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Studying flow close to an interface by total internal reflection fluorescence cross-correlation
spectroscopy: Quantitative data analysis
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Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov
et al., Optics Express 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic
flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only
for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation
functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and
the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling
of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions,
in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian
dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second,
these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order
to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The
approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate
computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to
be smaller than 10 nm, and, within the limitations of the experiments and the model, indistinguishable from zero.
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I. INTRODUCTION

A good understanding of liquid flow in confined geometries
is not only of fundamental interest, but also important for a
number of industrial and technological processes, such as flow
in porous media, electro-osmotic flow, particle aggregation or
sedimentation, extrusion, and lubrication. It is also essential
for the design of micro- and nanofluidic devices, e.g., in
“lab-on-a-chip” applications. However, in all these cases, an
accurate quantitative description is possible only if the flow
at the interface between the liquid and the solid is thoroughly
understood [1–10]. Although for many years the so-called
no-slip boundary condition (relative velocity at the interface
equal to zero) had been successfully applied to describe
macroscopic flows, more recent investigations revealed that
this condition is insufficient to describe the physics when flows
through channels with micro- and nanosizes are considered
[4,5]. On such small scales, the relative contribution from
a residual slip between liquid and solid becomes important.
This is commonly described by the so-called slip boundary
condition, which is characterized by a nonvanishing slip length
ls , defined as the ratio of the liquid dynamic viscosity and the
friction coefficient per unit area at the surface. An equivalent
definition is obtained by taking the ratio of the finite surface
flow velocity, the so-called slip velocity vs , and the shear
rate at the surface: ls = vs/(dv/dz)z=0, where z is the spatial
direction perpendicular to the surface, located at z = 0. This
boundary condition is the most general one that is possible
within the framework of standard hydrodynamics [11]; the
no-slip condition is simply the special case ls = 0.

The experimental determination of the slip length, however,
is challenging, since high-resolution techniques are needed to
gain sufficiently accurate information close to the interface.
Hence, the existence and the magnitude of slip in real physical
systems, as well as its possible dependence on the surface

properties, are highly debated in the community, and no
consensus has been reached so far. Clearly a resolution
of these controversies requires further improvement of the
experimental techniques.

To date, two major types of experimental methods, often
called direct and indirect, have been applied to study boundary
slip phenomena. In the indirect approach, an atomic force
microscope or a surface force apparatus is used to record the
hydrodynamic drainage force necessary to push a micron-sized
colloidal particle versus a flat surface as a function of their
separation [12,13]. The separation can be measured with
subnanometric resolution, and the force with a resolution in
the pN range. A high force is necessary to squeeze the liquid
out of the gap if the mobility of the liquid is small. Conversely,
if the liquid close to the surface can easily slip on it, then a
small force is necessary. From this empirical observation a
quantitative value of the slip length can be deduced using an
appropriate theoretical model [2,6,14]. Although this approach
is extremely accurate at the nanoscale, it does not measure the
flow profile directly.

Direct experimental approaches to flow profiling in mi-
crochannels are commonly based on various optical methods
to monitor fluorescent tracers moving with the liquid. Basically
they can be divided into two subcategories.

The imaging-based methods use high-resolution optical
microscopes and sensitive cameras to track the movement
of individual tracer particles via a series of images [15–21].
Although providing a real “picture” of the flow, the imaging
methods have also some disadvantages related mainly to the
limited speed and sensitivity of the cameras: Relatively big
tracers are needed, the statistics is rather poor, and large tracer
velocities cannot be easily measured.

In the fluorescence correlation spectroscopy (FCS)-based
methods the fluctuations of the fluorescent light emitted by
tracers passing through a small observation volume (typically
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the focus of a confocal microscope) are measured [22]. Using
correlation analysis and an appropriate mathematical model
the tracers’ diffusion coefficient and flow velocity can be
evaluated [23–26]. In particular, the so-called double-focus
fluorescence cross-correlation spectroscopy (DF-FCCS) that
employs two observation volumes (laterally shifted in flow
direction) is a powerful tool for flow profiling in microchannels
[27–30]. Due to the high sensitivity and speed of the used
photo detectors (typically avalanche photodiodes) in the FCS-
based methods even single molecules can be used as tracers.
Furthermore, the evaluation of the velocity is based on large
statistics, and high tracer velocities can be measured.

During the last two decades both the imaging and the
FCS methods were well developed to the current state that
allows fast and accurate measurements of flow velocity profiles
in microchannels. The situation, however, is different when
the issue of boundary slip is considered. Because of the
limited optical resolution imposed by the diffraction limit,
it is commonly believed that these methods are less accurate
than the force methods discussed above and cannot detect
a slip length in the tens of nanometers range. On the other
hand, the possibility to directly visualize the flow makes the
optical methods still attractive, and thus continuous efforts
were undertaken to improve their resolution. One of the
most successful approaches in this endeavor is total internal
reflection microscopy (TIRM) [31], which uses total internal
reflection at the interface between two media with different
refractive indices, like, e.g., glass and water. This creates an
evanescent wave that extends into the liquid in a tunable
region of less than ∼200 nm from the interface. Optical
excitation of the fluorescent tracers is then possible only
within this narrow region. During the last few years TIRM
was successfully applied to improve the resolution of particle
imaging velocimetry close to liquid-solid interfaces [18–21],
and slip lengths in the order of tens of nanometers were
evaluated. With respect to FCS, however, TIR illumination
had, until recently, been limited to diffusion studies only
[32,33], while there were no reports on TIR-FCS based
velocimetry and slip length measurements.

With this in mind, we have recently developed a new
experimental setup that combines for the first time TIR
illumination with DF-FCCS for monitoring a liquid flow close
to a solid surface [34]. Such a combination offers high normal
resolution, extreme sensitivity (down to single molecules),
good statistics within relatively short measurement times,
and the possibility of studying fast flows. Our preliminary
studies have shown, however, that the accurate quantitative
evaluation of the experimental data obtained with this TIR-
FCCS setup is not straightforward because the model functions
needed to fit the auto- and cross-correlation curves (and
extract the flow velocity profile) are not readily available.
The standard analytical procedure to derive these functions
is the following [27–29]: (1) solve the convection-diffusion
equation with respect to the concentration correlation function,
(2) insert the derived solution in the corresponding correlation
integral, and (3) solve it to finally get the explicit form of the
correlation functions. This procedure was successfully used
by Brinkmeier et al. [27] to derive analytical expressions
for the auto- and cross-correlation functions obtained with
double focus confocal FCCS (i.e., with focused laser beam

illumination as opposed to the evanescent wave illumination
in our case), where it was assumed that the flow velocity and
tracer concentration are spatially constant, which simplifies the
calculation substantially. Such an assumption is reasonable if
the observation volumes (laser foci) are far away from the
channel walls, in the same distance. In the case of TIR-
FCCS, however, the situation is different: The experiments
are performed in the proximity of the channel wall, and
the distribution of the flow velocity inside the observation
volume has to be considered. Furthermore, the concentration
of tracers may also depend on z due to electrostatic repulsion
or hydrodynamic effects. Finally the presence of a boundary,
which must also be taken into account in the theoretical
treatment, further complicates the problem. Therefore, a
faithful description of the physics of TIR-FCCS makes the
problem of calculating the correlation functions (rather likely)
unsolvable in terms of closed analytical expressions.

For this reason, we rather resort to numerical methods, and
in the present paper describe and test the procedure that we
have developed: We employ Brownian dynamics techniques to
simulate the tracers’ motion through the observation volumes
and generate “numerical” auto- and cross-correlation curves
that are consequently used to fit the corresponding experi-
mental data. This fitting is done via Monte Carlo importance
sampling in parameter space. The method is therefore fully
quantitative, while not being hampered by any difficulties
in doing analytical calculations. It should be noted that this
approach also provides a substantial amount of flexibility: The
details of the physical model are all encoded in the Brownian
dynamics simulation, which specifies how the tracer particles
move within the flow. In the present work we have assumed a
simple Couette flow with a finite slip length, while the particles
are described as simple hard spheres with no rotational
degree of freedom, and no interaction with the wall except
impenetrability. It is fairly straightforward to improve on these
limitations, by, e.g., including hydrodynamic and electrostatic
interactions with the wall, rotational motion of the spheres, or
polydispersity in the particle size distribution. Moreover, the
geometry of the observation volumes can be easily changed as
well, and we have made use of this possibility in our present
work, but only to some extent. Further refinements are left for
future work, in which the basic methodology would, however,
remain unchanged.

To test the accuracy of the newly developed TIR-FCCS
experimental setup and the numerical data evaluation proce-
dure, we have studied aqueous flow near a smooth hydrophilic
surface and evaluated the slip length to be between 0 and 10 nm
(however, with a systematic error that is hard to quantify, and
whose elimination would need a more sophisticated theoretical
model). It is commonly accepted [17,19–21,35–38] that the
boundary slip should be zero (or very small) in this situation.
Thus, our results indicate that TIR-FCCS offers unprecedented
accuracy in the 10 nm range for the measurement of slip
lengths by an optical method. We believe that our result for
the slip length will be fairly robust, even if the physical model
is refined further.

Section II outlines the experimental setup, while Sec. III
presents the experimental results and the numerical fits. We
find that the measured cross-correlation functions deviate
considerably from the model functions at short times, probably
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as a result of some optical effects that at present we do not fully
understand. However, we show a practical way to eliminate
such effects to a large extent, by means of a simple subtraction
scheme. The following parts then outline in detail how the
theoretical curves have been obtained: First, Sec. IV elucidates
the relation between the measured correlation functions and the
underlying dynamics of the tracer particles. We then proceed
to describe the Brownian dynamics algorithm to sample the
model correlation functions (Sec. V). Section VI then provides
a detailed theoretical analysis of our subtraction scheme. In
Sec. VII we describe the Monte Carlo method to find optimized
parameter values of our model. Section VIII then discusses our
results, in particular concerning the slip length; this is followed
by a brief summary of our conclusions (Sec. IX).

II. EXPERIMENTAL SETUP

Since the TIR-FCCS experimental setup has already been
described in great detail elsewhere [34], only a brief qualitative
overview of the basic ideas and quantities is given below. A
scheme of the experimental setup is shown in Fig. 1. It is
based on a commercial device (Carl Zeiss, Jena, Germany)
that consists of the FCS module ConfoCor2 and an inverted
microscope Axiovert 200. The TIR illumination is achieved by

FIG. 1. (Color) Scheme of the experimental TIR-FCCS setup.
BFP, back focal plane of the objective; DM, dichroic mirror; M50/50,
neutral 50% beam splitter; EF1 and EF2, emission filters; PH1 and
PH2, pinholes; APD1 and APD2, avalanche photodiodes; L1, tube
lens; L2, collimator lens; M, collimator’s prism-based mirror. Note
that the two spatially separated observation volumes are created by
shifting the pinholes PH1/PH2 in the x-y plane. The cyan color
indicates the excitation wavelength and the yellow-green color the
fluorescence light, respectively.

focusing the excitation laser beam (488 nm, Ar+ laser) on the
periphery of the back focal plane (BFP) of an oil immersion
microscope objective with numerical aperture NA = 1.46.
This leads to a parallel laser beam that emerges out of the
objective and then enters the rectangular flow channel through
its bottom wall (Fig. 1). By adjusting the angle of incidence
above the critical angle (≈61◦ for the glass-water interface)
total internal reflection is achieved. In this situation only an
evanescent wave extends into the liquid and can excite the
fluorescent tracers suspended in it. The intensity distribution
of this wave in the x-y plane (parallel to the interface) is
Gaussian with a diameter of ∼30 μm (at e−1). In the z direction
the intensity decays exponentially, I (z) = I0 exp(−z/dp). The
characteristic decay length dp, also called penetration depth,
depends on the laser wavelength λ, the refraction indices of
both media (n1 glass, n2 water) and can be varied in the range
80−200 nm by changing the angle of incidence. Thus the
evanescent wave can excite only the tracers flowing in the
proximity of the channel wall. The produced fluorescence
light is collected by the same microscope objective and is
equally divided by passing through a neutral 50% beam
splitter to enter two independent detection channels. In each
channel the fluorescent light passes through an emission
filter and a confocal pinhole to finally reach the detectors,
two single-photon-counting avalanche photodiodes (APD1,
APD2). The pinholes PH1 and PH2 define two observation
volumes that are laterally shifted with respect to each other
along the flow direction as schematically shown in Fig. 2.
The center-to-center distance sx between the two observation
volumes can be continuously tuned from 0 to 3 μm. The
signals from both channels are recorded and correlated to
finally yield the auto- and cross-correlation curves that contain
the entire information about the flow properties, slip length,
and shear rate, close to the interface

FIG. 2. (Color) The coordinate system and the linear flow field
employed in the TIR-FCCS experiment. W1 and W2 denote the shape
and location of the observation volumes as seen by pinhole PH1 and
pinhole PH2, respectively; dp is the penetration depth that defines the
axial extent of the observation volume; w0 is the typical extension of
the observation volumes in the x-y plane; sx indicates the observation
volume separation, center-to-center distance; vx is the velocity field
in the positive x direction, which depends linearly on z.
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The experiments were performed with a rectangular mi-
crochannel of Ly = 4 mm width, Lz = 100 μm height, and
Lx = 50 mm length fabricated using a three-layer sandwich
construction as described in earlier work [29,34]. The bottom
channel wall at which the TIR-FCCS experiments were
performed was a microscope cover slide made of borosilicate
glass with a thickness of 170 μm, cleaned with 2% aqueous
solution of Hellmanex and argon plasma. The root-mean-
square roughness of the glass surface was in the range of
0.3 nm and the water advancing contact angle below 5◦
(hydrophilic surface). The flow was induced by a hydrostatic
pressure gradient, created by two beakers of different heights,
where the water level difference was kept constant by a pump.
This allowed us to vary the shear rate near the wall in the range
0−5000 s−1.

Carboxylate-modified quantum dots (Qdot585 ITK car-
boxyl, Molecular Probes), with a hydrodynamic radius RH =
6.87 nm, were used as fluorescent tracers. The particles were
suspended in an aqueous solution of potassium phosphate
(K2HPO4) buffer (pH � 8.0, concentration 6 mM). The con-
centration of the quantum dots was found from our data
analysis (see below) as ∼30nM, corresponding to roughly
18 particles per (μm)3.

III. CORRELATION CURVES

The motion of the fluorescence tracers results in two
time-resolved fluorescence intensities I1(t) and I2(t), which
were measured with the two photo detectors. For the present
system, we may safely assume that it is ergodic and strictly
stationary on the time scale of the experiment, such that only
time differences matter [39]. Therefore, we may define the
intensity fluctuations via

δIi(t) = Ii(t) − 〈Ii〉, (1)

where 〈·〉 denotes a time average or, equivalently, an ensemble
average, and evaluate the time-dependent auto- and cross-
correlation functions via the definition

Gij (t) = 〈δIi(0)δIj (t)〉
〈Ii〉〈Ij 〉 . (2)

It should be noted that possible small differences in the
sensitivity of the photo detectors or in the illumination of
the pinholes cancel out, since in Eq. (2) only ratios of
intensities occur. G11 and G22 are the two autocorrelation
functions of pinholes 1 and 2, respectively, while G12 and
G21 are the forward and backward cross-correlation functions,
respectively. It should be noted that in the presence of flow G12

and G21 differ substantially. In the limit of the two pinholes
being located at the same position, the intensities I1 and I2

coincide, such that in this case all four entries of the matrix
Gij are identical.

Figure 3 summarizes our experimental results for the Gij

and/or linear combinations thereof. Concerning the autocor-
relation curves G11 and G22, we find that they are practically
identical, which means that for the modeling it is safe to assume
that both pinholes have the same properties. This is clearly
shown in part (a), where one sees that G11 − G22 differs only
marginally from zero (while in our model we have anyway
strictly G11 = G22). Therefore, we just used the arithmetic

mean (G11 + G22)/2 [part (b)] as autocorrelation input for our
fits, while we discarded the G11 − G22 data. Concerning the
cross-correlations, one sees that the forward function G12 [see
part (c)] exhibits a pronounced peak, which is indicative of the
typical time that a particle needs to travel from observation
volume 1 to observation volume 2. Another striking feature
of G12 is the large plateau for small times. At such short
times, the particles have essentially not moved at all. Hence the
plateau indicates that a particle is able to send photons to both
detectors from essentially the same position, or, in other words,
that the effective observation volumes must overlap quite
substantially. This overlap effect, then, of course, also shows
up in the backward correlation function G21 [see part (d)] at
short times, with precisely the same plateau value. Therefore,
such overlap effects essentially cancel out when considering
the difference G12 − G21 instead [see part (f)], while of course
they are strongly present in the mean (G12 + G21)/2 [see
part (e)].

Obviously, the source of the overlap must be an effect of
the optical imaging system, which is, of course, somewhat
complicated, due to the many components that are involved.
However, beyond this general statement we have unfortunately
so far been unable to trace its precise physical origin, and
therefore also have been unable to construct a fully consistent
model for the observation volumes. The simple models that
we have considered in our present work are not fully adequate,
meaning that they systematically underestimate the amount of
overlap, unless one assumes highly unphysical parameters,
which would cause other aspects of the modeling to fail
completely. It should be noted that similar overlap effects are
also present in standard double-beam FCCS [22]; however,
the underlying physics for that setup is slightly different, and
the modeling used there cannot be simply transferred to our
system.

Fortunately, however, our best model for the observation
volumes is at least physical enough such that it can describe
not only the autocorrelation functions [see part (b)] but also the
overlap-corrected difference G12 − G21 [part (f)] reasonably
well, while still failing to describe the mean (G12 + G21)/2
[part (e)]. For this reason, our fitting procedure altogether
takes into account the linear combinations (G11 + G22)/2
and G12 − G21, while deliberately discarding the data on
(G12 + G21)/2 and G11 − G22. This is nicely borne out in
Fig. 3, which shows not only the experimental data, but also the
result of our theoretical modeling for optimized parameters.

The fact that the success of the modeling depends crucially
on an accurate description of the observation volumes is
strongly underpinned by parts (g) and (h) of Fig. 3. The
experimental data for (G12 + G21)/2 and G12 − G21 are again
the same, but the theoretical model uses a different functional
form for the observation volumes, whose performance is
obviously significantly poorer: Not only is the overlap plateau
[part (g)] underestimated even more strongly than for the better
model [part (e)], but also in the overlap-corrected function
G12 − G21 [part (h)] are the deviations from the experimental
data much more pronounced than for the better model [part (f)].
It should also be noted that the autocorrelation functions are
much less sensitive to these details; the autocorrelation curve
for the poorer model (data not shown) fits the experiments as
well as the better one [part (b)].
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FIG. 3. (Color online) Correlation functions Gij as defined in the text, and linear combinations thereof, comparing the experimental data
(with error bars) with the numerical fit functions (without) for an optimized parameter set. The statistical error of the numerical data is smaller
than the line width. Parts (a)–(f) have been obtained by modeling the observation volumes by Eq. (9), and for parts (g) and (h) we have assumed
a Gaussian form [Eq. (6)].

IV. CORRELATION FUNCTIONS AND PARTICLE
DYNAMICS

A. Molecular detection efficiency

The fluorescence particles pass consecutively through the
two observation volumes W1 and W2 (Fig. 2). The observation
volume of each pinhole is given by the space-dependent
molecular detection efficiency (MDE) function. It depends

on the excitation intensity profile Iz(z), and the collection
efficiency of the objective plus detector system. In essence,
the function W1(r) denotes the probability density for the
event that a fluorescence photon emitted from a particle at
position r will pass through pinhole 1 and reach detector 1.
Similarly, W2(r) is the analogous function for pinhole 2. Since
the intensity of the evanescent wave decays exponentially with
a penetration depth dp (of order 100 nm), and the observation

066306-5
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volumes are displaced with respect to one another by a distance
sx (roughly 800 nm), we assume the functional form

W1(r) = Wxy(x,y)d−1
p exp

(
− z

dp

)
, (3)

W2(r) = Wxy(x − sx,y)d−1
p exp

(
− z

dp

)
, (4)

where normalization of the probability densities implies∫ ∞

−∞
dx

∫ ∞

−∞
dyWxy (x,y) = 1. (5)

In general the function Wxy is given by the convolution of
the pinhole image in the sample space with the point-spread
function (PSF) of the objective. However, one simple and
widely used approximation, valid for pinholes equal or smaller
than the Airy unit of the system, assumes that Wxy is a Gaussian
function [22,32,40]:

Wxy(x,y) = 2

πw2
0

exp

(
−2

x2 + y2

w2
0

)
; (6)

a typical value for the width that we obtain from fitting is
w0 � 250 nm.

A substantially better description of Wxy can be obtained by
considering the explicit form of the PSF [41,42]. However, this
form is described with complex mathematical equations and
is often approximated by a squared Bessel function [40,41,43]

PSFxy ∝
[

2J1(q)

q

]2

, (7)

where J1 denotes the first Bessel function and

q = k NA
√

x2 + y2 = 2π

λ
NA

√
x2 + y2. (8)

Here λ is the wavelength of the fluorescent light (in our
case 600 nm). The Bessel PSF implicitly assumes a paraxial
approximation (i.e., small NA). While this assumption is
probably not the best for confocal microscopy, it is certainly
more accurate than a simple Gaussian PSF [40,41].

As mentioned above, in order to describe what a pinhole
sees one must calculate the convolution of the PSF of the
objective with the pinhole image in the sample space. The
geometrical image of the pinhole is simply obtained by
dividing the physical size of the pinhole (physical radius =
50 μm) by the total magnification of the system (in our case
≈333). This results in a radius RPH in the sample space of
approximately 150 nm. Therefore the total model MDE is
given by Ref. [40]

Wxy(x,y) =
(

k NA

2πRPH

)2 ∫
|r0|�RPH

d2r0

[
2J1(q)

q

]2

, (9)

where

q = k NA
√

(x − x0)2 + (y − y0)2. (10)

The convolution integral is difficult to evaluate analytically,
but easy to calculate numerically. To this end, we use
dimensionless length units in which the factor kNA is unity.
In these dimensionless units, RPH takes the value 2.3 for
the parameters given above, which is the value we have
used throughout our study. We call this function (9) the
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FIG. 4. (Color online) Comparison of the two normalized MDEs
used in our study, for the optimized parameters of Fig. 3, using the
natural unit system of the PCBPSF.

“pinhole-convoluted Bessel point spread function” (PCBPSF),
which we calculated in dimensionless units once and for all,
and stored as a table. During the actual data analysis, the
transformation factor from dimensionless units to real units
was used as a fit parameter, in analogy to w0 for the Gaussian
model. It should be noted that the PCBPSF decays for large
distances like (x2 + y2)−3/2, therefore providing much more
overlap than the Gaussian model.

In the present work, we have studied both models, the
“Gaussian” model according to Eq. (6), as well as the PCBPSF
model according to Eq. (9). The corresponding correlation
curves have already been presented in Fig. 3. The correspond-
ing MDEs are shown in Fig. 4. One sees that the PCBPSF
model puts much more statistical weight into the tail of the
distribution than the Gaussian model. As already discussed
above, we found the Gaussian model to perform less well than
the PCBPSF model, since it underestimates the overlap even
more severely than the latter. In what follows, we will present
data always for the PCBPSF model, unless stated differently.

B. Theory of correlation functions

The dynamics of the tracer particles is described by the
space- and time-dependent concentration (number of particles
per unit volume) C(r,t), its fluctuation

δC(r,t) = C(r,t) − 〈C〉, (11)

and the concentration correlation function

�(r,r ′,t) = 〈δC(r,t)δC(r ′,0)〉; (12)

note that translational invariance applies only to time, but not to
space, due to the presence of the flow and the surface. At time
t = 0, this reduces to the static correlation function, for which
we simply assume the function pertaining to an ideal gas:

�(r,r ′,0) = 〈C〉δ(r − r ′). (13)

Note that this assumption implies that we consider the
particles as point particles, with no interaction with the
surface except impenetrability, and no interaction between
each other, due to dilution.
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As described in Ref. [22], the correlation functions are
related to � via

Gij (t) =
∫ ∫

d3rd3r ′Wi(r ′)Wj (r)�(r,r ′,t)
〈C〉2

[ ∫
d3rWi(r)

][ ∫
d3rWj (r)

]
= 〈C〉−2

∫ ∫
d3rd3r ′Wi(r ′)Wj (r)�(r,r ′,t), (14)

where in the second step we have taken into account the
normalization of the Wi . Therefore, the obvious strategy for
analyzing the experimental data is to (1) evaluate � within a
model for the particle dynamics, (2) evaluate the integrals in
Eq. (14) to obtain a theoretical prediction for Gij for a given
set of parameters, (3) compare the prediction with the data,
and (4) optimize the parameters. The normalizing prefactor
〈C〉−2 is not known very accurately and will hence be treated
as a fit parameter.

The tracer particles undergo a diffusion process and move
in an externally driven flow field v. Hence, we describe the
concentration correlation function by a convection-diffusion
equation of the form

∂t�(r,r ′,t) = D∇2
r �(r,r ′,t) − ∇r · v(r)�(r,r ′,t), (15)

which needs to be solved for z � 0,z′ � 0 with the initial
condition Eq. (13) and the no-flux boundary condition at the
surface,

∂z�(r,r ′,t)|z=0 = 0, (16)

which imposes that there is no diffusive current entering the
solid. For reasons of simplicity, the hydrodynamic interactions
with the surface are neglected, and hence the diffusive term is
described only by an isotropic diffusion constant D.

Since in the experiment the exponential decay length of
the spatial detection volume normal to the surface is in the
range of 100−200 nm, while the channel size is three orders
of magnitude larger, it is justified to assume the flow field to
be approximately linear. For our geometry, this implies

v(r) = γ̇
↔
ε · (r + ls êz), (17)

where ls is the slip length, γ̇ = ∂vx/∂z is the constant shear
rate, êz denotes the unit vector in the z direction, and

↔
ε =

êx ⊗ êz is the dimensionless rate-of-strain tensor.
At this point, it is useful to redefine the coordinate system

in such a way that the finite hard-sphere radius R of the tracer
particles (roughly 7 nm) is taken into account. We therefore
identify z = 0 no longer with the interface, but rather with the
z coordinate of the particle center at contact with the interface.
In this new coordinate system, the flow field is given by

v(r) = γ̇
↔
ε · [r + (ls + R)êz]; (18)

i.e., we simply have to add the particle radius to the slip
length. The functional form of the observation volumes W1

and W2 remains unchanged, since the z dependence is just
an exponential decay, such that a shift in the z direction just
results in a constant prefactor that can be absorbed in the
overall normalization. Our method therefore does not yield a
value for ls , but rather only for the combination ls + R.

As mentioned previously, for some special cases the
convection-diffusion equation can be solved analytically, for

example, in the case of uniform or linear flow in bulk, i.e.,
far away from surfaces [27,29,44,45], or for pure diffusion
close to the wall, but without any flow field [33,46]. For our
case, however, it is not easy, or even impossible, to find such
a solution. Therefore the aim of the next sections will be
to construct a stochastic numerical method. Concerning the
problems that were mentioned after Eq. (14), (1) and (2) can
be solved by Brownian dynamics, while problems (3) and (4)
are tackled by a Monte Carlo algorithm in parameter space.

V. SAMPLING ALGORITHM

Brownian motion of particles under the influence of external
driving is described by a Fokker-Planck equation [47–51],
which has exactly the same form as the convection-diffusion
equation, Eq. (15), the only difference being that � is
replaced by the so-called propagator P (r,t |r ′,0), which is the
conditional probability density for the particle motion r ′ → r
within the time t . P and � describe the same physics and
are actually identical except for a trivial normalization factor,
� = 〈C〉P . We can therefore rewrite Eq. (14) as

〈C〉Gij (t) =
∫ ∫

d3rd3r ′Wi(r ′)Wj (r)P (r,t |r ′,0). (19)

As is well known, the Fokker-Planck equation is equivalent
to describing the particle dynamics in terms of a Langevin
equation

ṙ(t) = v[r(t)] + η(t). (20)

Here ṙ(t) is the tracer velocity, v is the deterministic (external)
velocity imposed by the flow, while η is a stochastic Gaussian
white noise term that describes the diffusion:

〈ηα(t)〉 = 0, (21a)

〈ηα(t ′)ηβ(t)〉 = 2Dδαβδ(t ′ − t). (21b)

Here α,β = x,y,z are Cartesian indices, and δαβ is the
Kronecker delta. We solve this Langevin equation numerically
by means of a simple Euler algorithm [49] with a finite time
step �t :

r(t + �t) = r(t) + �tv[r(t)] +
√

2D�tχ , (22)

where χ = (χx,χy,χz) is a vector of mutually independent
random numbers with mean 0 and variance 1. The boundary
condition at the wall is taken into account by a simple reflection
at z = 0; i.e., a particle that, after a certain time step, has
entered the negative half-space z < 0 is subjected to z → −z

before the next propagation step is executed.
Now, let us consider a computer experiment where, at time

t = 0, we place a particle randomly in space, with probability
density ρ0(r ′), and then propagate it stochastically according
to Eq. (22). The probability density for it reaching the position
r after the time t is then given by

Q(r,t) =
∫

d3r ′P (r,t |r ′,0)ρ0(r ′). (23)

If we now consider an observable A, which is some function
of the particle’s coordinate, A = A(r), and study the time

066306-7
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evolution of its average, then this is obviously given by

〈A〉(t) = 〈A[r(t)]〉
=

∫
d3rA(r)Q(r,t)

=
∫ ∫

d3rd3r ′A(r)P (r,t |r ′,0)ρ0(r ′). (24)

Therefore, if we set ρ0 = Wi and A = Wj , then 〈A〉 is
identical to the rescaled correlation function 〈C〉Gij . In other
words, we place the particle initially with probability density
Wi , then generate a stochastic trajectory via Eq. (22), and
evaluate Wj for all times along that trajectory. This yields a
function Wj (t) for that particular trajectory. This computer
experiment is repeated often, and averaging Wj (t) over all
trajectories yields directly a stochastic estimate for the (unnor-
malized) correlation function Gij . Of course, these estimates
will have statistical error bars, just as the experimental ones;
however, we sample several hundred thousand trajectories,
such that the numerical errors are substantially smaller than
the experimental ones. In principle, the numerical data are also
subject to a systematic discretization error as a result of the
finite time step; however, by choosing a small value for �t we
have made sure that this is still small compared to the statistical
uncertainty. Note also that our approach implements an opti-
mal importance sampling [52] with respect to the t = 0 factor
Wi , but not with respect to Wj . In practical terms, our straight-
forward sampling scheme turned out to be absolutely adequate.

The simulations were run using a “natural” unit system
where length units are defined by setting dp to unity, while
the time units are given by setting the diffusion constant D to
unity. The time step was fixed in physical units to a value of at
most 2 μs (it was dynamically adjusted in order to match the
nonequidistant experimental observation times), which, for all
parameters, is much smaller than unity in dimensionless units.
Obviously, this is small enough to represent the stochastic
part of the Langevin update scheme with sufficient accuracy.
For typical parameters (D = 35 μm2/s, dp = 0.1 μm, γ̇ =
4 × 103 s−1), the dimensionless unit time corresponds to
� 0.3 ms, such that the resulting value for the dimensionless
shear rate (�1.2) is of order unity as well. Since dp (or
unity, in dimensionless units) defines the z range in which the
statistically relevant part of the simulation takes place, we find
that typical flow velocities in dimensionless units are also of
order unity. This shows that the time step is also small enough
for the deterministic part of the Langevin equation. We also
see that the experiment is neither dominated by diffusion nor
by convection, and therefore the analysis needs to take into
account both.

As a simple test case, we used our algorithm to calculate the
autocorrelation function for vanishing flow and the Gaussian
model for the observation volume, where an analytical solution
is known [33,46]. In our dimensionless units, it is, up to a
constant prefactor, given by

G(a)(t)

=
(

1 + 4t

w2
0

)−1 [
(1 − 2t) exp(t)erfc(

√
t) +

√
4

π
t

]
.

(25)

G
(t

)

t
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analytic
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FIG. 5. (Color online) Analytical solution and simulated data for
an average over 103 trajectories.

Figure 5 shows the analytic autocorrelation function with
w0 = 2 and its simulated counterpart, averaged over 103

independent trajectories, where a small time step of �t = 10−3

(in dimensionless units) was used. In Fig. 6 the deviation of the
simulated data (G(s)) from the analytic expression is shown,

error(t) = G(s)(t) − G(a)(t). (26)

Clearly, the numerical solution converges to the analytical
result when the number of trajectories is increased, as it should
be.

VI. SUBTRACTION SCHEME

At this point, it is worthwhile to reconsider the subtraction
procedure introduced in Sec. III. To this end, we assume
that the true functions Wi differ somewhat from the model
functions, which we will denote by W

(m)
i . This is most easily

parameterized by the ansatz

Wi = (1 − ε) W
(m)
i + εW̃i, (27)

where Wi , W
(m)
i , and W̃i are all normalized to unity, while ε is

a (hopefully) small parameter. For the purposes of the present
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FIG. 6. (Color online) Deviation from the analytic curve for 103,
104, and 105 trajectories.
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analysis, we also assume that the Brownian dynamics model
is a faithful and correct description of the true dynamics, i.e.,
that the difference between Wi and W

(m)
i is the only reason for

a systematic deviation between simulation and experiment.
Inserting Eq. (27) into Eq. (19), we thus find

〈C〉Gij (t)

= (1 − ε)2
∫ ∫

d3rd3r ′W (m)
i (r ′)W (m)

j (r)P (r,t |r ′,0)

+ ε(1 − ε)
∫ ∫

d3rd3r ′W (m)
i (r ′)W̃j (r)P (r,t |r ′,0)

+ ε(1 − ε)
∫ ∫

d3rd3r ′W̃i(r ′)W (m)
j (r)P (r,t |r ′,0)

+ ε2
∫ ∫

d3rd3r ′W̃i(r ′)W̃j (r)P (r,t |r ′,0). (28)

Since we treat 〈C〉 as an adjustable parameter, it makes sense
to view the first term (including the prefactor (1 − ε)2) as the
theoretical model for the correlation function, 〈C〉G(m)

ij (t). For
the deviation between experiment and theory we then obtain,
neglecting all terms of order ε2,

Kij := ε−1〈C〉(Gij − G
(m)
ij

)
=

∫ ∫
d3rd3r ′W (m)

i (r ′)W̃j (r)P (r,t |r ′,0)

+
∫ ∫

d3rd3r ′W̃i(r ′)W (m)
j (r)P (r,t |r ′,0), (29)

and for its antisymmetric part

Kij − Kji

=
∫ ∫

d3rd3r ′[W (m)
i (r ′)W̃j (r) − W

(m)
i (r)W̃j (r ′)

]
×P (r,t |r ′,0) −

∫ ∫
d3rd3r ′[W (m)

j (r ′)W̃i(r)

−W
(m)
j (r)W̃i(r ′)

]
P (r,t |r ′,0). (30)

The terms in square brackets are antisymmetric under the
exchange r ↔ r ′, and hence P can be replaced by its
antisymmetric part

Pa(r,r ′,t) = P (r,t |r ′,0) − P (r ′,t |r,0). (31)

Exchanging the arguments in the second terms within the
square brackets then yields

1

2
(Kij − Kji)

=
∫ ∫

d3rd3r ′W (m)
i (r ′)W̃j (r)Pa(r,r ′,t)

−
∫ ∫

d3rd3r ′W (m)
j (r ′)W̃i(r)Pa(r,r ′,t). (32)

This is clearly a nonzero contribution. In other words, the
subtraction scheme (i.e., studying G12 − G21 instead of G12)
does not provide a consistent cancellation procedure such that
the first-order deviation would vanish. However, in practical
terms the deviation is much smaller than for the original data
(G12 and G21), for which Eq. (29) applies. To some extent,
this is so because the error is the difference of two terms,

but mostly it is due to the fact that not the full propagator
P contributes, but rather only its antisymmetric part Pa . For
short times the dynamics is dominated by diffusion, i.e., P

is essentially symmetric, or Pa ≈ 0. At late times, we again
expect Pa to become quite small [exponentially damped,
see Eq. (34)], although we have no rigorous proof for this.
Therefore one should expect that the strongest deviation occurs
at intermediate times where Pa is maximum. This time scale is
not given by the optical geometry but rather by the dynamics;
dimensional analysis then tells us that this time must be
of order D/v2. For typical parameters of our experiment
(D = 35 μm2/s, v = 4 × 102 μm/s) we obtain a value of
roughly 0.2ms, which fits quite well to the observations one can
make in Fig. 3, part (h). At such times, we expect that the main
contribution to K12−K21 comes from the first term of Eq. (32)
(downstream vs upstream correlation) and that Pa is positive
for most of the relevant arguments. Therefore, one should
expect that the experimental data should lie systematically
above the theoretical predictions, which is indeed the case.
Our expectations concerning the behavior of Pa come from
studying the simple case of one-dimensional diffusion with
constant drift without boundary conditions; here one has

P (x,t |x ′,0) = 1√
4πDt

exp

[
− (x − x ′ − vt)2

4Dt

]
(33)

and

Pa(x,x ′,t) = 2√
4πDt

exp

[
− (x − x ′)2

4Dt

]

× exp

(
−v2t

4D

)
sinh

[
(x − x ′)v

2D

]
. (34)

VII. STATISTICAL DATA ANALYSIS

A. Monte Carlo algorithm

For the model that we consider in the present paper, the
space of fit parameters is (in principle) seven-dimensional. We
have three lengths that define the geometry of the optical setup,
dp, sx , and w0 (Gaussian model) or (k NA)−1 (diffraction
model). Three further parameters define the properties of the
flow and the diffusive dynamics of the tracers; these are the
diffusion constant D, the shear rate γ̇ , and the slip length plus
particle radius ls + R. Finally, there is the concentration of
tracer particles 〈C〉, which serves as a global normalization
constant. The functions to be fitted are (G11 + G22)/2 and
G12 − G21. However, we have seen in Sec. VI that the nonide-
alities in modeling the observation volumes do have an effect
on the normalizations, and therefore we allowed one separate
normalization constant 〈C〉 for each of the curves (〈C〉A for
the autocorrelation and 〈C〉C for the cross-correlation), in
order to partly compensate for these nonidealities. Therefore,
our parameter space is finally eight-dimensional. The strategy
that we develop in the present section aims at adjusting all
parameters simultaneously in order to obtain optimum fits.
For the further development, it will be useful to combine
all the parameters into one vector �. Furthermore, for each
parameter we can, from various physical considerations, define
an interval within which it is allowed to vary (because values
outside that interval would be highly unreasonable or outright
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unphysical). This means that we restrict the consideration to a
finite eight-dimensional box �� in parameter space.

A central ingredient of our approach is the fact that both
the experimental data and the simulation results have been
obtained with good statistical accuracy (�2.5 × 105 trajecto-
ries for the simulations, 40 independent measurements for the
experiments). This does allow us not only to obtain rather small
statistical error bars, but also (even more importantly) to rely on
the asymptotics of the Central Limit Theorem, i.e., to assume
Gaussian statistics throughout. For both correlation curves and
each of the considered times, we have both an experimental
data point Ei and a simulated data point Si , where the index
i simply enumerates the data points. Both Ei and Si can be
considered as Gaussian random variables with variances σ 2

E,i

and σ 2
S,i , respectively. Then

�̃i = Si − Ei√
σ 2

S,i + σ 2
E,i

(35)

is again a Gaussian random variable, whose variance is simply
unity, 〈

�̃2
i

〉 − 〈�̃i〉2 = 1. (36)

Therefore, �̃i is, in principle, a perfect variable to measure the
deviation between simulation and experiment. Unfortunately,
however, the parameters σS,i and σE,i are not known. What
is rather known are their estimators sS,i and sE,i , as they
are obtained from standard analysis to calculate error bars.
Therefore, we rather consider

�i = Si − Ei√
s2
S,i + s2

E,i

. (37)

The statistical properties of this variable, however, are in the
general case unknown [53]. It is only in the case of rather
good statistics (as we have realized it) that we can ignore
the difference between σ and s, and simply assume that �i

is indeed a Gaussian variable with unit variance. It is at this
point where the statistical quality of the data clearly becomes
important.

If M is the total number of data points, then

H = 1

2

M∑
i=1

�2
i (38)

is obviously a quantity that measures rather well the deviation
between experiment and simulation. In principle, the task is to
pick the parameter vector � in such a way thatH is minimized.
We have deliberately chosen the symbol H in order to point
out the analogy to the problem of finding the ground state of
a statistical-mechanical Hamiltonian. In case of a perfect fit,
we have 〈Si〉 = 〈Ei〉 or 〈�i〉 = 0, implying 〈H〉 = M/2. In
the standard nomenclature of fitting problems, 2H is called
“chi squared.” We also introduce ξ = 2H/M , which we will
call the “goodness of simulation” (standard nomenclature: “chi
squared per degree of freedom”).

For optimizing �, we obviously need to consider H as a
function of �. In this context, it turns out that it is important
to be able to consider it as a function of only �, and to
make sure that this dependence is smooth. For this reason,

we use the same number of trajectories when going from one
parameter set to another one, and use exactly the same set of
random numbers to generate the trajectories. In other words,
the trajectories differ only due to the fact that the parameters
were changed. Therefore, both Si and sS,i are smooth functions
of the parameters, and H is as well.

In order to find the optimum parameter set, one could, in
principle, construct a regular grid in �� and then evaluate H
for every grid point. However, for high-dimensional spaces
(and eight should in this context be viewed as already a fairly
large number, in particular when taking into account that it
is bound to increase further as soon as more refined models
are studied), it is usually more efficient to scan the space by
an importance-sampling Monte Carlo procedure based upon a
Markov chain [52]. Applying the standard Metropolis scheme
[52], we thus arrive at the following algorithm:

(1) Choose some start vector �. This should be a reasonable
set of parameters, perhaps preoptimized by simple visual
fitting.

(2) From the previous set of parameters, generate a trial
set via �′ = � + ��, where �� is a random vector chosen
from a uniform distribution from a small subbox aligned with
��.

(3) If the new vector is not within ��, reject the trial set
and go to step 2.

(4) Otherwise, calculate both Peq(�′) and Peq(�), as well
as the Metropolis function

m = min[1,Peq(�′)/Peq(�)], (39)

where Peq is the “equilibrium” probability density of �,
i.e., the desired probability density towards which the Markov
chain converges (more about this below).

(5) Accept the trial move with probability m (reject it with
probability 1 − m), count either the accepted or the old set as
a new set in the Markov chain, and go to step 2.

(6) After relaxation into equilibrium, sample desired prop-
erties of the distribution of �, like mean values, variances,
covariances, etc., by simple arithmetic means over the param-
eter sets that have been generated by the Markov chain. This
allows the estimation of not only the physical parameters, but
at the same time also of their statistical error bars.

The scheme is defined as soon as Peq is specified. Now, from
the considerations above, we know that in case of a perfect fit
the variables �i are independent Gaussians with zero mean
and unit variance. This implies (ignoring constant prefactors
which anyway cancel out in the Metropolis function)

Peq ∝
∏

i

exp

(
−1

2
�2

i

)

= exp

(
−1

2

∑
i

�2
i

)

= exp (−H) , (40)

which makes the interpretation in terms of statistical mechan-
ics obvious. Clearly, this form for Peq is the only reasonable
choice for implementing the Monte Carlo algorithm. After
relaxation into equilibrium, one should observe a ξ value of
roughly unity, while larger numbers indicate a nonperfect
fit (even after exhaustive Monte Carlo search), and thus
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deficiencies in the theoretical model. One should also be aware
that the equilibrium fluctuations of ξ are expected to be quite
small, since ξ is the arithmetic mean of a fairly large number
(M , the number of experimental data points) of independent
random variables.

In practice, we adjusted �� in order to obtain a fairly
large acceptance rate of roughly 0.6, . . . ,0.8. The Monte Carlo
algorithm was then run for more than 3 × 105 steps, each step
involving the generation of roughly 2.5 × 105 trajectories. The
simulation was run on 512 nodes (2048 processes) of the IBM
Blue Gene-P at Rechenzentrum Garching, where each process
generated 123 trajectories. On this machine, one Monte Carlo
run took roughly one day to complete. It turned out that
discarding the first 5 × 104 configurations was sufficient to
obtain data in equilibrium conditions, where the mean values of
the parameters and their standard deviations were calculated.
It should be noted that the equilibrium fluctuations of the
parameters tell us the typical range in which they can still
be viewed as compatible with the experiments. Therefore
these fluctuations are the appropriate measure to quantify the
experimental error bars, while calculating a standard error
of mean (or a similar quantity) would not be appropriate
and severely underestimate the errors. Finally, it should be
noted that the approach allows in principle to analyze the
mutual dependence of the parameters as well, by sampling the
corresponding covariances; this was, however, not done in the
present study.

B. Scale invariance

As noted before, the correlation functions depend on the
average concentration 〈C〉, the diffusion constant D, the shear
rate γ̇ , and various lengths, which we denote by {li}. Simple
dimensional analysis shows that for any scale factor a the
scaling relation

Gij (t,〈C〉,D,γ̇ ,{li})
= Gij (t,a3〈C〉,D/a2,γ̇ ,{li/a}) (41)

holds. The “Hamiltonian” of the previous subsection is, of
course, subject to the same scale invariance. This means that
for each point in parameter space there is a whole “iso-line”
in parameter space that fits the data just as well as the original
point. Therefore, in order to improve the MC sampling, we
generated such an iso-line for each point in parameter space
that was produced by the Markov chain of the previous
subsection. Of course, the iso-lines were confined to the
region of the overall parameter box. It turned out that our
Markov chains were still so short that this improvement was
not completely superfluous (as it would be in the limit of very
long chains). In other words, taking the invariance into account
helped us to avoid underestimating the errors.

In practice, this was done as follows: Assuming that the
most accurate input parameters are the penetration depth dp =
100 ± 10 nm, the diffusion constant D = 36 ± 5 μm2/s and
the separation distance sx = 800 ± 80 nm, we calculate for
every data point a minimum and a maximum scaling factor a,
such that we obtain d (min)

p < a−1dp < d (max)
p , s(min)

x < a−1sx <

s(max)
x and D(min) < a−2D < D(max), for all a in (amin,amax).

This provides us with additional data points in parameter space
that are added to the statistics.

C. Sample-to-sample fluctuations

It should be noted that the parameters found by the
procedure outlined above are optimized for a specific set of
random numbers used to generate the trajectories. Therefore,
one must expect that one obtains different results when
changing the set of random numbers. In our statistical-
mechanical picture, we may view the set of random numbers
as random “coupling constants” of a disordered system like a
spin glass [54], where the disorder is weak since the number of
trajectories is large. For disordered systems, the phenomenon
of “sample-to-sample” fluctuations is well-known, and it
should be taken into account. We have therefore run one
test where we applied the same analysis to three different
random number sequences. Indeed, we found (see Table I) that
sample-to-sample fluctuations are observable, and somewhat
larger than the errors obtained from simple MC, while still
being of the same order of magnitude. A conservative error
estimate should therefore take these fluctuations into account,
by multiplying the error estimates from plain MC by, say, a
factor of three. In what follows, we will report only the simple
MC estimates for the errors.

VIII. RESULTS

The experiments were performed with a penetration depth
of the evanescent wave of dp � 100 nm, the lateral size of
the observation volumes (within the Gaussian model) was
w0 � 250 nm, and their center-to-center separation was sx �
800 nm. Furthermore, the diffusion constant of the tracers is
known to be roughly D � 36 μm2/s as measured by dynamic
light scattering. The shear rate was determined from an inde-
pendent measurement using single-focus confocal FCS [25,28]
where the entire flow profile across the microchannel was
mapped out. Alternatively, one might also use double-focus
confocal FCCS [27,29]. From this measurement, we obtained
a shear rate at the bottom channel wall of γ̇ = 3854 ± 32 s−1.
More details on this issue and some theoretical background
are presented in the Appendix. Nevertheless, we took a con-
servative approach and allowed the shear rate to vary between

TABLE I. Averaged values (av) and standard deviations (σ )
calculated from MC simulations with fixed γ̇ = 3800 s−1, but
different start values (“seeds”) for the random number generator.

42 4711 2409

Seed av σ av σ av σ

〈C〉A (μm−3) 17.83 1.92 17.81 1.96 17.94 1.94
〈C〉C (μm−3) 16.53 1.80 16.45 1.82 16.83 1.83
dp (nm) 95.81 3.50 96.02 3.58 95.78 3.52
(kNA)−1 (nm) 68.70 2.60 68.58 2.61 69.81 2.69
sx (nm) 781.94 27.70 779.54 28.28 793.22 28.24
D (μm2/s) 36.59 2.56 36.47 2.62 36.63 2.57
ls + R (nm) 12.80 1.10 11.62 0.90 15.14 1.21
ξ 1.441 0.018 1.277 0.016 1.718 0.017
Acceptance rate 82.0% 82.0% 82.2%
No. of MC steps 609 410 609 590 610 510

066306-11
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ξ

mc sweeps
1 10 102 103 104 105 1060

5

10

15

FIG. 7. Goodness of simulation ξ as function of the number of
Monte Carlo steps for γ̇ = 3800 s−1.

3500 and 4000 s−1. Finally, we expected the slip length to be
not more than a few nanometers, but we nevertheless allowed
it to vary up to �100 nm. These estimates allowed us to start
the Monte Carlo procedure with good input values.

We then observed the Monte Carlo simulation to system-
atically drift to smaller and smaller values of γ̇ , until finally
“getting stuck” at the imposed lower boundary, γ̇ = 3500 s−1.
What we mean by this term is a behavior where fluctuations
near 3500 s−1 still occur, but in such a way that 3500 s−1 is the
most probable value, while smaller values do not occur only
because we do not allow them. Since we know experimentally
that γ̇ = 3500 s−1 is clearly unacceptable, this behavior again
indicates that the theoretical model is not completely sufficient
to describe the experimental data (see also the discussion in
Secs. III and VI).

We therefore decided to keep γ̇ fixed during a Monte Carlo
run and, rather, vary it systematically in the given range. For
none of the parameters were we able to obtain a better goodness
of simulation than ξ � 1.25, which is still a bit too large, i.e.,
indicates a nonperfect fit [although the data on (G12 + G21)/2
have been discarded already]. The convergence behavior of
the method is shown in Fig. 7, where we plot ξ as a function of
the number of Monte Carlo iterations. For the Gaussian model,
the best ξ value that we could obtain was ξ � 2.5, which is
substantially worse.

With these caveats in mind, we may proceed to study
the parameter values that the Monte Carlo procedure yields.
Obviously, the most interesting one is the slip length ls , or
the sum ls + R (recall that the method does not provide an
independent estimate for these parameters, but only for their
sum). Figure 8 presents data on the evolution of ls + R during
the Monte Carlo process for γ̇ = 3800 s−1; ls + R is thus
seen to fluctuate between roughly 10 and 15 nm, which is,
within the limitations of the model, the statistical experimental
uncertainty of this quantity. The mean and standard deviation
of ls + R is shown in Fig. 9 as a function of shear rate, which
are thus clearly seen to not be independent. Since we know
γ̇ much more accurately than the range plotted in Fig. 9,
we see that in principle a fairly accurate determination of
ls is possible, if the underlying theoretical model is detailed

l s
+

R
[n

m
]

mc sweeps
0 2 · 105 4 · 105 6 · 1055

10

15

FIG. 8. Slip length plus particle radius as function of the number
of Monte Carlo steps for γ̇ = 3800 s−1.

enough to fully describe the physics. One should note that
the particle size R (more precisely, its hydrodynamic radius)
is roughly 7 nm; taking this into account as well, we find a
value that is clearly smaller than 10 nm. One should also note
that for the Gaussian model we obtained a very similar curve;
however, here the ls + R values are systematically smaller by
roughly 5 nm. This again highlights the importance of having
an accurate model for the MDE.

The other results obtained from our MC fits are reported in
Table II.

Clearly, the ls values of Fig. 9 could be viewed as definitive
experimental results on ls only if the agreement between
experiment and model were perfect, with ξ � 1, and a good
fit of all correlation functions. The reasons for the observed
deviations are not completely clear; however, all our findings
hint very strongly at deficiencies in the description of the
observation volumes, i.e., too inaccurate modeling of the
detailed optical phenomena that finally give rise to the shape
of these functions. Nevertheless, one should also bear in mind
that the dynamic model is also rather simple, neglecting both
hydrodynamic and residual electrostatic interactions with the

l s
+

R
[n

m
]

γ̇ [s−1]
3500 3600 3700 3800 3900 4000

0

5

10

15

20

25

FIG. 9. Averaged slip length as function of the shear rate,
calculated from the Monte Carlo results.
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TABLE II. Averaged values (av) and standard deviations (σ ) calculated from MC simulations with various shear rates.

3500 3600 3700

γ̇ (s−1) av σ av σ av σ

〈C〉A (μm−3) 17.82 1.90 17.91 1.88 17.93 1.89
〈C〉C (μm−3) 16.94 1.82 17.00 1.80 16.82 1.78
dp (nm) 95.83 3.46 95.66 3.42 95.64 3.44
(kNA)−1 (nm) 68.84 2.53 69.10 2.55 69.01 2.56
sx (nm) 774.39 26.59 777.98 26.63 780.53 26.97
D (μm2/s) 36.71 2.49 36.76 2.48 36.72 2.51
ls + R (nm) 21.92 1.31 19.16 1.24 15.98 1.12
ξ 1.377 0.016 1.40 0.016 1.420 0.017
Acceptance rate 82.1% 82.1% 82.1%
No. of MC steps 608 090 611 290 610 160

3800 3900 4000

γ̇ (s−1) av σ av σ av σ

〈C〉A (μm−3) 17.83 1.92 17.67 2.00 17.96 1.89
〈C〉C (μm−3) 16.53 1.80 16.21 1.86 16.41 1.74
dp (nm) 95.81 3.50 96.14 3.70 95.58 3.41
(kNA)−1 (nm) 68.70 2.60 68.42 2.71 69.01 2.56
sx (nm) 781.94 27.70 783.75 28.76 789.77 27.35
D (μm2/s) 36.59 2.56 36.46 2.64 36.71 2.51
ls + R (nm) 12.80 1.10 9.92 1.12 7.88 0.99
ξ 1.441 0.018 1.464 0.019 1.477 0.016
Acceptance rate 82.0% 81.9% 82.0%
No. of MC steps 609 410 610 330 610 440

wall. While one must expect that further refinements of the
model will change both the ls values as well as their error
bars, we believe that it is not probable that such a change
would be huge. Given all the various systematic uncertainties
of the modeling, we would, in view of our data, not exclude a
vanishing slip length, while we consider a value substantially
larger than, say, 15 nm as fairly unlikely.

Let us conclude this section by a few more remarks
concerning our choice of parameters and the systematic errors
of the method. From the setup it is clear that there are three pa-
rameters that can be varied experimentally fairly easily; these
are the shear rate γ̇ , the penetration depth dp, and the effective
pinhole-pinhole distance in sample space sx . The choice of
parameters was governed by various experimental considera-
tions, which we will attempt to explain in what follows.

It is clear that one wants a fairly large shear rate γ̇ , in
order to ensure that the signal has a sizable contribution from
flow effects. In practice, however, increasing γ̇ further by a
substantial amount is limited by experimental constraints, such
as channel construction, beaker elevation, etc. Furthermore,
the choice of dp is subject to similarly severe experimental
constraints: Increasing dp substantially would mean that we
would approach the limit angle of total reflection closely,
which would result in a very inaccurate a priori estimate of
dp. On the other hand, an even smaller penetration depth value
would be too close to the limits of the capabilities of the
objective, resulting in possible optical distortion effects that
we would like to avoid. Finally, the choice of sx was governed
by our early attempts to suppress overlap effects by simply
picking a fairly large value, such that the overlap integral is
small. There are however two problems about such an idea.

Firstly, a large value of sx decreases not only the overlap,
but also the cross-correlation function as a whole [34], such
that it ultimately becomes impossible to sample the data with
sufficient statistical accuracy on the time scale on which we
can confidently keep the experimental conditions stable. Our
value of sx should therefore be viewed as limited by such
considerations. However, second, and more importantly, we
realized in the course of our analysis that the overlap issue
is not a problem of an unintelligent choice of parameters at
all, but rather of our insufficient theoretical modeling of the
MDE functions. As we have seen above, our results for the slip
length depend rather sensitively and fairly substantially on the
choice of the MDE function (up to nearly a factor of two). In
our opinion, there is no reason to assume that this dependence
would go away if we had picked parameters in a regime of
small or vanishing overlap. From this perspective, we view the
overlap essentially as a blessing, since it shows us where the
main source of systematic error is probably located.

In the light of these remarks, it would of course be
interesting to systematically investigate the influence of the
parameters dp and sx on our results. In terms of the correlation
functions as such, this has been done in Ref. [34], and we
refer the interested reader to that paper. However, doing the
full analysis for a whole host of parameters would imply a
very substantial amount of work, since all the experimental
curves would have to be resampled again, in order to meet the
rather stringent requirement of statistical accuracy that is built
into our approach. We have hence not attempted to do this, but
rather believe that it will be more fruitful to concentrate the
efforts of future work on attempts to improve the theoretical
MDE modeling, even if that will be challenging. As far as the
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slip length is concerned, one must, of course, expect that the
fitted value will depend on parameters such as dp and sx , but
only to the extent that this reflects the systematic error; if the
physics were modeled perfectly correctly, we would of course
always obtain the same value.

IX. CONCLUSIONS

The results from the previous sections demonstrate that
the method of TIR-FCCS in combination with the presented
Brownian dynamics and Monte Carlo-based data analysis
is in principle a very powerful tool for the analysis of
hydrodynamic effects near solid-liquid interfaces. Already
within the investigated simple model of the present paper,
we can conclude that the slip length at our hydrophilic surface
is not more than 10 nm. It was only the data processing via the
Brownian dynamics and Monte Carlo analysis that was able to
demonstrate how highly sensitive and accurate TIR-FCCS is.

The computational method has the advantage to be easily
extensible to include more complex effects. For example,
the hydrodynamic interactions of the particles with the wall
would cause an anisotropy in the diffusion tensor [55] and
a z dependence, electrostatic interactions would give rise to
an additional force term in the Langevin equation, while
polydispersity could be investigated by randomizing the
particle size and the diffusion properties according to a given
distribution. While these contributions are expected to yield a
further improvement of the method, this was not attempted
here and is, rather, left to future investigations. However,
we have also identified the inaccuracies in modeling the
observation volumes as (most probably) the main bottleneck
in finding good agreement between theory and experiment,
i.e., at present, as the main source of systematic errors, which
makes it difficult to find a fully reliable error bound on the
value of the slip length.

Conversely, the problem of dealing with statistical errors
can be considered as solved. For an extensive data analysis,
as it has been presented here, one may need a supercomputer
in order to obtain highly accurate results in fairly short time.
Nevertheless, the method will yield meaningful results even
if confined to just a single modern desktop computer. Given
the moderate amount of computer time on a high-performance
machine, one should expect that quite accurate data should
be obtainable within reasonable times by making use of the
powerful newly emerging GPGPU cards.

In our opinion, the presented method is a conceptually
simple and widely applicable approach to process TIR-FCCS
data, which is clearly limited only by inaccurate modeling.
We believe that it has the potential to become the standard
and general tool to process such data, in particular as soon
as the optics is understood in better detail. The principle
as such is applicable to all kinds of correlation techniques,
such as FCS/TIR-FCS, etc., and we think it is the method of
choice whenever one investigates a system whose complexity
is beyond analytical treatment.
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APPENDIX A : SOLUTION OF THE STOKES EQUATION
IN A RECTANGULAR CHANNEL

The flow profile throughout the height of the microchannel
was measured by single-focus FCS under the same conditions
as the TIR-FCCS experiments; the result is shown in Fig. 10.
From a fit via a Poiseuille profile (solid line), we obtained an
independent estimator for the shear rate near the wall, γ̇ =
3854 ± 32 s−1.

The purpose of this Appendix is to analyze the theoretical
background of this fit in some more detail. For a pure Poiseuille
flow, i.e.,a simple parabolic profile, it is clear that the shear rate
at the surface does not depend on the slip length ls , because in
this case a finite ls value simply shifts the profile by a constant
amount. Therefore, in this case ls is indeed irrelevant for the
fit. A short discussion on such issues is also found in Ref. [29],
and experimentally [17,30] it is also known that typically the
shift is so small that a finite slip length is hard to detect by
direct measurements of the profile. However, from a theoretical
and quantitative point of view it is not quite clear how well
it is justified to assume a strictly parabolic profile, i.e., to
assume that the flow extends infinitely in the y direction; in
our experiments, Ly/Lz = 40, which is large but not infinite.
For finite values of Ly/Lz, the profile is somewhat distorted,
and if this distortion is sufficiently large, then also a possible
effect of ls should be taken into account. These questions can
be easily answered by solving the flow problem in a rectangular
channel in the presence of slip exactly, and this shall be done
in what follows. The result of this analysis will be that for our
conditions the distortion of the profile is indeed completely
negligible, and that therefore ls needs not be taken into account
either.

We start by considering the Stokes equation

η

(
∂2

∂y2
+ ∂2

∂z2

)
vx(y,z) + f = 0, (A1)

in a rectangular channel with dimensions [−Ly/2,Ly/2] ×
[−Lz/2,Lz/2] in the yz plane, as in the experiment. Here η is

v
x
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/
s
]
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FIG. 10. (Color online) Flow profile and Poiseuille fit along the
z-direction (surface of measurement is located at z � 50 μm).
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the viscosity of the liquid and f is the driving force density
or pressure gradient acting on the liquid in the x direction. We
assume that all surfaces have the same slip length.

For the case of a no-slip boundary condition, the solution
has been given in the textbook of Spurk and Aksel [56],
however, in a form that does not explicitly spell out the
symmetry under exchange of y and z. Here we give the solution
in a form that shows that symmetry, and generalize it to the
case of a nonvanishing slip length ls .

Using the methods and notation of quantum mechanics,
and allowing for some minor amount of numerics to evaluate a
series, the solution is simple and straightforward. We identify
a function f (y,z) with a vector |f 〉 in a Hilbert space, and
define the scalar product as

〈f |g〉 =
∫ +Ly/2

−Ly/2
dy

∫ +Lz/2

−Lz/2
dzf �(y,z)g(y,z). (A2)

Defining a “Hamilton operator” via

H = − η

f

(
∂2

∂y2
+ ∂2

∂z2

)
, (A3)

the Stokes equation is written as

H|vx〉 = |1〉. (A4)

Obviously, the functions

|ky,kz〉 = N (ky,kz) cos(kyy) cos(kzz) (A5)

with ky > 0, kz > 0 and

N (ky,kz) =
[
Ly

2
+ sin(kyLy)

2ky

]−1/2

×
[
Lz

2
+ sin(kzLz)

2kz

]−1/2

(A6)

are normalized eigenfunctions of H,

H|ky,kz〉 = η

f

(
k2
y + k2

z

)|ky,kz〉 (A7)

with

〈ky,kz|qy,qz〉 = δky,qy
δkz,qz

. (A8)

The eigenfunctions must satisfy the boundary conditions,
and hence the discrete wave numbers ky , kz must be the
solutions of the transcendental equations

lsky = cot

(
ky

Ly

2

)
, (A9a)

lskz = cot

(
kz

Lz

2

)
, (A9b)

which, in the general case, can be found numerically. In
the no-slip case, the solutions are simply given by ky =
π/Ly,3π/Ly, . . . and analogously for kz. Equation (A9)
allows us to rewrite Eq. (A6) as

N (ky,kz) =
[
Ly

2
+ ls sin2

(
ky

Ly

2

)]−1/2

×
[
Lz

2
+ ls sin2

(
kz

Lz

2

)]−1/2

. (A10)
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FIG. 11. (Color online) One-dimensional cut of the flow profile
at y = 0 for no-slip boundary conditions and several values of Ly .

Since the set of eigenfunctions is complete, the spectral
representations of H and H−1 are given by

H = η

f

∑
ky ,kz

(
k2
y + k2

z

)|ky,kz〉〈ky,kz|, (A11)

H−1 = f

η

∑
ky ,kz

(
k2
y + k2

z

)−1|ky,kz〉〈ky,kz|, (A12)

resulting in the solution

|vx〉 = H−1|1〉
= f

η

∑
ky ,kz

(
k2
y + k2

z

)−1〈ky,kz|1〉|ky,kz〉

= f

η

∑
ky ,kz

(
k2
y + k2

z

)−1
N (ky,kz)

2 4

kykz

× sin

(
ky

Ly

2

)
sin

(
kz

Lz

2

)
cos(kyy) cos(kzz). (A13)

Figure 11 shows the resulting flow profile at y = 0 (in
the center of the channel) as a function of z, for vanishing slip
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FIG. 12. Averaged deviation between a one-dimensional cut of
the flow profile at y = 0 for no-slip boundary conditions and the
Poiseuille solution, as function of the width-height ratio of the
channel.
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length and various width-to-height ratios Ly/Lz of the channel.
One sees that the convergence to the asymptotic Poiseuille
profile vP is indeed extremely rapid. The deviation, defined via

relative error = 1

Lz

∫ Lz/2

−Lz/2
dz

∣∣∣∣vx(0,z) − vP(z)

vP(z)

∣∣∣∣ , (A14)

is displayed as a function of Ly/Lz in Fig. 12. The
rate of convergence is apparently exponential, and for the
experimental value Ly/Lz = 40 the deviation is seen to
be much smaller than the resolution of the measurements.
Therefore, the assumption of a parabolic profile is indeed
justified.

[1] P. Tabeling, Introduction to Microfluidics (Oxford University
Press, Oxford, 2006).

[2] O. I. Vinogradova, Int. J. Miner. Process. 56, 31 (1999).
[3] J. S. Ellis and M. Thompson, PCCP 6, 4928 (2004).
[4] C. Neto et al., Rep. Prog. Phys. 68, 2859 (2005).
[5] E. Lauga, M. P. Brenner, and H. A. Stone, in Microfluidics:

The No-Slip Boundary Condition, in Handbook of Experimental
Fluid Dynamics, edited by J. Foss, C. Tropea, and A. Yarin
(Springer, New York, 2007), pp. 1219–1240.

[6] E. Bonaccurso, M. Kappl, and H.-J. Butt, Phys. Rev. Lett. 88,
076103 (2002).

[7] C. Neto, V. S. J. Craig, and D. R. M. Williams, Eur. Phys. J. E:
Soft Matter Biol. Phys. 12, S71 (2003).

[8] T. S. Rodrigues, H. J. Butt, and E. Bonaccurso, Colloids Surf. A
354, 72 (2010).

[9] S. Guriyanova and E. Bonaccurso, PCCP 10, 4871 (2008).
[10] F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, Phys. Rev.

Lett. 102, 026001 (2009).
[11] D. Einzel, P. Panzer, and M. Liu, Phys. Rev. Lett. 64, 2269

(1990).
[12] W. A. Ducker, T. J. Senden, and R. M. Pashley, Nature (London)

353, 239 (1991).
[13] H.-J. Butt, Biophys. J. 60, 1438 (1991).
[14] O. I. Vinogradova, Langmuir 11, 2213 (1995).
[15] R. Pit, H. Hervet, and L. Leger, Phys. Rev. Lett. 85, 980 (2000).
[16] D. C. Tretheway and C. D. Meinhart, Phys. Fluids 14, L9

(2002).
[17] P. Joseph and P. Tabeling, Phys. Rev. E 71, 035303 (2005).
[18] P. Huang, J. S. Guasto, and K. S. Breuert, J. Fluid Mech. 566,

447 (2006).
[19] D. Lasne, A. Maali, Y. Amarouchene, L. Cognet, B. Lounis, and

H. Kellay, Phys. Rev. Lett. 100, 214502 (2008).
[20] C. I. Bouzigues, P. Tabeling, and L. Bocquet, Phys. Rev. Lett.

101, 114503 (2008).
[21] H. F. Li and M. Yoda, J. Fluid Mech. 662, 269 (2010).
[22] R. Rigler and E. Elliot, Fluorescence Correlation Spectroscopy:

Theory and Applications (Springer, Berlin, 2001).
[23] D. Magde, W. W. Webb, and E. L. Elson, Biopolymers 17, 361

(1978).
[24] A. V. Orden and R. A. Keller, Anal. Chem. 70, 4463

(1998).
[25] R. H. Kohler, P. Schwille, W. W. Webb, and M. R. Hanson, J.

Cell Sci. 113, 3921 (2000).
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