The shelf first forms at
z = 8.5 for w0 = 3.2 and z = 2.8 for w0 = 2, so the numerical
curves in Fig. 8(a) begin at these values. The solutions are
qualitatively similar to those for the dark nematicon. The
numerical waists undergo damped oscillations as they relax
to the steady state, unlike the modulation solutions that exhibit
a monotonic decay. The numerical steady-state waists are
wf = 2.66 and wmf = 4.63. The modulation solution for w

follows the mean of the numerical damped oscillations for
w in Fig. 8(a). The steady integral waist wf is very close to
the analytical solution, but due to the trapped linear mode the
steady half-waist wmf differs by about 15%. Once again, as for
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FIG. 9. (Color online) (a) Beam position vs propagation distance,
ξ vs z, and (b) beam velocity versus propagation distance, ξ

′
vs z,

for a gray nematicon. The analytical solution from modulation theory
[solid lines (red)] and the numerical solution [dashed lines (green)]
are shown. The upper pair of curves is for w0 = 3.2, and the lower
pair is for w0 = 2.0, but with −ξ or -ξ

′
shown. The other parameters

are A = 0.2 and B = 0.458, u0 = 0.5, q = 2, and ν = 200.

the dark case, the present modulation equations capture all of
the features of the numerical solution, except the oscillation,
giving instead the mean of the oscillation. The evolution of
the director profile minimum is not shown due to its evolution
to the steady state over much shorter z. The analytical and
numerical values for the director minimum at the steady
state are θ (0) = 9.55 × 10−2 and 1.00 × 10−1, respectively,
a difference of about 5%.

Figure 9(a) shows the beam position versus propagation
distance, ξ versus z, while Fig. 9(b) shows the beam velocity
versus propagation distance, ξ

′
versus z, for a gray nematicon.

The same two examples considered in Fig. 8 are displayed, for
which w0 = 3.2 and w0 = 1.8. In contrast to the NLS case,
Eq. (33) for the position ξ must be solved numerically using
the explicit solution for w (53) and the solutions for α and β

from (35) and (37). Figure 9(b) shows that, for both examples,
the velocity of the nematicon settles to its steady-state value at
z ≈ 200. The numerical velocities display oscillations, which
are mirrored in the numerical nematicon positions shown in
Fig. 9(a). These oscillations are, as for the width oscillations
shown in Fig. 8, due to the linear trapped mode. Its attachment

points at the nematicon oscillate, which causes the nematicon’s
position and velocity to oscillate as well. Compared with the
gray NLS soliton comparison shown in Fig. 3 the velocity
of the gray nematicon has very slow decay to its steady-state
value. For the gray NLS soliton considered in Fig. 3(b) the
beam reached its steady velocity at about z = 5, while the gray
nematicon velocity shows some oscillation even past z = 200.
The position and velocity of the gray NLS soliton do not show
much oscillation, due to the lack of the trapped linear mode,
as discussed above. At large values of z the analytical and
numerical nematicon velocities are ξ

′ = 0.118 and ξ ′ = 0.109,
respectively, a difference of 8%. For a gray NLS soliton the
steady velocity for the same values of A and B is ξ

′ = A =
0.2. Hence, a gray nematicon travels much more slowly than
an equivalent gray NLS soliton. The differences between the
analytical and numerical positions are about 10% at z = 150.
As for the dark NLS soliton of Fig. 3 there are relatively large
initial differences in the velocity as given by the numerical
solution and modulation theory, particularly for w0 = 2. These
are again due to the numerical dark nematicon undergoing
initial shape rearrangements not captured by the fixed profile
of the modulation theory.

VII. CONCLUSIONS

The dark and gray solitary wave solutions of the defocusing
NLS and nematicon equations have been studied in some
detail. In particular, a modulation theory has been developed
to describe the self-similar evolution of an initial condition
to a steady dark or gray solitary wave. While the defocusing
NLS equation has an inverse scattering solution, and so is fully
understood in principle, it is not clear how use this solution to
evaluate in detail the interaction of the dark soliton with the
radiation it sheds. Modulation theory was then developed for
this equation in order to prepare tools and show their accuracy
in the Kerr context in which the dark and gray soliton solutions
are known. In contrast to the evolution of bright solitons in
Kerr and in reorientational media, this evolution was found
to be totally dominated by the diffractive radiation shed as
the solitary wave evolves. Without proper inclusion of this
radiation, the solitary waves do not evolve.

Besides accurately predicting the evolution of a dark or gray
Kerr soliton, the modulation theory also gives good agreement
with numerical solutions for the reorientational case, both for
the steady-state nematicon and for its self-similar evolution.
An unusual feature of the steady dark or gray nematicon
is that its profile does not vary in a monotonic fashion to
the background level, as does a dark or gray NLS soliton,
but contains trapped linear modes at its tails, which take the
form of humps. These humps are confined by the optic axis
(director) distribution due to the nonlocal response of nematic
liquid crystals, a feature missing in Kerr media described by
the defocusing NLS equation. The trapped linear modes also
presented challenges in terms of the appropriate definition and
measurement of the nematicon width. The results of modula-
tion theory appear to be in qualitative agreement with the first
experimental results on dark nematicons, despite the fact that
the actual material employed in the measurements exhibited
a more complicated response than the purely reorientational
one analyzed here [7]. Furthermore, studies of the interaction
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of dark (grey) nematicons will enable us to better assess
the consistency between modulation theory models and the
response of reorientational media in the presence of resonant
absorption and induced changes in order parameter.
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APPENDIX: THE NUMERICAL SCHEME

The numerical solutions of the defocusing NLS or NLS-
type equations (2) and (25) were obtained by using centered
finite differences in the spatial coordinate x and a fourth-order
Runge-Kutta method for the timelike, propagation direction z.
This method was chosen over pure finite difference methods
due to its high accuracy relative to computational cost. For the
nematicon system, the solution of the director equation (26)
was found using Gauss-Seidel iteration with successive over-
relaxation. The Laplacian operator in Eq. (26) was discretized
using central differences to ensure second-order accuracy.

The numerical solution method is described below for the
defocusing nematicon equations (25) and (26). The defocusing
NLS equation (2) is a special case with ν = 0 and q = 2. Let
us use the notation

um,n = u(zm = m�z,xn = n�x),
(A1)

θm,n = θ (zm = m�z,xn = n�x),

n = 1, . . . ,N , m = 1,2, . . . , for the numerical solution. The
nematicon equations can be written in the form of an ode

by discretizing the x derivatives using centered differences to
obtain

umz = f (um,n) = i

2�x2
(um,n+1 + um,n−1 − 2um,n)

− i(um,n+1 + um,n−1)θm,n(um,n). (A2)

The fourth-order Runge-Kutta method then gives the solution
at zm+1 as

um+1,n = um,n + 1
6 (am,n + 2bm,n + 2cm,n + dm,n), (A3)

where

am,n = �zf (um,n), bm,n = �zf

(
um,n + am,n

2

)
,

cm,n = �zf

(
um,n + bm,n

2

)
, dm,n = �zf (um,n + cm,n).

The function f (u) in Eq. (A2) depends on u explicitly, and
also implicitly via the director equation (26). To apply the
Runge-Kutta method (A3) a solution is needed for the director
distribution θ corresponding to a small change in u. This
solution is found by solving

ν
∂2θ

∂x2
− 2qθ = −2|um,n + δu|2 (A4)

to calculate the expressions for bm,n, cm,n, and dm,n at
each z-step in the Runge-Kutta method. Once um+1,n

is found, the corresponding value of θm+1,n is calcu-
lated by solving (26). All applications of the Gauss-
Seidel method needed only two iterations to obtain a
converged solution due to the small value of �z used.
The accuracy of the numerical method at each z-step is
O(�z4,�x2).
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