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Quantifying mixing in viscously unstable porous media flows
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Viscous fingering is a well-known hydrodynamic instability that sets in when a less viscous fluid displaces a
more viscous fluid. When the two fluids are miscible, viscous fingering introduces disorder in the velocity field
and exerts a fundamental control on the rate at which the fluids mix. Here we analyze the characteristic signature
of the mixing process in viscously unstable flows, by means of high-resolution numerical simulations using a
computational strategy that is stable for arbitrary viscosity ratios. We propose a reduced-order model of mixing,
which, in the spirit of turbulence modeling and in contrast with previous approaches, recognizes the fundamental
role played by the mechanical dissipation rate. The proposed model captures the nontrivial interplay between
channeling and creation of interfacial area as a result of viscous fingering.
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I. INTRODUCTION

Mixing of fluids is an important and complex phenomenon.
Several chemical [1], pharmaceutical [2,3], and food pro-
cessing [4] operations require controlled mixing of fluids at
low Reynolds numbers, a notoriously difficult problem [5–7].
Mixing also plays a fundamental role in natural processes,
including groundwater flows in heterogeneous media [8], man-
tle convection [9,10], debris gravity currents [11], population
genetics [12,13], mammalian digestion [14], and bacterial
locomotion [15–21].

When the physical properties of the fluids, such as density
or viscosity, are sufficiently different, mixing may become
heavily influenced by the formation of hydrodynamic in-
stabilities. It has been shown, under controlled conditions,
that such instabilities can speed up the mixing process
enormously [22,23]. Recently, we have shown that miscible
viscous fingering [24]—the hydrodynamic instability that
ensues between two fully miscible fluids when the least viscous
fluid displaces the most viscous one—can be employed as an
agent for enhanced mixing at low Reynolds numbers [25].

Miscible viscous fingering has been studied extensively in
the past through laboratory experiments [26–28] and numerical
simulations [29–33]. Linear stability analyses have explained
the onset and growth of instabilities as a function of the
viscosity contrast and the flow rate for rectilinear [34] and
radial [35] geometries. A number of experimental, theoretical,
and numerical studies have been carried out to understand
the effects of anisotropic dispersion [32,36,37], medium
heterogeneity [38–41], gravity [42–47], chemical reaction
[48–51], adsorption [52], and flow configuration [53–58] on
the viscous fingering instability.

It has long been recognized that viscous fingering leads to
enhanced spreading of the displacing fluid [59,60]. A large
body of literature, going back to the works of Koval [61] and
Todd and Longstaff [62], has focused on the development of
fractional flow formulations to predict averaged concentrations
and breakthrough curves [63–73].

Despite the considerable work done, the effect of viscous
fingering on fluid mixing remains unexplored. In this article,
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we present the derivation of an upscaled model to quantify
the degree of mixing in a viscously unstable displacement. We
present a numerical scheme for the high-resolution simulation
of the viscous fingering process with arbitrary viscosity
contrast. This scheme is stable for arbitrarily high viscosity
contrasts, for which the traditional schemes become unstable.
Based on the results of high-resolution numerical simulation
and scaling arguments that reflect the dissipative properties
of the flow, we formulate a mixing model that, in the spirit
of turbulence modeling, quantifies the decay of concentration
variance and the evolution of mean scalar dissipation rate [25].

II. GOVERNING EQUATIONS

We consider Darcy flow of two fluids of different viscosities
μ1 and μ2, where μ1 < μ2, in a porous medium. We assume
that the porosity φ (volume of voids per unit volume of
porous medium) and the scalar permeability k (coefficient
relating flow velocity and pressure gradient) are uniform and
constant. This means that the porous medium is homogeneous
and isotropic. The two fluids are assumed to be first-contact
miscible, neutrally buoyant, and incompressible. This means
that the injected and the resident fluids mix instantaneously in
all proportions to form a single phase and, therefore, surface
tension effects are, by definition, absent. The diffusivity D

between the fluids is assumed to be constant, isotropic, and
independent of concentration. The length and width of the
domain are L and W , and the mean velocity is in the x direction
and of magnitude U . The governing equations in dimensional
form are

φ
∂c

∂t
+ ∇ · (uc − D∇c) = 0, (1)

u = − k

μ(c)
∇p, ∇ · u = 0, (2)

in x ∈ [0,L] and y ∈ [0,W ]. Equation (1) is a linear advection-
diffusion transport equation (ADE) for the concentration of
the less viscous fluid c(x,t), that is, the mass of the less
viscous fluid per unit volume of the mixture. Equation (2)
is Darcy’s law defining the velocity of the mixture, which
satisfies the incompressibility constraint. The viscosity of
the mixture, μ(c), is assumed to be an exponential function
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of concentration, μ(c) = μ1e
R(1−c), where R = log M and

M = μ2/μ1 is the viscosity ratio.
We express the equations in nondimensional form using

characteristic quantities, W , U , and μ2 = μ1e
R , for length, ve-

locity, and viscosity, respectively. The characteristic time and
pressure drop are given by T = φW/U and P = μ2UW/k,
respectively. Abusing notation, we write the governing equa-
tions in dimensionless form:

∂c

∂t
+ ∇ ·

(
uc − 1

Pe
∇c

)
= 0, (3)

u = − 1

μ(c)
∇p, ∇ · u = 0, (4)

in x ∈ [0,L/W ], y ∈ [0,1], where c ∈ [0,1] is now the
volume fraction of the least viscous fluid, and μ(c) = e−Rc is
the dimensionless viscosity. Darcy’s law and the divergence-
free condition in Eq. (4) can be combined to obtain the pressure
equation in explicit form,

∇ ·
(

− 1

μ(c)
∇p

)
= 0. (5)

The system is governed by two nondimensional groups: the
Péclet number Pe = UW/D and the viscosity ratio M =
μ2/μ1.

A. Fluid mixing in a periodic field

We use the global variance of the concentration field, σ 2 ≡
〈c2〉 − 〈c〉2, to define the degree of mixing,

χ (t) = 1 − σ 2(t)/σ 2
max, (6)

where 〈·〉 denotes spatial averaging over the domain volume
V . The maximum variance, σ 2

max, corresponds to a perfectly
segregated state, hence σ 2

max = 0.25 for a mean concentration
〈c〉 = 0.5. In a perfectly mixed state, σ 2 = 0 and χ = 1.

We first derive the evolution equation for the global
concentration variance σ 2. Multiplying the ADE [Eq. (3)] by
c results in

c
∂c

∂t
+ c∇ · (uc) = 1

Pe
c∇2c, (7)

where ∇2 denotes the Laplacian operator. Expanding the right-
hand side and averaging over the domain,

1

2

〈
∂c2

∂t
+ ∇ · (uc2)

〉
= 1

Pe
〈∇ · (c∇c) − |∇c|2〉. (8)

Applying the Gauss divergence theorem gives

〈∇ · (uc2)〉 = 1

V

∫
S

c2u · ndS,

(9)

〈∇ · (c∇c)〉 = 1

V

∫
S

c∇c · ndS,

where S is the surface bounding V , dS the element of boundary
area, and n the outward-pointing normal to the boundary.
Assuming periodicity in x and y, these two boundary surface
integrals vanish and Eq. (8) becomes

d〈c2〉
dt

= − 2

Pe
〈|∇c|2〉. (10)

Since the mean concentration 〈c〉 remains constant in a periodic
domain, the evolution of concentration variance under periodic
boundary conditions becomes [74,75]

dσ 2

dt
= −2ε, (11)

where ε ≡ 〈|∇c|2〉/Pe is the dimensionless mean scalar
dissipation rate. In absence of any source terms, Eq. (11)
indicates that the global concentration variance monotonically
decays with time due to the dissipative action of ε, which is
positive as long as there are gradients in the concentration
field. Physically, ε can be interpreted as a mixing rate
or, equivalently, as a rate at which scalar fluctuations are
destroyed.

Equation (11) motivates us to study the evolution of
ε in time and understand its dependence on the physical
parameters, R and Pe. Taking the gradient of the ADE in
Eq. (3) and then dot product with ∇c yields

∇c · ∂∇c

∂t
+ ∇c · ∇(u · ∇c) = 1

Pe
∇c · ∇(∇2c), (12)

Denoting g = ∇c and using ∇ · u = 0,

1

2

∂|∇c|2
∂t

+
∑
i,j

∂ui

∂xj

gigj + 1

2

∑
i

∇ · (
ug2

i

)

= 1

Pe
∇c · ∇(∇2c), (13)

where ui , xj , and gi are components of the velocity, position,
and concentration gradient vectors, respectively. Integrating
over a periodic domain removes the divergence terms on the
left-hand side. Expanding the right-hand side,

∇c · ∇(∇2c) =
∑
i,j

gi

∂2gj

∂xi∂xj

=
∑
i,j

gi

∂2gi

∂x2
j

=
∑

i

∇ · (gi∇gi) −
∑
i,j

(
∂gi

∂xj

)2

. (14)

Upon volume integration, the divergence terms in Eqs. (13)
and (14) vanish under periodic boundary conditions. Using
the definition of ε, Eq. (13) becomes

dε

dt
+ 2

Pe

∑
i,j

〈
∂ui

∂xj

gigj

〉
= − 2

Pe2

∑
i

〈|∇gi |2〉 (15)

Alternatively, in direct tensorial notation,

dε

dt
+ 2

Pe
〈∇u : g ⊗ g〉 = − 2

Pe2
〈∇g : ∇g〉, (16)

where ⊗ denotes a dyadic product of two vectors resulting in
a second-order tensor, and : denotes double contraction.

Equations (11) and (16) are exact evolution equations for
the global concentration variance σ 2 and the mean scalar
dissipation rate ε, respectively. Clearly, closure relations are
needed for this system of equations to be solvable, and the
objective of this paper is precisely to propose a closure model,
guided by direct numerical simulation of the underlying partial
differential equations. The form of Eq. (16), however, already
reveals that the heart of the problem lies in the interplay
between velocity gradients (flow disorder) and concentration
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gradients. Since gradients in concentration lead to contrasts in
fluid viscosity, homogenization of the mixture through removal
of the concentration gradients also results in destruction of
the viscosity contrasts, that is, decay of viscous fingering.
Equation (11) reflects that the degree of mixing increases
monotonically in time. One could naively expect, in view of
the right-hand side of Eq. (16), that the same be true for the
scalar dissipation rate. However, this is not the case: as we shall
see, concentration gradients increase during the early stages
of viscous fingering before starting to decrease, resulting in
a nontrivial behavior for the scalar dissipation rate and the
overall mixing process.

III. NUMERICAL METHOD

A. Stream function-vorticity method

The pressure equation (5), is an elliptic PDE with a
space- and time-varying coefficient. Solving this equation is
computationally expensive for a large number of grid cells,
which is required to resolve the concentration gradients that
ensue as a result of the viscous instability at high Pe. To
alleviate this computational burden, the governing equations
are usually cast in the so-called stream function-vorticity
(SV) formulation, and the “pressure” equation solved using
a spectral method [30,32,55].

The stream function � is defined for an incompressible
two-dimensional velocity field as

ux = ∂�

∂y
, uy = −∂�

∂x
. (17)

The magnitude of the vorticity vector normal to the plane of
flow, ω ≡ |∇ × u|, is related to the gradients in concentration
field. Using the definition of the Darcy velocity Eq. (4) and the
exponential form of the mixture viscosity,

ω = R |∇c × u| = R

(
∂c

∂x
uy − ∂c

∂y
ux

)
. (18)

Using the definitions of the stream function and vorticity, we
obtain the relation

∇2� = −ω. (19)

In the stream function-vorticity method, Eqs. (3) and (19) are
solved sequentially under periodic boundary conditions. At a
given time step, Eq. (18) is used to compute the vorticity field
from known concentration and velocity fields. Then Eq. (19),
which is a single algebraic equation in Fourier space under
periodic boundary conditions, is solved to obtain the stream
function of the flow at the next time step using the vorticity at
previous time step. The velocity field is then constructed from
the stream function using Eq. (17).

This computational approach has been used successfully for
the nonlinear simulation of the viscous fingering phenomenon
[30,32,55], with a degree of fidelity and resolution that
was not possible in early simulations [29,31]. However, this
formulation is numerically unstable and fails to produce a
solution for large values of mobility ratio (M > 20 or R > 3),
when the fingertip velocity is much higher than the mean flow
velocity. The underlying reason for the numerical instability is
the mobility splitting inherent to Eq. (19), which computes the
stream function at the current time step from the vorticity at

the previous time step. This split is stable for moderate values
of M but becomes unconditionally unstable for large values of
M , irrespective of time-step size.

B. Implicit mobility method

Obtaining a numerical scheme that is stable at high M

requires an implicit mobility scheme. To this end, we solve
Eq. (5) globally for the pressure field. This is computationally
more expensive because it entails building and solving a linear
system of equations at each time step, instead of one single
equation in Fourier space Eq. (19). However, since the solution
of Eq. (5) implies implicitness—the velocity at a time step
corresponds to the mobility at the same time step—this scheme
is stable for arbitrarily high values of M . We use a finite-
volume method with two-point flux approximation (TPFA) to
discretize the Darcy flux between the grid cells [76]. We solve
the linear system of equations resulting from discretizating
Eq. (5) using either a direct solver or an iterative multigrid
solver. The concentration equation is solved using a sixth-
order compact finite differences and a third-order Runge-Kutta
time-stepping scheme [45].

We use a finite-volume discretization of the divergence-free
velocity condition in Eq. (3). Integrating over the volume of
the ith cell V i and using the divergence theorem∫

V i

∇ · u =
∫

Si

u · ndS = 0, (20)

where Si is the total surface area of the cell, composed of
interfaces Sij , where j denotes cells adjacent to the ith cell.
Thus, fluid mass balance over cell i for an incompressible flow
becomes ∑

j

U ij (t) = 0, (21)

where Uij is the integrated flux through interface Sij . The
pressure field p(x,y) is approximated as a piecewise constant
function, taking discrete values pi at individual cells. Fluxes
across interfaces are estimated from a set of neighboring cell
pressures. The TPFA method uses just two neighboring cell
pressures, pi and pj , to approximate the flux through the
interface ij ,

Uij = t ij λij (pi − pj ), (22)

where λij is the mobility at the ij -interface, estimated by a
harmonic average of the respective cell mobilities, 1/μi and
1/μj , and t ij is the interface geometric transmissibility, which
for a regular 2D Cartesian grid is proportional to the length of
the interface and inversely proportional to the distance between
cell centers. Thus, the interface transmissibility T ij = t ij λij is,
for a simple 2D Cartesian grid,

T ij
x = hy

hx

2

μi + μj
, T ij

y = hx

hy

2

μi + μj
, (23)

for vertical and horizontal interfaces, respectively.
Equations (21) and (22) result in a system of linear

equations to be built and solved at every time step,

T P = B, (24)
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(a) (b)

FIG. 1. (Color online) Snapshots of the con-
centration field from viscous fingering simula-
tions using the implicit mobility TPFA method.
(a) R = 4, Pe = 5000. (b) R = 5, Pe = 5000.
Channeling of the fingers of less viscous fluid
at high R renders the explicit mobility stream
function-vorticity method unstable.

where P is the vector of unknown cell-center pressures and
B is the vector of known boundary fluxes. Generation and
assembly of the mobility-dependent transmissibility matrix,
T , for the simple periodic boundary conditions as considered
here, can be completely vectorized.

IV. NONLINEAR SIMULATIONS

A. Continuous injection

To illustrate the ability of the implicit high-resolution nu-
merical method to simulate viscous fingering for high viscosity
ratios, we solve the governing equations on a square domain
with periodic boundary conditions in the y direction and uni-
form flux on the left and right boundaries. Initially, the medium
is filled with the more viscous fluid, and the less viscous
fluid is injected through the left boundary. For high viscosity
ratios (R = 4, corresponding to M ≈ 55), the invading fluid
fingers through the defending fluid aggressively [Fig. 1(a)],
exhibiting well-known complex nonlinear interactions such as
finger merging, shielding, and tip splitting [30,32]. Simulation
of the flow for this viscosity contrast is outside the range of
stability of the stream function-vorticity method. For an even
larger viscosity ratio (R = 5, corresponding to M ≈ 150), a
new pattern emerges: channeling through the more viscous
fluid, with minimal interaction between channels and very low
sweep efficiency [Fig. 1(b)].

B. Mixing of randomized blobs

To understand the effect of viscous fingering on fluid
mixing we numerically solve the governing equations (3) and
(4), on a square domain with periodic boundary conditions.
The periodic boundary conditions allow us to focus on the
dissipative nature of viscous fingering in absence of any
boundary effects.

We investigate a scenario in which the two fluids are
segregated as a set of randomly shaped blobs of the more
viscous fluid surrounded by the connected, less viscous fluid
(Fig. 2). Each fluid occupies 50% of the volume and, since the
boundary conditions are biperiodic, 〈c〉 ≡ 0.5 throughout the
entire simulation. The characteristic diameter of the initial
blobs is about one-sixth of the length of the domain, and
the system evolves under an imposed gradient from left
to right. If both fluids had the same viscosity, the blobs
would simply translate in the x direction and slowly diffuse
into the ambient fluid. The situation is radically different

in the presence of a viscosity contrast. Onset of fingering
driven by advection creates new interfacial area through
stretching and splitting of the initial interface around the
blobs, thereby enhancing diffusive mixing because both the
interfacial area and the concentration gradients are larger. This
is quantitatively reflected in the nonmonotonic time evolution
of the scalar dissipation rate, which achieves a maximum
precisely as a result of fingering-induced mixing (Fig. 3).
At later times, the strength of the instability decays due to
homogenization of the mixture and, asymptotically, mixing is
again controlled by diffusion.

To illustrate that mixing under viscous fingering is strongly
dependent on the flow conditions, we simulate the scenario in
which blobs of less viscous fluid are transported and dispersed
through a more viscous ambient fluid. Viscous fingers now
emerge out of the blobs and into the connected fluid. The initial

(a) (b)

(c) (d)

FIG. 2. (Color online) Snapshots of the concentration field at
increasing time steps from a numerical simulation of miscible viscous
fingering. A set of more viscous blobs (dark) is displaced through
a less viscous fluid (light) under left-to-right flow and periodic
boundary conditions. Fingers of the less viscous fluid initiate at the
unstable interface, grow inside the more viscous blobs, split into
multiple fingers, coalesce together, and connect across the blobs as
the two fluids mix. The displacement corresponds to a viscosity ratio
M = exp(2) ≈ 7 and Péclet number Pe = 104.
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FIG. 3. (Color online) Evolution of mean scalar dissipation rate
(blue crosses) and concentration variance (red circles) for a flow
scenario in which blobs of more viscous fluid are displaced through a
less viscous fluid. The mixing rate increases and reaches a maximum
at early times due to the flow disorder induced by viscous fingering.
The displacement corresponds to a viscosity ratio M = exp(2) ≈ 7
and Péclet number Pe = 104.

interfacial area available for the initiation and growth of the
fingers is larger in this case than in the previous configuration
(blobs of more viscous fluid). Moreover, the less viscous
fluid must initially penetrate through the more viscous fluid
before it forms a connected “phase.” As a result of the earlier
finger initiation and more aggressive tip splitting, the scalar
dissipation rate ε exhibits a larger and earlier hump in the
scalar dissipation rate (Fig. 4), which translates into faster
mixing.

V. MIXING MODEL

We are interested in developing an upscaled model of the
mixing process that incorporates the details of the viscous
fingering phenomenon. Thus, the objective is to obtain mixing
model in terms of evolution equations for the global variables,

σ 2 and ε, that incorporates the correct dependency on the
physical parameters, R and Pe.

To arrive at such a macroscopic description, we must model
the “advective” and “diffusive” terms in the exact equation
for the mean scalar dissipation rate, Eq. (16). The advective
term involves the interaction between velocity gradients and
concentration gradients. As we will see, dealing with the
gradient of velocity field requires modeling of the interface
stretching associated with tip-splitting and channeling events.
As an intermediate step toward modeling the advective term,
we present a model for mean mechanical dissipation rate,
εu. The diffusive term in Eq. (16) is responsible for the
removal of the fluid interfaces either resulting from the splitting
and channeling events or being present as part of the initial
configuration (e.g., blob interfaces).

A. Mechanical dissipation rate

The mean mechanical dissipation rate is defined as

εu = 2〈ν∇su : ∇su〉, (25)

where ν is the kinematic viscosity of the mixture, and
superscript s denotes symmetric part of the tensor. Hence, ∇su
is the rate-of-strain tensor, responsible for interface stretching.

From Darcy’s equation (4), we have

∇u = −μ−1[R∇c ⊗ ∇p + ∇ (∇p)]. (26)

In a viscous fingering process, R∇c ⊗ ∇p and ∇(−∇p) terms
evolve similarly in time (Fig. 5). Thus, we propose the scaling

∇u ∼ −μ−1[R∇c ⊗ ∇p] ∼ Ru ⊗ g. (27)

Therefore, assuming a spatially averaged kinematic viscos-
ity 〈ν〉, εu can be approximated as

εu ∼ 2〈ν〉R2〈μ−2|(∇c ⊗ ∇p)s|2〉
∼ 2〈ν〉R2〈|(u ⊗ g)s|2〉. (28)

(a) (b)
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σ2, more visc. blobs
σ2, less visc. blobs
, more visc. blobs
, less visc. blobs
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FIG. 4. (Color online) (a) Evolution of mean scalar dissipation rate (blue crosses) and concentration variance (red circles) for blobs of less
viscous fluid in a more viscous medium. (b) Comparison of the two scenarios, when the initial blobs are either more viscous or less viscous
than the ambient fluid. The case with less viscous blobs leads to earlier and larger hump in the evolution of the scalar dissipation rate ε. This
results in faster decay of the concentration variance at early times. The simulations correspond to R = 2, Pe = 104.
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10
−4
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−2

10
0

10
210

0

10
1

10
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t

R = 2, ∇ (−∇p)
R = 2, R|∇c ⊗∇p

R = 1, ∇ (−∇p)
R = 1, R|∇c ⊗∇p

FIG. 5. (Color online) Evolution in time of the terms 〈R|∇c ⊗
∇p|〉 (dashed line) and 〈|∇(−∇p)|〉 (solid line) from direct numerical
simulations for Pe = 104 and two different values of R: R = 1 (red)
and R = 2 (blue). For each value of R, the time evolution of both
terms is very similar.

Using the Frobenius norm of a tensor,

|(u ⊗ g)s|2 = 1
2 [|u|2|g|2 + (u · g)2]. (29)

Hence,

εu ∼ 〈ν〉R2〈|u|2|g|2(1 + cos2 θ )〉, (30)

where θ is the angle between vectors u and g at the interface.
Assuming homogeneity of the viscous fingering process, we
can split the average of the product as product of the averages
(as in the case of statistically homogeneous turbulence [77]).
Neglecting the cos2 θ term, which is small compared to the
other term,

εu ∼ 〈ν〉R2〈|g|2〉〈|u|2〉. (31)

Taking the mean flow speed U as constant and using ε ≡
〈|g|2〉/Pe, we obtain

εu ∼ R2Peε. (32)

We have verified this relationship between the scalar and me-
chanical mean dissipation rates by means of direct numerical
simulation (Fig. 6).

B. Scalar dissipation rate

From Eq. (27), we approximate the advective term in
Eq. (16) as

2

Pe
〈∇u : g ⊗ g〉 ∼ 2

Pe
〈R|g|2(u · g)〉. (33)

Assuming, as before, statistical homogeneity at high Pe,

2

Pe
〈R|g|2(u · g)〉 ∼ −2R

Pe
〈|g|3〉〈|u|〉〈cos θ〉

∼ −2R
√

Pe〈cos θ〉ε3/2, (34)

where we used the definition of ε. We take 〈cos θ〉=e−R/4ε/σ 2,
a model that agrees well with the simulations (Fig. 7). The
effect of channeling at higher viscosity contrasts is to reduce
〈|g|〉 (by reducing the total interfacial area) and realign the

10
−4

10
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10
−3
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10
−1

t

,
u

u/(PeR2)

FIG. 6. (Color online) Evolution of ε (blue crosses) and
εu/(PeR2) (red circles) from direct numerical simulation, for R = 2
and Pe = 104. The two variables evolve similarly, confirming the
proposed scaling in Eq. (32).

concentration gradient vector to become orthogonal to the
velocity vector. Hence,

2

Pe
〈∇u : g ⊗ g〉 ∼ −2R

√
Pe e−R/4 ε5/2

σ 2
. (35)

Now, we model the diffusive term in Eq. (16),

2

Pe2
〈∇g : ∇g〉 = 2

Pe2
〈|∇g|2〉 = 2

Pe2

〈|∇g|2〉
var(g)

var(g), (36)

where var(g) = 〈|g|2〉 − 〈|g|〉2. Under the assumption of a
unique characteristic transverse length scale in the problem,〈

g2
i

〉
〈|∇gi |2〉 ∼ 〈c2〉

〈|∇c|2〉 ,
〈gi〉

〈|∇gi |2〉 ∼ 〈c〉
〈|∇c|2〉 . (37)

Therefore, using the definition of the dissipation length scale
s, we can write,

var(gi)

〈|∇gi |2〉 ∼ var(c)

〈|∇c|2〉 = s2 (38)

For the diffusive term, this means,

2

Pe2
〈∇g : ∇g〉 ∼ 2

Pe2

〈|∇c|2〉
var(c)

var(g) = 2

Pe

ε

σ 2
var(g). (39)

If we can assume that 〈|g|2〉 ∼ 〈|g|〉2, then var(g) ∼ 〈|g|2〉 =
εPe, which leads to

2

Pe2
〈∇g : ∇g〉 ∼ 2

ε2

σ 2
. (40)

This scaling for diffusive decay of ε provides insight into
the relation among dε/dt , ε, and σ 2: the rate of decay
of the mean dissipation rate due to diffusion follows the
nonmonotonicity in ε, with its strength scaled by the variance,
which is monotonic in time. Using this insight, we can further
improve the model for the diffusive term. Using the ADE,

2

Pe2
〈∇g : ∇g〉 ∼ 2〈(∂tc + u · g)2〉

∼ 2〈(∂tc)2 + ∂tc(u · g)〉. (41)
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FIG. 7. (Color online) Effect of channeling on the evolution of 〈cos θ〉 and 〈cos2 θ〉. (a) Channeling of the less viscous fluid at high R means
that vectors u and ∇c are approximately orthogonal (θ ≈ π/2) along the body of the channel except near the tip. This reduces 〈cos θ〉 because
channels dominate the flow (suppress tip-splitting) in the entire domain. Comparison of the time evolution of 〈cos θ〉 (b) and 〈cos2 θ〉 (c) from
the direct numerical simulations and the proposed model 〈cos θ〉=e−R/4ε/σ 2, for R = 1,3 and Pe = 104.

We model 〈(∂tc)2〉∼ 1
σ 2 ( dσ 2

dt
)2 ∼ ε2

σ 2 and −〈∂tc(u · g)〉∼ 〈(u ·
g)2〉∼ Peε〈cos2 θ〉. From Fig. 7 and the scaling of the diffusive
term with ε and σ 2 found through numerical simulation, we
obtain

2

Pe2
〈∇g : ∇g〉 ∼

√
RPe e−R/4

(
ε

σ

)5/2

. (42)

Using Eqs. (35) and (42), the model equation for ε under
viscous fingering (R > 0) becomes

dε

dt
− AR

√
Pe e−R/4 ε5/2

σ 2
+ B

√
RPe e−R/4

(
ε

σ

)5/2

= 0,

(43)

where A and B are two model parameters. Equation (43) has
two terms corresponding to fingering-induced enhancement
and diffusion-driven decrease in the dissipation rate. The
advection-driven term is negative and gives the rising behavior
in ε, whereas the diffusion-driven term is positive and gives
the declining behavior in ε.

Equations (11) and (43) form a coupled system of first-order
ODEs which can be solved with initial values of σ 2 and ε. We
test the performance of the mixing model by comparing the
predicted decay of variance and scalar dissipation rate with
results from the direct numerical simulations (Fig. 8).

VI. EFFECTIVE AVERAGE VISCOSITY

As a result of the exponential dependence of fluid viscosity
on solvent concentration, the average (effective) viscosity in
the flow domain decreases as the less viscous fluid starts to

mix with the more viscous one. The rate of decrease is faster at
early times and slower at later times, giving rise to an inflection
point in the evolution of the average viscosity. Since the rate
of change in viscosity is linked to changes in interface length
resulting from fingering, we hypothesize that ε and dμ/dt are
intimately related. Here, we present a relationship between
the mean scalar dissipation rate, ε, and the domain average
viscosity, μ.

The average mixture viscosity μ can be expressed as

μ = 1

At

∫ 1

0
μdA, (44)

where dA is the area enclosed by contours c = c∗ + δc∗ and
c = c∗, and μ is the mixture viscosity inside dA, and At = 1
is the total area of the domain. The area (mass) occupied by the
fluid in regions where c � c∗ at a given time t is also the area
enclosed by concentration isosurface c = c∗, and is defined as

A(c∗,t) ≡
∫

c�c∗
dS. (45)

Since the A-c and A-μ relations are one-to-one at any given
time (Fig. 9), we can replace the integral in A with an
equivalent integral in μ,

μ = 1

At

∫ eR

1
Adμ. (46)

Differentiating with respect to time,

dμ

dt
= 1

At

∫ eR

1

∂A

∂t
dμ. (47)
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FIG. 8. (Color online) Performance of the mixing model given
by Eqs. (11) and (43). Comparison of the evolution of ε (blue) and
σ 2 (red) in the simulation (symbols) and the proposed model (dashed
line) for different values of R and Pe. (a), R = 1, Pe = 104. (b),
R = 2, Pe = 104. (c), R = 3, Pe = 104. (d), R = 3, Pe = 103. The
same values of the two model parameters were used for all cases:
A = 0.76, B = 0.84.

Using the the divergence-free velocity condition and the
identity [78] ∮

c=c∗

(·)
|∇c|dl = ∂

∂c∗

∫
c�c∗

(·) dS, (48)

where the circuit integral is defined on the concentration
contour c = c∗, we obtain

∂

∂t
A(c∗,t) = − 1

Pe

∂

∂c∗

∫
c�c∗

∇2cdS, (49)

which is a statement that the contour area changes only due
to diffusive flux (from fluid in c > c∗ area to the fluid in
c < c∗ area) as pure advection conserves the contour area.
Using Eq. (48), the right-hand-side term in Eq. (49) can be
written as∫

c�c∗
∇2cdS =

∮
c=c∗

∇c · ndl =
∮

c=c∗
∇c · ∇c

|∇c|dl

= ∂

∂c∗

∫
c�c∗

|∇c|2dS. (50)

Hence, Eq. (49) can be transformed into

∂

∂t
A(c∗,t) = − 1

Pe

∂

∂c∗

(
〈|∇c|2〉c∗

∂A

∂c∗

)
, (51)

where the average of a field on the tracer contour c = c∗ is
defined as

〈·〉c∗ ≡ ∂

∂A

∫
c�c∗

(·) dS. (52)

Equation (51) can be expressed in terms of the mean dissipation
rate,

∂A

∂t
= − ∂

∂c∗

(
ε∗ ∂A

∂c∗

)
, (53)

where ε∗ = 1
Pe 〈|∇c|2〉c∗ is the conditional mean dissipation

rate of scalar variance for c = c∗. Integrating ε∗ with respect
to A, ∫ 1

0
ε∗dA = 1

Pe

∫ c∗=1

c∗=0
d

(∫
c�c∗

|∇c|2dS

)

= 1

Pe

[∫
c�c∗

|∇c|2dS

]c∗=1

c∗=0

= 1

Pe

∫
|∇c|2dS = Atε, (54)

and using Eq. (53), we obtain

dμ

dt
= − 1

At

∫ eR

1

∂

∂c∗

(
ε∗ ∂A

∂c∗

)
dμ. (55)
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FIG. 9. (Color online) Evolution of the variables A(c∗), μ(c∗) and ε∗ during the simulation of mixing of blobs of more viscous fluid with
R = 2, Pe = 104 (Fig. 2). (a) Plot of A(c∗,t), the area of the domain enclosed by the contour of c = c∗, that is, satisfying the inequality
c � c∗ [Eq. (45)]. It is a monotonically increasing function of c∗ that evolves in time due to mixing from a perfectly segregated state to a fully
homogenized mixture. (b) Relation between the average viscosity μ(c∗) and contour area A(c∗), which is a one-to-one relation at all times.
High values of viscosity, in the range ∼ eR , are quickly suppressed due to mixing. (c) Plot of the conditional mean dissipation rate ε∗ as a
function of the contour concentration c∗, which satisfies that ε∗ = 0 at both c∗ = 0 and c∗ = 1.
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FIG. 10. (Color online) Relationship between the rate of decrease
in average viscosity μ (green dashed line) and the mean scalar
dissipation rate ε (green circles) [Eq. (58)]. The inflection point
in the average viscosity curve, which corresponds to a minimum
in the dμ/dt (blue crosses), occurs at the same time as ε reaches
its maximum. The numerical simulations correspond to R = 2 and
Pe = 104.

For our viscosity model μ(c) = eR(1−c), dμ = −Rμdc, so

dμ

dt
= R

At

∫ 0

1
μ

∂

∂c∗

(
ε∗ ∂A

∂c∗

)
dc

= − R

At

∫ c∗=1

c∗=0
μd

(
ε∗ ∂A

∂c∗

)
. (56)

Since ε∗ = 0 at c∗ = 0 and c∗ = 1 (Fig. 9),

dμ

dt
= − R

At

[(
με∗ ∂A

∂c∗

)ε∗=0

ε∗=0

−
∫ 1

eR

ε∗ ∂A

∂c∗ dμ

]

= − R

At

∫ 1

0
ε∗ ∂A

∂c∗ Rμdc = −R2

At

∫ 1

0
με∗dA

∼ −R2μ

At

∫ 1

0
ε∗dA. (57)

Finally, using Eqs. (54) in Eq. (47), we obtain the desired
relation:

dμ

dt
∼ −R2με, (58)

or, equivalently,

d log μ

dt
∼ −R2ε. (59)

Thus, our analysis suggests that the rate of decrease in mixture
viscosity is directly proportional to the mean dissipation
rate and that, as a result, a maximum ε corresponds to a
maximum (with negative sign) in dμ/dt . This result, which is
confirmed by direct numerical simulations (Fig. 10), could
allow the determination of ε in a laboratory experiment,
where average viscosity is being measured at discrete time
intervals.

VII. DISCUSSION AND CONCLUSIONS

Viscous fingering acts as an agent for enhanced mixing
by creating additional interfacial area and disorder in the
flow field. The rate of mixing quantified through the mean
scalar dissipation rate, ε, increases at early times as addi-
tional interface is created through finger stretching and tip-
splitting.

The impact of the viscous instability on mixing, however, is
nontrivial. For moderate viscosity contrasts (roughly M < 10,
or R < 2.5), larger M implies a larger increase in ε due
to fingering, and, therefore, faster mixing. However, as M

is increased beyond a value of 10, channeling of the less
viscous fluid starts to dominate the flow, leading to flow
focusing across the entire flow domain and inhibiting the
growth of adjacent fingers. As a result of this channeling
phenomenon, which slows down the creation of additional
interface area, growth in ε is not only delayed but also
limited in the magnitude (Fig. 11). Hence, in this regime of
very large viscosity contrast, mixing is less efficient. Fastest
mixing is achieved at an optimum viscosity ratio that maxi-
mizes the creation of fluid-fluid interfacial area across which
diffusive mixing takes place. Channeling and tip-splitting
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FIG. 11. (Color online) (a) Evolution of the mean scalar dissipation rate ε. (b) Evolution of the degree of mixing χ = 1 − 4σ 2. (c) Crossplot
of σ 2 − ε, for different values of the viscosity ratio, and Pe = 104. The largest hump in dissipation rate, which leads to fastest initial mixing,
occurs for R ∼ 2.5.
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play an important role in this balancing act, which makes
degree of mixing a nonmonotonic function of the viscosity
contrast.

In this article, we presented an upscaled model of fingering-
driven mixing under the assumption of statistical homogeneity.
The model captures the characteristic stretching of the material
interface over which diffusive mixing takes place. It takes the
form of two coupled ODEs to be solved for the concentration
variance and mean dissipation rate. At the heart of the
model, which is inspired by turbulence modeling, is the
recognition that the properties of the velocity field (through
modeling of the mechanical dissipation rate) are essential in
the homogenization of concentration gradients. We guided and
validated the model by means of direct numerical simulations

of miscible viscous fingering over a large range of viscosity
ratios and Péclet numbers. For values of the viscosity ratio
larger than 20, the traditional (and very efficient) stream
function-vorticity formulation is numerically unstable. We
used a high-resolution implicit mobility numerical method
that, while being computationally more expensive, guarantees
stability and allowed us to obtain fully resolved simulations of
the fingering phenomenon.
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