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Relaxation mechanisms of photoinduced periodic microstructures in ferrofluid layers
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We consider theoretically and numerically a periodic concentration grating induced in a layer of ferrofluid in
the presence of the external magnetic field by nonuniform optical heating through photoabsorption. The stationary
profiles of the periodic microstructures are governed by the equilibrium of the diffusive, thermodiffusive,
and magnetic fluxes. The anisotropy of the diffusion coefficient and the magnetically driven microconvection
contribute to the relaxation of these structures. The temperature-concentration coupling is shown to increase the
initial effective diffusive relaxation rate by up to 50%. Microconvection dominates in the relaxation process even
at small values of the control parameter and rapidly destroys the periodic part of the concentration grating. We
describe this process in the weakly nonlinear regime by an approximate Galerkin model.
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I. INTRODUCTION

Structurally ferrofluids are stable colloidal suspensions
of ferromagnetic nanoparticles in liquid carrier. The huge
difference in size and mass between the particles of the solid
phase and the molecules of the solvent makes for the strong
thermodiffusive coupling and as a consequence relatively
large concentration differences in nonisothermal ferrofluids.
Depending on the structure of the particle-solvent interface
and the composition of the liquid carrier, either normal or
anomalous thermodiffusion can be observed [1,2].

While the amplitude of the induced concentration pertur-
bation can be significant, its dynamics is slow due to the small
thermodiffusive mobility of the nanoparticles. The characteris-
tic diffusion time scale is by several orders of magnitude larger
than the thermal time scale, and the stationary concentration
profile can be established only on relatively small length scales
(up to several millimeters) in experimentally relevant time.

The diffusivity of the ferroparticles was observed to
increase in the direction of the applied uniform magnetic
field due to the magnetophoretic contributions in the self-
magnetic field [3]. The formation of the periodic structures
in ferrofluid layers by means of the photoabsorption and
the relaxation of such structures is a convenient method of
gaining understanding of the collective diffusion process of
the magnetic nanoparticles both with and without the applied
magnetic field.

Under some circumstances it is difficult to explain the
relaxation process by the diffusive and magnetophoretic contri-
butions alone, and it was shown that the convective stability of
the relaxation stage may depend on the initial solutal Rayleigh
number [4–6]. If the thickness of the ferrofluid layer is not very
small, the transversal profile of the concentration field must
be taken into account. Near-wall gradients, if large enough,
may cause the appearance of the thresholdless parasitic
microconvection with transversal convective currents. This
type of microconvection may manifest in the stationary state
as well.
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II. PROBLEM FORMULATION

We consider a temperature grating induced in the −y

direction within an infinite layer of ferrofluid by a peri-
odic heat source ∝ [1 + cos (πy)] (1 + rcδc) describing the
concentration-dependent absorption of the periodic incident
intensity of light. The layer is enclosed between two horizontal
solid sidewalls, which are impermeable to the concentration
flux. The thickness of the ferrofluid layer corresponds to the
period of the grating, and it is assumed that the heat flux
through the sidewalls obeys Newton’s law.

In response to the temperature grating the thermodiffusive
coupling leads to the appearance of the corresponding concen-
tration grating with the same periodicity (Fig. 1). For the sake
of simplicity we consider only the anomalous Soret effect with
the negative thermodiffusion constant. In this way the maxima
and minima of the concentration distribution correspond to
those of the temperature grating.

The formation of the concentration grating takes place
within the uniform external magnetic field applied along
the −y axis, parallel to the gradient of the concentration.
The demagnetizing fields induced within the layer become
apparent in the magnetophoretic contributions to the effective
diffusion coefficient and are capable of inciting convective
motion through the magnetic body force.

Once the stationary state is established, the heating is
stopped, and the relaxation of the temperature and concen-
tration gratings takes place.

III. INITIAL STATE

The shape of the induced concentration grating is deter-
mined by the equilibrium of mass fluxes of ferroparticles
due to regular diffusion, thermodiffusion, and the magne-
tophoresis in the self-magnetic field jc = −∇δc − rS∇δT +
Mph∇ (h · δH) [7]:

0 = �δT + τ [1 + cos (πy)] (1 + rcδc), (1)

0 = �[δc + rSδT − Mph (h · δH)], (2)

�δψ = α̃c∇ · (δch), (3)

�δϕ = 0. (4)
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FIG. 1. (Color online) Definition of the problem: the concentra-
tion maxima of the optically induced concentration grating within
the ferrofluid layer under the action of the applied uniform magnetic
field. The transversal convective currents are incited by the magnetic
forces.

The characteristic scales are the half-period L of the grating
for the length, the diffusion scale L2

Dc
for time, and �c for

the concentration. The concentration scale can be expressed
through the amplitude of the initial temperature grating �T as
c0(1 − c0)SMT�T , where SMT is the effective magnetic Soret
coefficient [7]. The relative strength of the magnetophoresis
is governed by the magnetohoretic number Mph, and α̃c

is the dimensionless specific magnetic susceptibility. The
magnetization of the ferrofuid is assumed to depend mainly
on the concentration and is directed along the applied field
δM = [(1 + χ0)α̃cδc]h. The parameter τ follows from the
normalization of the temperature field and was taken as
1
2π2 + Nu2: the value determined from the solution of the
one-dimensional problem in lateral (−y) direction [7]. The
coefficient rc = �c

c0
determines the secondary absorption of

the incident optical intensity.
The total magnetic scalar potential has been separated into

purely internal δψ and external δϕ parts. Cyclic boundary
conditions are imposed on all fields in the −y direction to
emulate the extent of the layer and periodicity of the grating.
In the transversal −z direction the induced heat is removed
through the boundary condition of the third type; the solid
phase, on the other hand, cannot penetrate the boundary,
and the concentration flux is zero [n jc = 0]∂S . Any possible
deposition of the ferroparticles on the wall is neglected as well:

[
∂δT

∂n
= −Nu · δT

]
∂S

, (5)[
∂δc

∂n
= −rS

∂δT

∂n
+ Mph

∂ (h · δH)

∂n

]
∂S

, (6)[
δψ = δϕ,

∂δψ

∂n
= ∂δϕ

∂n

]
∂S

. (7)

The boundary conditions for the magnetic scalar potential
follow from the continuity of the normal and tangential
components of the magnetic field δH in

τ = δH out
τ and δH out

n =
δH in

n + δM in
n .

We separate the variables and look for the solution to the
system and boundary conditions in the following form up to
the leading mode in the −y direction:

δT 0(y,z) = t0(z) + 2 · t1(z) cos(πy), (8)

δc0(y,z) = c0(z) + 2 · c1(z) cos(πy), (9)

δH 0(y,z) = 2 · h1(z) cos(πy). (10)

Also, it is convenient to take the reference point at the center
of the layer (with sidewalls at z = ±L).

If the coefficient rc is sufficiently small, the temperature and
concentration equations become decoupled, and the solution
is straightforward:

c0(z) = α0

p0
z2 − τrs

6
, c1(z) = α0ch(r0z) + β0, (11)

where the exponent is r0 =
√

λπ2 and

α0 = −b0β0, β0 = −τrS

2r2
0

, γ0 = Nu

f0
λβ0, (12)

b0 = 1

gr

[
Nu

g0

f0
− π (λ − 1)

]
, p0 = b0

r2
0

, (13)

f0 = πsh (π ) + Nu · ch (π ) , (14)

g0 = πsh (π ) + πch (π ) , gr = r0sh (r0) + πch (r0) (15)

with sh() and ch() denoting hyperbolic sines and cosines.
Correspondingly, for the temperature and the magnetic field,

t0 (z) = − 1

rS

[
α0

p0
z2 − τrS

Nu

(
1 + Nu

2

)]
, (16)

t1 (z) = − 1

rS

[λβ0 − γ0ch (πz)], (17)

h1 (z) = 1

Mph
[α0ch (r0z) − (λ − 1) β0 + γ0ch (πz)] . (18)

The obtained periodic profiles of the fields are plotted on
Fig. 2. The concentration profile is slightly elongated in the
lateral direction due to the magnetophoretic contributions and
the anisotropy of the diffusion in the self-magnetic field. From
(2) and (3) the effective diffusion coefficient in the direction

of the applied field is r2
0

π2 = λ with λ = 1 + α̃cMph.
The magnetic force δc∇ (h · δH) is significantly nonuni-

form, and its components already allow us to predict the basic
shape of the convective motion and the resulting deformation
of the concentration field; microconvective rolls will compress
the concentration grating in the −z direction and enhance
diffusive relaxation in the −y direction.

When the coupling coefficient rc cannot be neglected
(i.e., the concentration perturbation is comparable with the
initial concentration), the system (1)–(4) yields a characteristic
equation with two exponents:

r2
i = 1

2

(
r2

0 + 2τrSrc ± √
�

)
, � = r4

0 + 2τ 2r2
Sr2

c (19)

and the solution:

c0 (z) =
∑

i

αi

pi

ch (riz) − 1

rc

, (20)

c1 (z) =
∑

i

αich (riz), (21)
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FIG. 2. (Color online) The stationary state of the concentration
grating: (y-z) profiles of the perturbations of (a) concentration,
(b) temperature, (c) lateral magnetic field h · δH , (d) magnetic
force δc∇ (h · δH), (e) lateral, and (f) transversal components of
the magnetic force within a single period of the grating.

t0 (z) = − 1

rS

[∑
i

αi

pi

ch (riz) − λ

]
, (22)

t1 (z) = − 1

rS

[∑
i

αidich (riz) − γ ch (πz)

]
, (23)

h1 (z) = 1

Mph

[∑
i

αi (1 − di) ch (riz) + γ ch (πz)

]
, (24)

where i = 1,2. The other parameters are

pi = r2
i

τ rSrc

− 1, di = r2
i − r2

0

r2
i − π2

, (25)

fi = rish (ri) + Nu · ch (ri) , (26)

gi = rish (ri) + πch (ri) , (27)

bi = 1

gi (1 − di) + g0

f0
fidi

, (28)

FIG. 3. (Color online) (y-z) profiles of the stationary concen-
tration (left) and magnetic field (right) distributions within the
layer at different values of the coupling parameter rc: (a) rc = 0.0,
(b) rc = 0.25, (c) rc = 0.5.

αi = ± 1

rc

bi

b1
p1

sh(r1)
r1

− b2
p2

sh(r2)
r2

, (29)

γ = 1

f0

∑
i

fidiαi, λ = 1

Nu

∑
i

fi

pi

αi . (30)

Increasing the value of the coupling parameter rc the
concentration grating becomes sharper (Fig. 3). The intensity
of the demagnetizing field increases within the layer and is
attenuated outside. From the physical point of view higher
values of the coupling parameter rc mean enhanced absorption
of heat due to the migration of the nanoparticles into the heated
region, which in turn further increases the absorption of heat
and the mass flux until countered by the diffusion and the
magnetophoresis. The temperature distribution then becomes
slightly elongated in the direction of the applied field due to
the secondary absorption.
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IV. DIFFUSIVE RELAXATION

Once the stationary state has been established, the heating
is stopped and the grating is allowed to relax. The relaxation
of the temperature grating is almost immediate owing to
the smallness of the Lewis number Le = χ

Dc
characterizing

the relation of time scales of the thermal and concentration
diffusion (∼10−4 in ferrofluids). The relaxation of the concen-
tration grating is much slower and, discarding temperature, is
described by the system of equations

∂

∂t
δc = �[δc − Mph (h · δH)], (31)

�δψ = α̃c∇ · (δch), (32)

�δϕ = 0 (33)

with the boundary conditions[
∂δc

∂n
= Mph

∂ (h · δH)

∂n

]
∂S

, (34)[
δψ = δϕ,

∂δψ

∂n
= ∂δϕ

∂n

]
∂S

, (35)

and initial conditions in either (11) or (20)–(21) form. We
again separate the spatial variables up to the leading mode in
the lateral direction (9), but this time coefficients c0 and c1

depend on time. Because under the considered configuration
of the applied field the perturbation of the magnetic field does
not have zero-order lateral contribution, the coefficient c0 has
simple homogeneous Neumann boundary conditions and can
be solved for by the Fourier method:

c0 (z,t) =
∞∑

n=1

cn (t) cos (πnz), (36)

cn (t) = 2 · (−1)n
∑

i

αi

pi

rish (ri)

r2
i + (πn)2 e−(πn)2t . (37)

The profile c1, on the other hand, is most conveniently
obtained by applying the unilateral Laplace transform f̂ (s) =
L {f (t)} = ∫ ∞

0 e−stf (t) dt to the problem. The solution in
the complex s-domain is straightforward and

ĉ1(z,s) = A(s)ch[r(s)z] −
∑

i

αi

r2
i − r2(s)

ch(riz). (38)

The coefficient A (s) = �(s)
�(s) is determined from the boundary

conditions and

�(s) = −[(λ − 1) π2 + s]
∑

i

αi

×
[(

λπ2 − r2
i

)
rish(ri) − (λ − 1) π3sh(π )

gi

g0

]
× [

r2
i − r2(s)

] (
r2
i − π2

)
, (39)

�(s) =
{
sr(s)sh[r(s)] + (λ − 1) π3sh(π )

gs(s)

g0

}

×
∏

i

(
r2
i − π2) [

r2
i − r2(s)

]
, (40)

where r(s) =√
r2

0 + s and gs(s) = rs(s)sh[rs(s)] + πch[rs(s)].

To transform the solution back to the time domain we
make use of the Vaschenko-Zakharchenko expansion for a
function, which can be represented as a ratio of two generalized
polynomials. The leading lateral modes of the concentration
field and the magnetic field are then

c1(z,t) =
∞∑

n=1

�(sn)

� ′(sn)
ch[r(sn)z]esnt , (41)

h1(z,t) = α̃cπ
2

g0

∞∑
n=1

g0ch[r(sn)z]−gs(sn)ch(πz)

r2(s) − π2

�(sn)

� ′(sn)
esnt ,

(42)

where sn are the roots of the transcendental expression1

coth[r(s)] + r(s)

π

[
1 + sg0

(λ − 1) π3sh(π )

]
= 0. (43)

The obtained profiles of the concentration and the magnetic
field are plotted on Fig. 4 at different stages of the relaxation
process.

The mobility of the ferroparticles is the highest in the
direction of the applied field due to anisotropy of the effective
diffusion coefficient. We choose to express the effective lateral
diffusion coefficient as

λeff = − 1

π2J

∂

∂t
J, (44)

J (t) =
√∫ 1

−1

[ ∫ 1

−1
δc (y,z,t) cos (πy) dy

]2

dz. (45)

When rc → 0, λeff would approach λ in the case of an
unbounded layer. The dependence of λeff on time and the
coupling coefficient rc is shown on Fig. 5 in relation to λ.

We observe a slight decrease of the value of the effective
lateral diffusion coefficient due to the presence of the transver-
sal boundary conditions. The initial λeff noticeably increases
as the coupling coefficient rc is increased due to the additional
accumulation of the magnetic nanoparticles resulting in the
increase of the intensity of the demagnetizing field and the
role of the magnetophoretic contributions. As the relaxation of
the concentration grating progresses the diffusion coefficient
approaches its value in the uncoupled case.

V. MICROCONVECTIVE RELAXATION

Nonhomogeneous magnetic forces induced within the
volume of the ferrofluid layer by the external field cause
the appearance of the microconvective motion, which may
influence both the initial state and the relaxation process.
For now we will assume the unperturbed initial distributions
of the concentration and the magnetic field discussed above.
The momentum conservation equation is added to the system
(31)–(33):

Dδc = �[δc − Mph (h · δH)], (46)

1

Sc
Du = −∇p + �u + Rsmδc∇ (h · δH), (47)

1While s = − (λ − 1) π 2 is a root of �(s), it is also a root of �(s)
and does not contribute to the solution.
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FIG. 4. (Color online) Diffusive relaxation of the concentration
(left) and the corresponding magnetic field (right), (y-z) profiles
sampled at (a) t = 0.0, (b) t = 0.1, (c) t = 0.2.

�δψ = α̃c∇ · (δch), (48)

�δϕ = 0, (49)

and the partial derivatives are replaced with the material
derivative D = [ ∂

∂t
+ (um · ∇)]. The boundary conditions for

the magnetic scalar potentials remain the same (35), and we
take advantage of the approximate boundary condition for the
concentration [ ∂δc

∂n = 0]∂S . The velocity boundary conditions
are non-slip on the solid walls and [u = 0]∂S is implemented in
the numerical simulations; however, for the sake of simplicity
we use the free slip condition [un = 0, ∂uτ

∂n = 0]∂S in the
Galerkin problem. In many cases this approximation allows
us to gain sufficient understanding of the convective patterns
while significantly simplifying the coefficients of the solution.
We retain only the basic modes and look for the solution in the
following form:

uz (y,z,t) = w11 (t) cos (πy) sin (πz), (50)

δc (y,z,t) = ε01 (t) cos (πz) + ε10 (t) cos (πy)

+ ε12 (t) cos (πy) cos (2πz). (51)

FIG. 5. Left: Dependence of the effective lateral diffusion coef-
ficient λeff(t) on time for different values of the coupling coefficient
rc: (a) rc = 0.0, (b) rc = 0.1, (c) rc = 0.2, (d) rc = 0.3, (e) rc = 0.4,
(f) rc = 0.5. Right: Dependence of the initial effective lateral diffusion
coefficient λeff,0(rc) on the coupling coefficient rc. Dots, numerical
simulations; lines, analytical solution.

Inserting the ansatz (50)–(51) into the governing equations
(46)–(49), projecting them onto the selected modes and taking
into account that the Schmidt number is rather large in fer-
rofluids (Sc ∼ 104–105), we obtain a three-mode Lorenz-type
model for the determination of the mode amplitudes, which
can be integrated by an appropriate time-stepping method. The
equations for the three concentration perturbation modes:

∂

∂t
ε01 = −π2ε01 − π

2

(
ε10 − ε12

2
+ 2β0e

−r2
0 t

)
, (52)

∂

∂t
ε10 = −λπ2ε10 + π

2
[c1 (t) + ε01] w11, (53)

∂

∂t
ε12 = − (λ + 4) π2ε12 − π

2
[c1 (t) − 3c3 (t) + ε01] w11,

(54)

and the velocity mode can be expressed explicitly:

w11 = 1

4π
· Rsm

{
F0(t) + [h0(t) − h2(t)]ε01

+ α̃c

[
sh(π )

g0
(ε10 + γ2ε12)[c1(t) + (1 − γ2)ε01 + D(t)]

− ε10[c1(t) + ε01] + 1

2
γ2ε12[c1(t) − 3c3(t) + ε01]

]}
,

(55)

with D (t) = ∑∞
n=1 γn [(n + 1) cn+1 (t) − (n − 1) cn−1 (t)]

and where F0 (t) = ∑∞
n=1 ncn (t) [hn−1 (t) − hn+1 (t)] is the

unperturbed magnetic force, and cn (t) and hn (t) are the re-
spective Fourier expansion coefficients of c0 (z,t) and h1 (z,t).

Due to the initial nonuniformity of the concentration
field and the resulting nonpotential magnetic force F0 (t) the
amplitude of the convective perturbation w11 rapidly adjusts
and increases to its maximum value w0

11, followed by the
exponential relaxation. Solving (55) for the leading mode of
the F0 (t) expansion, we obtain

w0
11 = 2

π3
α̃cβ0

α0

p0
Rsm

[
sh (π )

g0
− 1

]
. (56)

The initial amplitude of the convective perturbation is linear
in relation to the solutal Rayleigh number Rsm (Fig. 6).
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FIG. 6. Left: Relaxation of the averaged velocity magnitude Ū (t)
at different values of the solutal Rayleigh number: (a) Rsm = 100,
(b) Rsm = 250, (c) Rsm = 500, (d) Rsm = 1000. Right: Dependence
of the averaged velocity amplitude Ū0 on the solutal Rayleigh number.
Dots, numerical simulations; line, Galerkin solution.

The Galerkin model allows us to calculate the effective
relaxation rate of the concentration perturbation (45) and is in
good agreement with the results of the numerical simulations
(Fig. 7); in fact, the correspondence is greatly improved
as the relaxation of the grating progresses into the regular
regime, because the higher modes relax much faster than the
leading ones (37). We see that microconvection plays indeed
a very significant role in the relaxation of the grating even
at relatively low values of the solutal Rayleigh number Rsm.
At higher values of Rsm the effective diffusion coefficient
remains relatively unchanged over most of the relaxation
process and exceeds the one for the purely diffusive relaxation
approximately 2.7 times.

The evolution of the concentration grating (Fig. 8) is very
similar to the purely diffusive case: The periodic part of
the concentration perturbation c1 quickly relaxes, forming
a layer with increased nanoparticle concentration, followed
by the slow relaxation of the resulting constant component
c0 of the perturbation. However, microconvection destroys
the periodic grating much faster than the anisotropy of the
diffusion coefficient.

VI. DISCUSSION

In thin ferrofluid layers the microconvective fluxes are
induced within the plane of the layer via a stationary convective

FIG. 7. Dependence of the relative effective latter relaxation rates
λeff on the solutal Rayleigh number sampled at different times:
(a) t = 0.005, (b) t = 0.01, (c) t = 0.015, (d) t = 0.02. Left: Galerkin
solution; right: numerical simulations.

FIG. 8. (Color online) Evolution of the (y-z) profile of the
concentration perturbation at different stages of the relaxation process
for the solutal Rayleigh number Rsm = 100. Top: t = 0.0, 0.01, 0.02,
0.03; bottom: t = 0.04, 0.05, 0.1, 0.2 (Galerkin solution).

instability above the critical parameter and may destroy
the uniformity of the concentration grating [8] when the
optical pumping is switched off. There is indeed experimental
evidence that both the relaxation time and the character of the
relaxation process of the photoinduced concentration grating
in the applied magnetic field depend on the thickness of
the ferrofluid layer [9], which is contrary to the assumption
of the two-dimensional relaxation regime and the diffusion
and magnetophoresis in the self-magnetic field as the only
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FIG. 9. Convective attenuation of the stationary amplitude of the
first lateral mode c̃1 of the concentration grating increasing the solutal
Rayleigh number Rsm (Galerkin solution).

contributing effects. Dependence of the stationary state of the
concentration grating on the thickness of the layer has also
been observed experimentally. While the former effect may
suggest the presence of microconvective instability, the latter
is characteristic of the threshold-less parasitic microconvection
caused by the transversal gradients of the concentration and

the demagnetizing field. The smearing of the stationary profile
of the concentration field by convective fluxes leads to the
attenuation of the stationary concentration amplitude and
the visibility of the grating (Fig. 9). The intensity of the
parasitic magnetoconvection may be decreased by increasing
the aspect ratio L

h
(interfringe to the thickness of the layer)

of the photoinduced structures and decreasing the thickness
of the layer but cannot be completely suppressed if the
aspect ratio is not too large. Increasing the thickness of
the layer, the transversal concentration profile determines
as well the relaxation regime of the photoinduced periodic
structures in the laterally applied uniform magnetic field.
The presence of microconvection heavily influences the
relaxation process contributing to the increase of the effective
diffusion coefficient in the lateral direction many times as
compared to the diffusive and magnetophoretic relaxation.
While this type of microconvection does not influence the
uniformity of the induced grating at reasonable values of
the solutal Rayleigh number, the uniform convective rolls
(50) become unstable at higher values of Rsm leading to the
appearance of fluxes in the −x direction along the extent of the
grating.
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