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Phoresis in fluids
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This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas
are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through
otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid’s temperature
(thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds
upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid’s mass velocity at solid
surfaces—that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary
condition. Experimental and other data are cited in support of the phoretic model developed herein.
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I. INTRODUCTION

Despite our exclusive focus on phoretic-particle movement
through single-component fluids, we begin by considering
the phenomenon of barodiffusion or pressure-driven diffusion
in binary mixtures [1–3]. The phenomenon arises when a
pressure gradient ∇p applied to a quiescent binary mixture
whose temperature and composition are uniform throughout
gives rise to mass fluxes of both species ji (i = 1,2)—these
representing the respective barycentric diffusion fluxes of
species 1 and 2 relative to the mixture’s mass velocity vm

(with the latter velocity being zero in the present quiescent
fluid case). These species fluxes exist despite the absence from
the fluid of both concentration gradients (that would otherwise
give rise to molecular diffusion [4]) and temperature gradients
(which would otherwise give rise to thermal diffusion [5]).
Pressure diffusion is important, for example, in connection
with the use of ultracentifuges to separate colloidal or polymer
molecules from the solvent in which they are dissolved or are
dispersed [1,3].

In the absence of body forces acting upon either of the
binary species, the constitutive equations for the barycentric
fluxes are [1,2]

j(p)
1 = ρD(p)∇ ln p, (1a)

j(p)
2 = −ρD(p)∇ ln p, (1b)

in which D(p) � 0 is the pressure diffusion coefficient and
wherein j(p)

1 + j(p)
2 = 0 owing to the fluid being macroscopi-

cally at rest (i.e., quiescent: vm = 0). D(p) is proportional to
the binary diffusion coefficient D appearing in Fick’s law [4]
and depends inter alia upon the composition of the mixture as
well [1,2,6]. As D(p) has the units of a diffusivity, the ratios
j(p)
1 /ρ = U and j(p)

2 /ρ = −U each have the units of a velocity
U. Barodiffusion of both species is represented collectively by
the relation [1],

U = D(p)∇ ln p, (2)
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where the species velocity U is measured relative to the
mixture’s mass velocity vm, namely, the velocity appearing
in the continuity equation,

∂ρ

∂t
+ ∇(ρvm) = 0. (3)

For some authors, the word “barophoresis,” constituting
part of the subject matter of the present paper, is merely a
synonym for the word “barodiffusion.” Schimpf and Semenov
[7] take exception to that view. They argue that the two
constitute separate subjects, noting that barodiffusion involves
a collective phenomenon resulting from the Brownian motions
of a group of molecules as directionally biased by the pressure
gradient, whereas, barophoresis—like all phoretic motions—
involves the directionally biased deterministic motion of but
a single non-Brownian macroscopic particle animated by
the externally imposed pressure gradient. Terminologically,
these two subjects are the respective counterparts of the
better-known phenomena of thermal diffusion [5] and ther-
mophoresis [8], wherein the driving force for both then is a
temperature gradient ∇T rather than a pressure gradient.

That said, despite the large amount of literature on
barodiffusion in mixtures and in contrast with its thermal
diffusion or thermophoresis counterpart, we are unaware of
any literature concerned with the subject of barophoresis as
a single-component phenomenon. Despite this lack of a prior
history, in this paper [see Eq. (32)], we argue that not only
does the theoretical possibility of barophoresis exist, but that
the particle’s barophoretic velocity U through an otherwise
quiescent fluid obeys a relation analogous to Eq. (2), namely,

U = ακ∇p, (4)

at least when the particle is both force free and physicochemi-
cally inert with respect to its interactions with the fluid. In the
above,

α = k

ρĉp

, (5a)

and

κ = 1

ρ

(
∂ρ

∂p

)
T

(5b)
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are, respectively, the fluid’s thermometric diffusivity and com-
pressibility coefficients wherein k is the thermal conductivity
and ĉp is the isobaric specific heat.

Equation (4) will be seen to apply to both gases and liquids.
In the case of ideal gases, for which κ = 1/p, we, thus, obtain

U = α∇ ln p. (6)

(See also Secs. IV B and IV C.) This expression for the
barophoretic velocity in a single-component fluid is, obviously,
the analog of the barodiffusion velocity (2) in a two-component
mixture in which the thermometric diffusivity α is the
counterpart of D(p), the pressure diffusivity. Our paper is,
initially, devoted to deriving the barophoretic velocity formula,
Eq. (4). Subsequently, we seek its extension to the more general
case of pycnophoresis [9].

A. Phoresis as a topic of general interest

Viewed as a generality encompassing all classes of gradi-
ents, phoresis is a phenomenon whereby, as a consequence
of a driving force arising from an inhomogeneity, in some
attribute of the particle-free (undisturbed) fluid—namely,
the fluid’s temperature, pressure, or density—a small inert
particle moves relative to the fluid’s local undisturbed mass
velocity vm that would exist at the point presently occupied by
the particle were the particle not to be present. Thermophoresis
[8], which is driven by a temperature gradient, constitutes the
prime example of phoretic motion. (Electrophoresis, driven by
gradients in electric potential, though a better-known phoretic
phenomenon, does not constitute an example of this class of
phoretic processes since it does not occur in single-component
fluids.)

II. SLIP OF THE FLUID’S MASS VELOCITY
IN SINGLE-COMPONENT FLUIDS

As will be shown in this paper, pycnophoresis [9], occurring
in single-component fluids, is caused by a slip of the fluid’s
mass velocity along the particle’s surface [10] with the slip
driven by the existence in the fluid of a density gradient ∇ρ.
The latter can arise, for example, from a temperature gradient,
resulting in thermophoresis, or from a pressure gradient in a
(compressible) isothermal fluid, giving rise to the phenomenon
of barophoresis.

The general theory underlying our model of phoretic
phenomena is a natural outgrowth of our paper on bi-velocity
hydrodynamics [11] when combined with our recent proposal
[10] of a general formula for the slip velocity of mass along
a solid surface. Bi-velocity theory amends the Navier-Stokes-
Fourier (NSF) equations by incorporating therein a second
independent velocity, the fluid’s volume velocity vv [12],
supplementing the fluid’s mass velocity vm. Also amended
is the classical no-slip boundary condition at solid surfaces,
which is changed from no-slip of the mass velocity in the
NSF case to no-slip of the volume velocity in the bi-velocity
(amended NSF) case [10].

The volume velocity is defined constitutively by its role in
the thermodynamic rate-of-working term ∇ · (P · vv) appearing
in the conservation equation [11] governing the transport of

energy. In bi-velocity theory, the difference between the mass
and the volume velocities is represented by the relation,

vv − vm = jv, (7)

in which the diffuse volume flux jv , defined by the above
expression, obeys the constitutive equation,

jv = α∇ ln ρ. (8)

The latter applies to both gases and liquids. In combination,
the above expressions give

vv − vm = α∇ ln ρ. (9)

This relation is applicable throughout the fluid including
on its bounding surfaces, whether these surfaces are solid or
otherwise.

The manner in which Eq. (9) enters into the fluid mechanics
of phoretic motion stems from the fact that the physically
appropriate [10] tangential velocity boundary condition to
be imposed upon solutions of the amended NSF bi-velocity
equations at the solid surface ∂V of the phoretic particle is one
of no slip of the fluid’s volume velocity,

(I − n̂n̂) · (vv − U) = 0 on ∂V, (10)

or, what is equivalent,

(I − n̂n̂) · (vm − U) = −α∇s ln ρ on ∂V . (11)

Here, I is the dyadic idemfactor, n̂ is a unit outer normal
vector on ∂V , and ∇s = (I − n̂n̂) ·∇ is the surface-gradient
operator. U is the velocity of the solid. By characterizing
Eq. (11) as being physically appropriate is simply meant that
it accords with all of the experimental data, however limited,
with which it has, thus far, been compared (while, at the same
time, not violating any known physical law).

In addition to this tangential velocity boundary condition,
the standard normal velocity boundary condition is [13]

n̂ · (vm − U) = 0 on ∂V . (12)

This boundary condition specifies the impenetrability of the
particle’s surface to mass flow. In combination with Eq. (10),
this gives

vm − U = −α∇s ln ρ on ∂V, (13)

showing that the fluid’s mass velocity can slip at the surface
of the solid only when the fluid is compressible.

Experimental and theoretical confirmation of this mass
velocity boundary condition at solid surfaces is discussed
in Ref. [10], primarily for the case of gases. Agreement in
circumstances where the density gradient in Eq. (13) arises
from an isobaric temperature gradient ∇T was confirmed [8]
using data for the thermophoretic velocity of small non-heat-
conducting particles. Agreement in circumstances where the
density gradient arose from an isothermal pressure gradient
∇p was confirmed using data obtained for pressure-driven
compressible flows in microchannels [14,15].

A. Tangential-velocity boundary condition

Equation (10), representing the boundary condition im-
posed on the fluid’s volume velocity at a solid surface, only
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furnishes the tangential boundary condition. However, the
solution of bi-velocity boundary-value problems also requires
knowledge of the normal component of the volume velocity.
In previous cases [10] relating to experimental confirmation
of Eq. (10), this normal velocity boundary condition was
automatically supplied by the nature of the physical arrange-
ments of the experiment itself, rather than being independently
imposed upon vv .

Explicitly, data for the thermophoretic experiments used
to confirm Eq. (10) were limited to the case of non-heat-
conducting particles (or, equivalently, insulated particles), for
which the temperature boundary condition at the particle
surface required that

n̂ · ∇T = 0 on ∂V . (14)

For the isobaric case, where the density depends only upon
temperature but not pressure, one has that

∇ρ = −ρβ∇T , (15)

where

β = − 1

ρ

(
∂ρ

∂T

)
p

(16)

is the coefficient of thermal expansion of the fluid. As such,
Eq. (14) requires that

n̂ · ∇ρ = 0 on ∂V . (17)

On the other hand, upon applying Eq. (9) at the solid
boundary and subsequently multiplying that result scalarly
by n̂ yields n̂ · (vv − U) = (α/ρ)n̂ · ∇ρ on ∂V in which we
have used Eq. (12). Together with Eq. (17), we, thus, find that

n̂ · (vv − U) = 0 on ∂V . (18)

Consequently, for the thermophoretic case, the temperature
boundary condition (14) furnishes the boundary condition (18)
to be imposed upon the normal component of the volume ve-
locity at the solid surface. In other words, a thermally insulated
solid surface is impermeable to volume flow, just as it is to mass
flow under more general circumstances, as set forth in Eq. (12).

Next, consider the details surrounding the isothermal
pressure-driven microchannel gas flow data [14,15] that were
used to confirm the volume velocity-based no-slip boundary
condition (10). In isothermal circumstances, density is a
function only of pressure, whence it follows that:

∇ρ = ρκ∇p, (19)

where κ is the coefficient of compressibility (5b). The
confirming experiments, which took place between flat plates,
were interpreted by the confirming researchers [14,15] as
one-dimensional flows. In that circumstance, the pressure was
uniform across the channel’s cross section, requiring inter alia
that

n̂ · ∇p = 0 on ∂V . (20)

In conjunction with Eq. (19), this makes n̂ · ∇ρ = 0 on ∂V

as also was the case for the thermophoretic data in Eq. (17). In
turn, Eq. (18) again is seen to apply.

For both the thermal- and the pressure-data sets, the normal
component of the volume velocity relative to the walls is, thus,

seen to vanish as set forth in Eq. (18). While this boundary
condition is seen to apply in, at least, several instances, it is,
however, not valid in all circumstances. For example, were
the thermophoretic particle to be heat conducting, heat would
flow from the fluid into the particle across its surface in which
case, the vanishing heat flux boundary condition (14) would no
longer apply. In turn, Eq. (18) would not apply. Similarly, in the
isothermal case, where pressure constitutes the driving force,
Eq. (18) again is seen generally to be inapplicable, e.g., for
pressure-driven flows in converging or diverging ducts. There,
the flow is no longer one dimensional. As a consequence,
pressure, which is now no longer uniform across a cross
section, is incapable of being characterized by the single
symbol n̂ as was previously true in Eq. (20).

As such, it appears in the general case that, while the
tangential volume velocity boundary condition (10) might
apply under any and all circumstances, the same could not
be true of the normal volume-velocity boundary condition
(18). Evidently, there is no universal boundary condition that
specifies the value of n̂ · (vv − U) on ∂V under any and
all circumstances. However, there does exist a special, but
important class of conditions for which it appears possible
to specify the normal volume-velocity boundary condition
independently of the specific flow circumstances. This occurs
with regard to specifying the normal component of vv at the
surface of an inert particle as discussed in the next section.

B. Inert force-free particles

We define as an inert particle, one for which no exchange
of heat or other form of energy between the fluid and the
particle is possible. In what follows, we argue with respect
to the boundary conditions to be imposed upon vv , that,
in addition to requiring satisfaction of the zero tangential
volume-velocity boundary condition (10), satisfaction of the
zero normal volume-velocity boundary condition (12) also is
required. Were this to prove to be the case, the combination of
normal and tangential conditions, Eqs. (18) and (10), would
result in the overall velocity requirement that

vv − U = 0 on ∂V . (21)

In support of the above relation, we return to the argument
that originally [10] spawned the tangential boundary condition
formula (10). That argument was based upon the fact that,
thermodynamically, the rate at which work is being performed
by the surrounding fluid on a rigid immobile body (a solid
particle in the present case) immersed in that fluid is given in
the absence of body forces by the expression,

·
W = −

∮
∂V

dS · P· (vv − U). (22)

Here, P is the pressure tensor and dS = n̂ dS is a directed
element of surface area. As the particle is force free, this
requires that ∮

∂V

dS · P = 0. (23)

It was argued in that earlier paper [10] that energetic
inertness required inter alia that no work be performed
by the surroundings on the particle, while recognizing that
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this requirement was not inconsistent with the tangential
component of the volume velocity being zero as in Eq. (10).
The latter condition then was proposed as a hypothesis whose
consequences need to be tested against experimental data prior
to its acceptance. The proposal then was confirmed by the
thermophoretic and microchannel flow data [10] alluded to
earlier in this paper. Left unanswered at the time was the
question of the boundary condition to be imposed upon the
normal component of the relative volume velocity vv − U?
Of course, we could have speculated (subject to subsequent
experimental tests) that this condition might be that given by
Eq. (12) since, as a consequence of Eq. (21), that choice is
consistent with the vanishing of the rate of work in Eq. (22).
However, attempting to concurrently test two independent
hypotheses against the same experimental data set seemed
inappropriate. Moreover, the tangential-velocity hypothesis
might still prove to be applicable even if work was being
performed such that the integral (22) did not vanish. In
any event, the special nature of the thermophoretic and
one-dimensional microchannel data enabled us to test the
tangential-velocity hypothesis independent of addressing the
normal-velocity hypothesis.

III. PHORETIC-PARTICLE VELOCITIES
IN SINGLE-COMPONENT FLUIDS

A. Pycnophoretic velocity

Pycnophoresis [9] is a compound word derived from the
Greek πυκνóς (puknos), meaning “dense” and from the
Greek ϕóρεσ ις (phoresis), meaning “act of carrying.”
The following subject matter pertaining thereto deals
with the migration of a single force-free small (albeit
non-Brownian) solid particle through an otherwise quiescent
single-component fluid under the influence of a density
gradient ∇ρ. As subsequently discussed in Secs. IV B and
IV C, thermophoresis and barophoresis represent special
cases of pycnophoresis wherein the density gradient arises
from respective temperature and pressure gradients.

As shown in the Appendix, when the physicochemically
inert phoretic particle is force free and the fluid in which it is
immersed is at rest at infinity such that the only fluid motion
that need be addressed is that generated by movement of the
particle itself, the phoretic velocity of the particle is found to
be

U = α∇ ln ρ. (24)

This relation is meant to be understood in the following
sense: The velocity U0 of a small particle (instantaneously
occupying some point x0 in the fluid) measured relative to the
fluid’s undisturbed mass velocity (vm)0 at that point is given
by the expression U0 = (α/ρ0)(∇ρ)0, where ρ0 refers to the
density of the undisturbed fluid evaluated at the position in the
fluid currently occupied by the particle.

Since the density gradient is the driving force for this
phoretic motion, in Eq. (24), it is appropriate to refer to U
as being the particle’s pycnophoretic velocity. The formula is
valid for both liquids and gases. A key attribute of this velocity,
which makes it uniquely different from any other particulate
formula in physics, is the fact that it is independent of the
particle’s size, mass, density, and shape, as well as of the

particle’s physicochemical attributes. Indeed, no aspect of the
particle’s existence enters into the formula since the quantities
appearing in Eq. (24) pertain to properties of the fluid alone.

B. Thermophoretic velocity

When the undisturbed fluid is isobaric, the particle’s
phoretic movement is driven solely by a temperature gradient.
It, thus, follows upon introduction of Eq. (15) into Eq. (24)
that

U = −αβ∇T . (25)

This is the thermophoretic velocity of the inert particle with
the expression being valid for both liquids and gases. For the
case of ideal gases, for which β = 1/T , the above becomes

U = −α∇ ln T . (26)

To compare this result with existing theoretical and exper-
imental data bearing thereon, we first rewrite the above in the
form

U = − υ

Pr
∇ ln T , (27)

in which v is the fluid’s kinematic viscosity and

Pr = υ /α (28)

is the Prandtl number, which is O(1) for gases [4].

1. Experimental confirmation of the
thermophoretic-velocity formula

By way of comparison with Eq. (27), Epstein [16] consid-
ered the case of a spherical particle of radius a immersed in
an otherwise quiescent unbounded gas subject to a uniform
undisturbed steady-state temperature gradient ∇T in a gas.
He solved the incompressible creeping-flow [17] NSF mass,
momentum, and energy equations for a fluid at rest at
infinity and satisfying Maxwell’s [18] thermal-creep boundary
condition, namely [compare with Eq. (11)],

(I − n̂n̂) · (vm − U) = Csυ∇s ln T on ∂V . (29)

Epstein found that a heat-conducting force-free particle
would move through the fluid with velocity,

U = −λCsυ∇ ln T , (30)

where λ = 1/ (1 + ks /2k) is a dimensionless parameter given
functionally by Epstein in terms of the thermal conductivity
ratio ks /k in which ks is the thermal conductivity of the parti-
cle. The dimensionless O(1) creep coefficient Cs is Maxwell’s
[18] thermal-creep coefficient for dilute gases, whose precise
value [19] depends upon whether the gas molecules are
reflected from the particle’s surface diffusely, specularly, or
otherwise. Epstein’s thermophoretic velocity formula (30) has
been confirmed broadly by many experimentalists [20] and
theoreticians [21,22].

In the limiting nonconducting particle case where ks /k �
1 or, equivalently, when the particle is insulated such that no
heat is exchanged with the fluid—effectively rendering the
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particle inert—one has that λ = 1 [16]. In that case, Epstein’s
more general result (30) reduces to

U = −Csv∇ ln T . (31)

It is not possible to decide, on purely theoretical grounds,
whether molecules are reflected specularly, diffusely, or
otherwise from the particle’s surface. Over that range of
possibilities, Cs varies, theoretically, between 3/4 and 1.15
[19]. Furthermore, Prandtl numbers [4] for different gases
generally vary between 2/3 and 1, depending upon whether the
entraining gas is monatomic, diatomic, or polyatomic. Thus,
for a given particle and fluid pair, the inability to decide, the-
oretically, upon the appropriate value of Cs , when considered
in conjunction with the above-cited range of Prandtl number
values for different gases, leads to the declaration that Eqs. (27)
and (31) are indistinguishable, from which we conclude that
they are one and the same.

As thermophoresis is seen to be merely a special case
of pycnophoresis, the above-cited agreement noted between
theory and experiment for thermophoretic-particle motion
offers implicit evidence in support of the more broadly based
pycnophoretic-velocity formula (24). Moreover, phenomeno-
logically speaking, given the one-to-one [16] linkage between
Maxwell’s [18] thermal-creep boundary condition (29) and
Epstein’s experimentally confirmed thermophoretic-velocity
formula (31), it appears virtually certain that our general view
of all phoretic motions as originating from slip of the fluid’s
mass velocity at solid surfaces is correct. Such slip also is
the case for electrophoretic-particle motion [22], which is,
however, not a single-component phenomenon.

In contrast with this slip-based view, a number of other re-
searchers [23,24] regard phoretic motions as originating from
the existence of special solid-fluid physicochemical stresses at
the surface of the solid particle (although, admittedly, these
explanations generally are not advanced in the context of
single-component fluids). Such explanations cannot, however,
explain the size independence of the particle’s phoretic
velocity [whose independence is also implicit in Epstein’s
formula (31)] since the effect of such physicochemical surface
forces must vanish in the limit of zero particle size.

C. Barophoretic velocity

For the case where the fluid is isothermal such that the
particle’s phoretic movement is generated solely by a pressure
gradient, it follows upon the introduction of Eq. (19) into
Eq. (24) that

U = ακ∇p. (32)

This is the barophoretic velocity of the particle, valid for
both liquids and gases. This velocity obviously will be very
small for liquids since then, κ ≈ 0. For the case of ideal gases,
for which κ = 1/p, the above becomes

U = α∇ ln p. (33)

This relation bears a strong resemblance to the pressure
diffusion equation (2) despite their very different realms of
applicability; explicitly, our barophoresis formula (33) is appli-
cable only to single-species fluids, whereas, the barodiffusion
formula (2) applies only to multispecies fluids.

The existence of barophoresis as a stand-alone subject,
worthy of study in a single-component fluid context appears,
previously, not to have been discussed.

By way of example, consider a small inert external body-
force-free particle immersed in an ideal gas undergoing a rigid-
body rotation (relative to an inertial system) at an angular
velocity �. Owing to the action on the particle of the resulting
pressure gradient [13], ∇p = ρ�2R (where R is the position
vector relative to the axis of rotation), the particle migrates
radially outward toward the higher density region at a speed
given by the expression,

U = 2η�2

pPr
R0, (34)

with η as the fluid’s viscosity. At low pressures, the viscosity
of gases is sensibly independent of pressure. Accordingly,
the particle’s barophoretic speed can become appreciable. For
example, for oxygen at 300 K (η = 2.063 × 10−5 Pas; Pr =
0.68), a rotation rate of 10 000 rpm, and a pressure of 10−3atm,
a particle situated 1 cm from the axis will move with a speed
of 0.223 cm/s.

Regarding possible experiments designed to study the
existence of barophoresis, it is important to note that the
particle’s barophoretic velocity is independent of the particle’s
mass. On the other hand, the centrifugal forces acting on a
particle in a centrifuge depend upon its mass. As such, any
experiment designed to test the viability of Eq. (34) needs
to take account of that fact. Fortunately, in the course of
extrapolating barophoretic data to zero-particle size, the effect
of the particle’s mass goes to zero in comparison with the
barophoretic effect. While such an experiment is possible in
principle, as a practical matter, it might be difficult to maintain
the background density gradient in a 10 000-rpm centrifuge.

IV. DISCUSSION

A. Phoretic wind

From Eq. (24) in conjunction with Eqs. (7) and (8), it
follows that

U = vv. (35)

This relation may be interpreted as representing the fact that a
small inert particle may be used in the capacity of a tracer of the
fluid’s volume velocity vv . Viewed alternatively, by recasting
the volume velocity in the role of the fluid’s phoretic wind,
Eq. (35) also may be interpreted as stating that the particle
simply is entrained in that wind. In contrast, a dye introduced
into the fluid in the role of a tracer monitors the fluid’s
mass velocity vm. Having independent techniques available for
separately measuring the fluid’s mass and volume velocities,
while also being able to measure the fluid’s density, offers the
promise of a direct test of bi-velocity hydrodynamic theory
[11] based upon the fundamental equation (9).

Because the theory outlined here is valid only for single-
component fluids, further research encompassing mixtures
would be necessary in order to establish whether measurement
of the velocity U of a small inert solid tracer particle in an oth-
erwise quiescent fluid mixture undergoing transport wherein
coupling effects exist (e.g., thermal diffusion, osmosis, dif-
fusiophoresis, barodiffusion, etc.) would coincide with the
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fluid’s volume velocity vv . While theoretical formulas based
on Boltzmann’s gas-kinetic theory [6] are currently available
[25–27] for the fluid’s volume velocity in low-pressure mul-
ticomponent gases (wherein concentration, temperature, and
pressure gradients coexist, resulting in coupling phenomena),
the author is unaware of any experimental measurements of the
fluid’s tracer velocity U in such systems to compare against
these volume-velocity formulas. Moreover, even were such
experimental tracer velocity data available, the complexity of
the phenomenological coefficients appearing in Shavaliyev’s
solution [25] of Boltzmann’s equation [6] for dilute monatomic
gases—the only case for which phenomenological data are
available—would appear to preclude an unequivocal compar-
ison of U with vv .

B. Equality of the single-component barophoretic diffusivity
with the barodiffusion diffusivity in binary mixtures

of ideal gases

Consider a dilute dispersion of colloidal barophoretic par-
ticles (viewed as large molecules in the Stokes-Einstein sense)
dispersed in a gaseous solvent of much smaller molecules.
In what follows, we pursue Einstein’s classical Brownian
motion Stokes-Einstein approach [28] with respect to using our
single-particle hydrodynamic barophoretic velocity data for U
to estimate the value of the binary barodiffusion coefficient
D(p) in systems that are sparse in numbers of colloidal
particles.

Designate the colloidal particles as species 1 and the solvent
as species 2. With w1, the mass fraction of colloidal molecules
at a point of the fluid, the quantity ρ1 = w1ρ gives the number
of molecules of species 1 per unit volume at that point. The
mass flux j(p)

1 of species 1 then is j
(p)
1 ≡ Uw1ρ where for gases,

U is given for barophoretic motions by Eq. (33). Consequently,
j(p)
1 = ραw1∇ ln p. With D as the solvent’s self-diffusivity, the

gas’s dimensionless Lewis number [4,29] Le = α/D is unity,
at least, for monatomic Maxwell molecules.

Thus, based upon our single-component barophoretic anal-
ysis, we have that

j(p)
1 = ρDw1∇ ln p. (36)

Comparison of this expression with Eq. (1a) for the flux of
species 1 in a binary mixture provides the following estimate
for the binary mixture’s barodiffusion diffusivity:

D(p) = Dw1. (37)

To establish the accuracy of this estimate, we note that,
according to Haase [1], his Eq. (4-23.11)], the pressure
diffusion coefficient for an ideal binary gas mixture is

D(p) = D
(M1 − M2)x1x2

M
. (38)

Here, Mi and xi , respectively, are the molecular weight
and the mole fraction of species i, while M = (x1M1 + x2M2)
is the mean molecular weight of the mixture, and D is the
mixture’s binary diffusion coefficient as defined by Fick’s law
of molecular diffusion. Given the disproportion in the relative
sizes and, hence, masses of the solute and solvent molecules,
we have that M1 � M2, whence, the above becomes D(p) =
DM1x1x2 /M. However, w1 = M1x1 /M.This gives D(p) =

Dw1x2. As a consequence of the diluteness of the mixture with
respect to the solute molecules, we have x1 ≈ 0, equivalently,
x2 ≈ 1. Thus, we finally obtain

D(p) = Dw1. (39)

The latter barodiffusion expression is identical with the
single-component barophoretically based estimate (37), pro-
vided that one confounds the solvent’s self-diffusivity with the
mixture’s binary diffusivity.

To summarize, this accord adds further credibility not only
to our general slip-based phoretic model [10], but also to the
bi-velocity theory [11] as a whole.

C. Heuristic derivation of the barophoretic-velocity
formula (33)

Equation (33) for the particle’s barophoretic velocity
through an ideal gas was derived formally by solving the
pertinent hydrodynamic equations [see Eq. (A2)] subject to
the tangential and normal boundary conditions (10) and (18).
As seen in what follows, the formula also can be derived by
nonhydrodynamic purely heuristic arguments patterned after
Einstein’s [28] Brownian motion Stokes-Einstein arguments
for colloidal solute particles, whose physicochemical status
is intermediate between that of a large molecule and a
non-Brownian body that obeys the laws of hydrodynamics.

We begin by considering the case of an ideal gas in a state of
thermodynamic equilibrium and, thus, obeying the hydrostatic
equation,

ρ f̂ = ∇p, (40)

wherein f̂ is the body force per unit mass of fluid (e.g., gravity).
With n as the number density of molecules and m as the
molecular mass, we have that ρ = nm, while F = mf̂ is the
force acting on a single molecule. With U as the mean velocity
of a molecule moving under the influence of this force, we
write that U = MF, where M is the molecule’s mobility.
From the Nernst-Planck-Einstein relation, M = D/kBT in
which kB is Boltzmann’s constant and D is the self-diffusion
coefficient. Furthermore, from the ideal gas law, p = nkBT

Substitution of these several results into Eq. (40) gives

U = D∇ ln p. (41)

To the extent that the Lewis number for the gas is unity,
rendering D = α, the above accords with Eq. (33).

The advantage of this simple heuristic derivation lies in
the fact that not only does it reproduce the hydrodynamically
derived result for the particle’s barophoretic velocity, but also
that the analysis shows that velocity to be independent of the
size and shape of the particle. Furthermore, the derivation has
not relied upon the principles of bi-velocity hydrodynamics
[11] nor upon the choice of boundary conditions. These facts
add independent evidence to the correctness of the bi-velocity
theory as a whole.
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APPENDIX: DEMONSTRATION THAT EQ. (24) RENDERS
THE PHORETIC PARTICLE FORCE FREE

Equation (9) is valid everywhere, including at the particle
surface. When combined with Eq. (35), this makes

vm = U − α∇ ln ρ on ∂V, (A1)

as in Eq. (13). When the particle is spherical and the fluid
at infinity is at rest, Eq. (6.7) of Ref. [30] shows that the
hydrodynamic force on a spherical particle of radius a in a fluid
of viscosity η undergoing an incompressible creeping flow
generated by the particle’s motion can be expressed directly
in terms of the prescribed mass velocity field at the surface of
the particle by the expression,

F = −3η

2a

∫
r=a

(vm)r=adS. (A2)

As such, in the limit where the particle is small, we have,
with the use of Eq. (A1), that

F = −3η

2a

∫
r=a

[U − α∇ ln ρ]0dS.

The condition that the particle be force free is, thus,
synonymous with the vanishing of the above integrand,

U = α∇ ln ρ. (A3)

Our analysis, therefore, confirms that satisfaction of Eq. (24)
is consistent with the particle being force free.

Although Eq. (A3) was derived by considering the case
of a spherical particle, the result can be shown [8] to be
independent of the particle’s shape. The explanation for this
lies in the fact that the particle’s phoretic velocity is, according
to our elementary theory, a function only of the fluid in which
the particle is immersed, independent of any property of the
particle itself, including its size, shape, and physicochemical
constitution.

It is important to note that, by use of Eq. (A2), we have
applied the boundary condition (A1) [or, equivalently Eq. (21)]
not toward the solution of the bi-velocity hydrodynamic
equations for a compressible fluid [11] but rather to the original
NSF equations for an incompressible fluid. While this appears
to be inconsistent, the singular-perturbation thermophoretic
analysis of Brenner and Bielenberg [8] as well as the
corresponding thermal transpiration analysis of Bielenberg
and Brenner [31]—both involving solving the bi-velocity
equations subject to no slip of the volume velocity at solid
surfaces—show that no inconsistency exists. In effect, it proves

consistent, mathematically, to solve the original NSF equations
[13] rather than the bi-velocity equations [11], provided that
one solves these equations subject to the bi-velocity volume-
velocity boundary condition (21). Insofar as the accuracy of
the overall solution scheme is concerned, in this asymptotic
limit, the relative importance of the contribution of jv to the
boundary condition dominates over that of its contribution to
the bi-velocity differential equations themselves [11].

1. Alternative view

With regard to the comments of the last paragraph, there is a
rather different view that can be taken concerning our phoresis
calculations, one that is not keyed either to bi-velocity theory or
to the concept of a volume velocity. This involves: (i) regarding
the boundary conditions (12) and (13) imposed upon vm at the
surface of the particle to purely be empirical in nature, having
nothing to do with bi-velocity theory; and (ii) applying these
boundary conditions [together with requiring the vanishing
of vm at infinity and the satisfaction of the force-free
requirement (21)] to the traditional NSF incompressible
creeping flow equations, rather to any amended versions
thereof. This scheme constitutes a well-posed hydrodynamic
boundary-value problem and is tantamount to what actually
has been performed in connection with our use of Eqs. (A2)
and (23) to derive the phoretic-velocity formula (24). In fact,
this is exactly the route taken by Epstein [16] (who knew
nothing of bi-velocity theory) in his derivation of the widely
accepted [8] thermophoretic-velocity formula (31) based upon
Maxwell’s thermal-creep boundary condition (29). As such,
our pycno-, thermo-, and barophoretic-velocity formulas may
be regarded as classical creeping flow hydrodynamic results,
provided that one accepts the tangential-velocity boundary
condition (11) on a purely empirical basis in terms of solutions
based thereon furnishing theoretical predictions that accord
with experimental data. And that modest view is no different
in principle from the current practice of empirically accepting
the validity of the classical no-slip boundary condition,

(I − n̂n̂) · (vm − U) = 0 on ∂V,

in the traditional hydrodynamics of incompressible fluids.
Thus, while we do not retreat from our belief in the viability

of bi-velocity theory, adoption of this pragmatic empirical
attitude would enable skeptics of that theory to accept our
slip-based model phoretic-velocity predictions without having
to subscribe to the bi-velocity theory as a whole.
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