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Type of spiral wave with trapped ions
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Pattern formation in ultracold quantum systems has recently received a great deal of attention. In this work, we
investigate a two-dimensional model system simulating the dynamics of trapped ions. We find a spiral wave that
is rigidly rotating, but with a peculiar core region in which adjacent ions oscillate in antiphase. The formation of
this spiral wave is ascribed to the excitability previously reported by Lee and Cross. The breakup of the spiral
wave is probed and, especially, an extraordinary scenario of the disappearance of the spiral wave, caused by
spontaneous expansion of the antiphase core, is unveiled.
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I. INTRODUCTION

Spiral waves are the most frequently encountered pattern
formation in two-dimensional systems far away from equi-
librium. They are usually thought to be responsible for the
patterns in a wide range of systems (nonlinear optics [1],
magnetic films [2], new chemical systems [3], subcellular
biology [4], and complex plasma [5]). Spiral waves can display
a number of distinct behaviors, some of which are quite
complex. The simplest transition in spiral waves is Hopf
bifurcation [6], which turns a rigidly rotating spiral wave
into a quasiperiodic meandering one. Being another type of
common transition, the breakup of spiral waves derives from
two different ways: the core breakup due to the Doppler
effects [7,8] and the far-field breakup assisted by the absolute
Eckhaus one [9,10].

As one type of wave propagation, spiral waves are always
explored in systems where the spatial variable is continuous.
However, spiral waves also present themselves in systems of
coupled oscillators where spatial variables are discrete. In the
context of coupled oscillators, the states between adjacent
oscillators are not required to be continuous, which may give
rise to some impressive phenomena in the dynamics of spiral
waves. Kuramoto et al. studied two-dimensional nonlocally
coupled oscillators and found the existence of spiral wave
chimera [11,12]. In a spiral wave chimera, the oscillators
in the core region of spiral wave are desynchronized, while
those around the periphery of the core are in synchroniza-
tion. Martens et al. analyzed the spiral wave chimera [13].
Yang et al. studied two-dimensional locally coupled Rössler
oscillators [14]. They found a sandwiched spiral wave in
which any two adjacent oscillators are in antiphase and they
attributed the presence of the sandwiched spiral wave to the
shortwave instability of the homogeneous oscillation of the
model [15,16].

Recently, pattern formation in certain ultracold quantum
systems that shows the nature of a coupled system has received
a great deal of attention. Lee and Cross considered a chain
of ions [17], where dissipation is provided by laser heating
and cooling and nonlinearity comes from trap anharmonicity
and beam shaping. When the nonlinearity and interaction are
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small perturbations relative to the harmonic motion of ions,
they derived an amplitude equation for the ions,

dAn

dt
= ib(An−1 + An+1 − 2An) + An − (1 + ic)|An|2An,

(1)

where i is the imaginary unit, b is the coupling between
adjacent trapped ions, and c denotes how an ion’s amplitude
affects its harmonic frequency. The amplitude equation is
similar to the complex Ginzburg-Landau equation (CGLE).
Different from the CGLE, which includes both reactive and
dissipative interactions, the above amplitude equation contains
only reactive interaction, since the adjacent ions interact
through reactive Coulomb force. Lee and Cross considered the
pattern formation and found that the homogeneous oscillation
of all ions are expected for bc > 0, while short-wavelength
waves are expected for bc < 0. The most surprising discovery
is that, when the homogeneous oscillation for bc > 0 is
perturbed by a localized pulse of antiphase oscillation, the
perturbation would probably travel across the system for a
long time before it dies off. This excitability in an oscillatory
medium is ascribed to the nature of the reactive interaction.

In a two-dimensional coupled system, the phase singularity
(the rotation center) of a spiral wave may be off lattice,
and adjacent oscillators on the opposite sides of the phase
singularity are always in antiphase, which indicates that there
should exist a persistent source for antiphase perturbation.
Then it will be of particular interest to delve into how the
type of excitability reported by Lee and Cross influences the
dynamics of spiral waves on a two-dimensional lattice.

II. MODEL AND NUMERICAL RESULTS

We use a square lattice where ions are trapped to the nodes.
The system is described as

dAi,j

dt
= ib(−4Ai,j + Ai−1,j + Ai+1,j + Ai,j−1 + Ai,j+1)

+Ai,j − (1 + ic)|Ai,j |2Ai,j , (2)

with i,j = 1, . . . ,N . Open boundary conditions as in Ref. [17]
are imposed upon the system.

In the following numerical simulation, we apply the fourth-
order Runge-Kutta method with dt = 0.001. A spiral wave
occurs with the initial conditions as follows: the oscillators at
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FIG. 1. b = 1 and c = 0.2. (a) The wave
pattern of SWAPC for Re(Ai,j ). (b) The snapshot
of |Ai,j |. (c) The snapshot of 〈|Ai,j |〉t . The middle
four panels show the snapshots of Re(Ai,j ) for
different subsets and the bottom four show the
snapshots of |Ai,j | for different subsets. (d) and
(h) for the subset in which oscillators locate at
positions with (2i,2j ). (e) and (i) The subset
with (2i,2j + 1). (f) and (j) The subset with
(2i + 1,2j ). (g) and (k) The subset with (2i +
1,2j + 1). The color scale used by (a) [or (b)]
are for all plots of Re(Aij ) (or |Aij |) in this work.
N = 50.

the boundary have their complex amplitude to be unit one in
magnitude and to be from 0 to 2π in phase along the boundary;
the amplitudes of all the other oscillators are set to be 0. We
first let b = 1, c = 0.2, and N = 50. Stunningly, a different
type of spiral wave, a rigidly rotating spiral wave with a core
where adjacent oscillators are in antiphase, shows up.

For this different type of spiral wave, two striking features
can be revealed by the snapshots of the wave patterns of the
real part and the module of Ai,j in Fig. 1. First, the spiral
wave possesses an odd core where a pattern with the shortest
wavelength appears [see Fig. 1(a)]; second, there exists a
transition annulus where the oscillation may be weaker (lower
|Ai,j |). It is obvious that the transition annulus divides the wave
pattern into the core region and the arm region [see Fig. 1(b)]
and, particularly, |Ai,j | in the core region is as strong as that in
the arm region. In Fig. 1(c), we exhibit the pattern for the time
average of |Ai,j |. Together with Fig. 1(b), Fig. 1(c) illustrates
that this type of spiral wave is stable, which is confirmed
by the unchanged location of the core. To be mentioned, the
dimension of the core of the spiral wave may be defined as that

of the transition annulus. Furthermore, we pick up two pairs
of adjacent oscillators: one is located in the core region and
the other in the arm region. The time evolutions of these four
oscillators are monitored. As shown in Figs. 2(a) and 2(b),
all of them behave periodically. Nevertheless, it is interesting
to find that the phase difference between adjacent oscillators
within the core region is around π , which is responsible for
the pattern with the shortest wavelength in the core region. In
contrast, there is only a minor phase shift between adjacent
oscillators within the arm region, which is induced by the
spiral wave propagation. In other words, oscillators in the arm
region perform an in-phase oscillation. In addition, Figs. 2(a)
and 2(b) show that the antiphase oscillation is much faster
than that of the homogeneous one, which is also seen in
Ref. [17]. Combining the above observations together, we
draw the conclusion that the spiral wave in Fig. 1(a) is a
rigidly rotating spiral wave with an antiphase spiral core (we
denote it as SWAPC) and this spiral wave possesses two
domains, each of which has its own temporal and spatial
periodicities.
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FIG. 2. (Color online) Time evolutions of
different oscillators locating at a line that crosses
the core region of a SWAPC. b = 1 and c = 0.2.
The subscripts (i,j ) in these plots denote the po-
sitions of the oscillators. (a) A pair of oscillators
in the arm region. (b) A pair of oscillators in the
core region. (c)–(f) The successive oscillators in
the transition annulus. The black (bold) curves
are for Re(Ai,j ) and the red (thin) ones for
Im(Ai,j ). (g) The evolutions of |Ai,j | for the
oscillators in (c)–(f). The width of the curve
increases from the node (25,19) to the node
(25,22).
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For a CGLE, a rigidly rotating spiral wave always takes
the following form: A(r,t) = F (r)exp{i[mθ + ψ(r) − ωt]}
and F (r) = 0 at the rotation center (the phase singularity)
of the spiral wave [18]. In other systems such as reaction-
diffusion systems, a similar formulation can be found provided
that the spiral wave is rigidly rotating, whereas the spiral
wave presented in Figs. 1(a) and 1(b) does not follow this
formulation in the core region. Particularly, the rotation center
of this spiral wave is replaced by an antiphase spiral core
and the phase singularity of a normal spiral wave is lost. The
statement is supported by the patterns of both Re(Ai,j ) and
|Ai,j | for four subsets of the system: the subset consisting
of all oscillators with location (2i,2j ) (i,j = 1,2, . . . ,N/2),
the subset with (2i + 1,2j ), the subset with (2i,2j + 1), and
the subset with (2i + 1,2j + 1). As shown in Figs. 1(d)–
1(g), each subset displays a clear spiral wave pattern, which
shows that the antiphase oscillation of Re(Ai,j ) in the core
region is modulated by the in-phase oscillation in the arm
region. Nevertheless, |Ai,j | in Figs. 1(h)–1(k) for each subset
substantiates that the phase singularity for a normal spiral
wave is lost. Any subset itself possesses no phase singularity
characterized by |Ai,j | = 0 at the center of the spiral core, in
spite of the unique singularity a normal rigidly rotating spiral
wave has. For each subset, two patches with low |Ai,j |, which
situate opposite to the center of the spiral core, show up. It is
nothing but these patches in all subsets that contribute to the
formation of the transition annulus.

Furthermore, we regard how the in-phase oscillation in
the arm region passes through the transition annulus to the
antiphase oscillation in the core region along a line extending
transversely. We present the time evolutions of successive
oscillators on a line down the crossover area. The results
in Figs. 2(c)–2(f) show distinctly two periodic components
in each oscillator. When the oscillator is close to the arm
region, it is dominated by the in-phase oscillation, which
is superimposed with a weak antiphase oscillation. As the
oscillator approaches the core region, the component of
the antiphase oscillation grows stronger and stronger and
finally predominates the core region. Recalling that the phase
singularity of a normal spiral wave is actually manifested in
the in-phase oscillation, it is the replacement of the in-phase
oscillation by the antiphase one in the core region that causes
the traditional phase singularity to be lost for SWAPC. To be
mentioned, low |Ai,j | (|Ai,j | � 0) in the transition annulus is
not related to the phase singularity of a spiral wave. As seen
from Fig. 2(g), low |Ai,j | in the transition annulus just occurs
when the antiphase oscillation becomes comparable to the
in-phase one. Especially, Fig. 2(g) shows that |Ai,j | � 0 in the
transition annulus shows up with an equivalent period as that
of the antiphase one, which demonstrates that the existence
of low |Ai,j | in the transition annulus roots in the antiphase
oscillation and is foreign to the phase singularity. In short, the
phase singularity in a normal spiral wave vanishes for SWAPC
and, instead, an antiphase core region plays the role of a rotor
to support the spiral wave propagation.

Emphatically, though the wave pattern in Fig. 1(a) looks
similar to the spiral wave chimera, they are essentially
different. First, the phases of adjacent oscillators in the core
region in a spiral wave chimera state are unrelated, while

the phase difference between adjacent oscillators in SWAPC
is kept around π . Secondly, as discussed in Ref. [13], the
form A(r,t) = F (r)exp{i[mθ + ψ(r) − ωt]} is recovered for
a spiral wave chimera provided that A(r,t) is replaced by an
order parameter R(r,t). That is, there exists a well-defined
phase singularity in the spiral wave chimera. However, it is
quite different for SWAPC, since the ordinary phase singularity
has been substituted by an antiphase core region where
oscillation amplitude is as strong as that in the arm region.

The SWAPC is also different from the sandwiched spiral
wave proposed in Ref. [14]. Behind the sandwiched spiral
wave is the short wavelength instability to the homogeneous
oscillation. However, the formation of SWAPC is due to the
excitability of an antiphase perturbation to the homogeneous
oscillation and is not related to the short wavelength instability.
Especially, in most of the parameter regimes for SWAPC,
homogeneous oscillation is stable and there is no instability
yielding the short wavelength pattern.

To get more insight into how the excitability of anti-
phase perturbation to a homogeneous oscillation leads to the
formation of SWAPC, we monitor the evolution of Re(Ai,j )
and |Ai,j | of a chain of oscillators crossing the spiral wave
core from the very initial stage when the spiral wave begins to
build. Both spatiotemporal plots of Re(Ai,j ) and |Ai,j | in Fig. 3
show a general scenario leading to SWAPC. An ordinary spiral
wave is generated at first; then, near the phase singularity of
the normal spiral wave, an antiphase perturbation comes into
being; ultimately, an antiphase region with unchanged size
appears and the spiral wave is established. The elaboration
above explicitly demonstrates that the excitability of the
antiphase perturbation from the in-phase oscillation plays a
crucial role in the formation of SWAPC.

SWAPC could exist for a large parameter range of b and
c. The variation of b or c affects the dynamics of SWAPC
distinctly. Augmenting b always leads to the expansion of the
antiphase core and longer wavelength in the arm region. In
contrast, given b fixed, neither the size of the antiphase core
nor the wavelength in the arm region depend on c. In addition,
either an outwardly or an inwardly propagating SWAPC wave
[19] can always be observed in suitable range of b and c.

To complete the dynamics of SWAPC, we investigate how
it breaks up, which is always an interesting topic in the field of
pattern formation. We consider a large system with N = 100.
The results are insensitive to the system size (we have verified
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FIG. 3. (Color online) Spatial-temporal plots of Re(Ai,j ) in
(a) and |Ai,j | in (b) for the development of SWAPC. b = 1 and
c = 0.2.
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FIG. 4. (Color online) Different types of instability of SWAPC. The top panels show the snapshots of Re(Ai,j ) and the bottom |Ai,j |.
(a) and (b) are the far-away breakup of SWAPC owing to Eckhaus instability. b = 1 and c = −0.33. (c) and (d) are the evanesce of SWAPC
resulting from spiral wave drifting. The black dots in (d) designate the trajectory of the successive phase singularities. b = 1 and c = 0.8. (e)
and (f) are the near-core breakup of SWAPC due to the spontaneous expansion of the antiphase core. b = 0.25 and c = 0.2. (g) and (h) are the
disappearance of SWAPC on account of the larger antiphase core. b = 5 and c = 0.2. The size of the system N = 100.

this prediction for different system sizes). In a normal CGLE,
the spiral wave always breaks up through Eckhaus instability.
However, depending on how the parameters vary, SWAPC in
the system Eq. (2) may display rich scenes. In this work,
several simple situations are taken into account. First, we
prescribe b = 1. When c decreases beyond a critical value, the
Ekhaus instability steps in and the normal far-away breakup
of the spiral wave appears. A snapshot is shown in Fig. 4(a),
where a spiral wavelet with an antiphase core is surrounded
by a chaotic sea. The snapshot of the corresponding |Ai,j |
presented in Fig. 4(b) shows that there are many defects
outside the spiral wavelet. As time goes on, the spiral wavelet
will shrink further and finally die off when the antiphase
core is swallowed by the defect sea. To be mentioned, the
final state after the disappearance of the spiral wavelet is
portrayed by a complex antiphase pattern. On the other hand,
though increasing c may also cause SWAPC to vanish, it
does not lead to the spiral wave breakup. Actually, when c is
above a critical value, SWAPC is replaced by a normal spiral
wave in the beginning; subsequently, to suppress the growth
of the antiphase perturbation brought about by the phase
singularity, the normal spiral wave has to drift spontaneously.
Figure 4(c) shows a snapshot of a drifting spiral wave with
normal phase singularity. The trajectory of the drifting spiral
wave is presented in Fig. 4(d), where the phase singularities
at successive times are identified. Clearly, the drifting spiral
wave dies away in the end due to the collision between its
phase singularity and the boundary. Then, we change b with
c fixed. For small b, an instability of SWAPC arises, where
the antiphase core dilates spontaneously and persistently until
it overspreads the system and the arm region eventually drifts
away. The snapshots of Re(Ai,j ) and |Ai,j | in Figs. 4(e) and
4(f) exhibit SWAPC with a bulk of antiphase core. Different
from aforementioned circumstances, there is no instability of
SWAPC observed by increasing b. Nevertheless, there exists
no SWAPC for sufficiently large b in any finite-size system
owing to the ever swelling antiphase core.

It is necessary to mention that the parameters used in
the numerical simulations are physically meaningful in real
ultracold atom systems. As expressed in Ref. [17],

b = 2kee
2

νmd3ω2
0

, c = 3α0l
2

νω2
0

, ν = 8h̄k2γ 3	ωIB/IS

Mω2
0(γ 2 + 4	2ω)2

,

(3)

where ke is the Coulomb constant, e elementary charge, α0

the coefficient of the anharmonic quadratic term in the trap
potential, ω0 the harmonic trap frequency, d the distance
between the trap centers, and l the displacement of ions. The
two-level atom of mass m allows for the dipole transition of
wavelength λ = 2π/k and linewidth γ . Each ion is heated and
cooled by near-resonant laser beams depending on the blue or
red detuning 	ω. IR and IB are the intensities of the blue and
red beams, respectively. IS is the laser saturation intensity. Lee
and Cross considered the ion 24Mg+ with an S 1

2
-P 3

2
dipole

transition and estimated b = 1 and c = 1.1 under suitable
circumstances [17]. The entire parameter space of b and c

space can be explored by tuning the parameters IB and α0.

III. CONCLUSION

In summary, we find a different type of spiral wave when
studying the dynamics of trapped ions using the model system
Eq. (2): a rigidly rotating spiral wave with an antiphase core
(SWAPC). The formation of SWAPC is mainly due to the
excitability discovered by Lee and Cross. We also investigate
the dynamics of SWAPC and find some interesting breakup
scenarios. Some problems deserve further investigation on
SWAPC in the model system Eq. (3), such as the dependence
of the size of the antiphase core on parameters, the parameter
regimes for inwardly and outwardly propagating SWAPC, and
the comprehensive description on the breakup scenarios of
SWAPC. Another fascinating topic is whether SWAPC exists
in other cold atom quantum systems. In addition, SWAPC
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could exist only in discrete space systems, since the antiphase
oscillation is conceptually impossible for a continuous space
system. However, whether the observed phenomena in this
work only exist in other discrete space systems such as those
with dissipative coupling is also an open problem.
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