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Variational approximations to homoclinic snaking in continuous and discrete systems
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Localized structures appear in a wide variety of systems, arising from a pinning mechanism due to the presence
of a small-scale pattern or an imposed grid. When there is a separation of length scales, the width of the pinning
region is exponentially small and beyond the reach of standard asymptotic methods. We show how this behavior
can be obtained using a variational method, for two systems. In the case of the quadratic-cubic Swift-Hohenberg
equation, this gives results that are in agreement with recent work using exponential asymptotics. In addition,
the method is applied to a discrete system with cubic-quintic nonlinearity, giving results that agree well with
numerical simulations.
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I. INTRODUCTION

This paper is concerned with the phenomenon of pinning of
fronts in nonlinear dynamical systems. For systems that exhibit
bistability of two uniform states, a front connecting these
two states will normally drift in one direction, depending on
which of the two states is preferred. At a particular parameter
value, there is no preference between the two states and a
stationary front exists. In variational systems this known as the
Maxwell point and occurs when the two states have the same
energy [1,2]. However, in systems where there is an underlying
structure, on a scale that is typically small compared with
the length scale of the front, a front can become locked to
this structure. This mechanism allows a stationary front to
exist over a range of parameter values around the Maxwell
point, known as the pinning region. Placing two fronts back
to back creates a localized state and the bifurcation diagram
plotting the length of this localized solution against the control
parameter has a snaking structure, involving a sequence of
saddle-node bifurcations in near-perfect alignment. Since the
spatial structure of such a localized state departs from and then
returns to a uniform state, the phenomenon has become known
as homoclinic snaking [3]. (See Refs. [4–6] for reviews of the
subject and some open questions.)

There are two distinct scenarios in which homoclinic
snaking appears. In the first of these, the underlying structure
is provided by pattern formation. A physical system, for
example, convection in fluids [7,8], a vibrated granular
material, buckling of a solid cylinder [1], optical systems [9] or
gas discharge experiments [10,11], has an instability leading
to the formation of a regular periodic pattern as a parameter
is varied. (See Ref. [6] for a review of such experimental
systems where localized states and snaking are observed.) If
the bifurcation is subcritical, there is bistability between the
uniform and the patterned states. Near the onset of pattern
formation, a subcritical Ginzburg-Landau equation can be
derived [7,12,13], which has frontlike solutions connecting the
two states. However, this equation does not capture the locking
mechanism, which is beyond the reach of perturbation expan-
sions [14]. The localized states have been found in many stud-
ies [15–18] that use the Swift-Hohenberg equation as a model
for pattern formation. This model was originally derived from
the equations of thermal convection [19] and is widely used as

a simple model with the necessary characteristics, although it
does not capture all of the details of the experimental systems.

A second situation in which locked fronts appear is in
discretized forms of partial differential equations, where
there is a locking effect to the imposed lattice. Examples
include stationary solutions of the discrete bistable nonlinear
Schrödinger equation [20–22], which leads to a subcritical
Allen-Cahn equation [23], optical cavity solitons [24,25], and
discrete systems with a weakly broken pitchfork bifurcation
[26]. This situation also arises whenever a bistable system is
solved numerically on a spatial grid.

An interesting and challenging question is to determine the
width in parameter space of the region in which stationary
localized solutions exist. Numerical simulations indicate that
this pinning region becomes very small as the separation of
the two length scales increases [13,17]. In fact, the region
is exponentially small, or beyond all orders. This is related
to the fact that a conventional multiple-scale asymptotic
method cannot describe the locking effect since it regards
the two length scales as independent, while in fact the locking
mechanism involves an explicit interaction between the short
and long length scales. The necessary exponential asymptotic
calculations, involving truncating a divergent asymptotic
series at an optimal point and obtaining an equation for the
exponentially small remainder term, have recently been carried
out for the Swift-Hohenberg equation with quadratic-cubic
nonlinearities [27,28] and cubic-quintic nonlinearities [29].
However, these calculations are extremely cumbersome and
include an undetermined constant that must be obtained
numerically by either fitting to numerical results [27] or
approximately solving a complicated recurrence relation [29].

In this paper we use variational methods to obtain scaling
laws for the structure of the snaking region, building on
the work in a previous paper that studied the cubic-quintic
Swift-Hohenberg equation [30]. Of course, not all systems that
exhibit homoclinic snaking have a variational structure, but
most of those previously studied do. The variational method
is dependent on a good initial ansatz, but this is known in the
cases studied here. For pattern forming problems near onset,
it is known that the solution can be described by a slowly
varying envelope function multiplied by a sinusoidal wave.
Furthermore, the form of the envelope function is known
from the standard asymptotic analysis and can be obtained
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to higher order if required. Calculating the integrals in the
Lagrangian automatically leads to exponentially small terms
and from these we can obtain the phase of the locked states
that is inaccessible to the usual asymptotic expansion. Note
that variational methods have been used before to study
localized states on lattices [20,21], but not in the slowly
varying regime that is studied here. Also in the continuous case,
variational methods have been used [31], but not in the snaking
regime.

Here we consider two equations, namely, the quadratic-
cubic Swift-Hohenberg equation and the discrete cubic-quintic
Schrödinger equation, also known as the spatially discrete
Allen-Cahn equation, representing continuous and discrete
systems, respectively. The first equation is discussed in
Sec. II. The results are then compared with numerical results
obtained by continuation in Sec. II C. The second equation is
studied in Sec. III. The scaling calculated analytically using
the variational method is then compared with computational
results, where good agreement is obtained. A summary is given
in Sec. IV.

II. THE QUADRATIC-CUBIC SWIFT-HOHENBERG
EQUATION

The quadratic-cubic Swift-Hohenberg equation is given by

∂tu = ru − (
1 + ∂2

x

)2
u + b2u

2 − b3u
3. (1)

This equation represents a simple model for pattern-forming
systems that do not have a symmetry under sign reversal of
the dependent variable u and has been very widely used to
illustrate homoclinic snaking [12,15,16,28]. The Lagrangian
for Eq. (1) is

L =
∫ ∞

−∞

(
u2

xx

2
− u2

x + (1 − r)
u2

2
− b2

3
u3 + b3

4
u4

)
dx. (2)

It can easily be shown that L is a nonincreasing function of
time, so stable stationary states of Eq. (1) correspond to minima
of Eq. (2). It will be assumed that b3 > 0; in this case u and b2

can be rescaled to set b3 = 1. In Eq. (1) the bifurcation at r = 0
is subcritical (allowing localized patterns) if b2

2 > 27b3/38.
Figure 1 shows the bifurcation diagram for Eq. (1) obtained

by a numerical continuation method for b2 = 1.5 and b3 = 1,
with periodic boundary conditions in a domain of length
l = 82π . The norm N plotted is defined by

N2 =
∫ l/2

−l/2
u2dx. (3)

The periodic solution (dashed line) bifurcates subcritically
and becomes stable at a saddle-node bifurcation at r ≈
−0.186. Two branches of localized solutions bifurcate from the
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FIG. 1. Bifurcation diagram of Eq. (1) for b2 = 1.5 and b3 = 1
in a periodic domain of length 82π , showing the stable (solid line)
and unstable (dashed line) parts of the periodic solution and the two
localized snaking solutions (stability not shown). The stability of the
localized solutions along the snake was indicated in a similar picture
in Fig. (8) of Ref. [16].

periodic state at a very small value of r and form an intertwined
snaking pattern near the Maxwell point at r ≈ −0.151. On
one of these branches, the maximum of the envelope function
coincides with a minimum of the periodic pattern and on the
other it coincides with a maximum. Solutions along the former
branch are shown in Fig. 2. The first figure, for r = −0.01,
shows a slow spatial modulation that can be represented by
an envelope in the form of a hyperbolic secant function (see
Sec. II A). For r = −0.05 the amplitude modulation occurs
over a shorter length scale, but can still be represented by the
hyperbolic secant function. The third graph shows u(x) at the
first saddle-node bifurcation r = −0.146 and the final graph
is at a saddle-node bifurcation higher up the graph where r =
−0.158 and N = 5.15. At this stage the solution resembles
two fronts connecting the periodic solution to the state u = 0
(see Sec. II B).

A. Analysis of solutions near r = 0

The analysis near r = 0 can be performed in a way that
is similar to that in Ref. [30]. Motivated by the results from
multiple-scale expansions [16,31,32], we take the ansatz

u = Asech(Bx) cos(kx + ϕ) + Csech2(Bx), (4)

from which we obtain that the norm in Eq. (3) is given by

N2 = 1

3B
(3A2 + 4C2) + 3Aπ

B3

[
C(B2 + k2) cos(ϕ)sech

(
kπ

2B

)
+ ABk cos(2ϕ)csch

(
kπ

B

)]
. (5)
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Substituting the ansatz in Eq. (4) into the Lagrangian in Eq. (2) yields the effective Lagrangian

Leff = 2C2

315B
(36b3C

2 − 56b2C − 168B2 + 240B4 + 105 − 105r)

− A2

30B
[−24b3C

2 + 20b2C − 7B4 − 30k2B2 + 10B2 − 15k4 + 30k2 + 15(r − 1)] + b3

8B
A4

+ πAk2

720B7
{−60b2C

2k2B2 + 45 A2b3 C B2k2 + B4[240Ck4 − 180A2b2 + 720C(1 − k2)] + 2b3C
3k4}

× cos(ϕ)[e−kπ/2B + O(e−kπ/B)]. (6)

It is immediately clear from Eq. (6) that the phase ϕ is
determined by exponentially small terms since the param-
eter B is expected to be small, with 1/B representing the
length scale of the modulation of the pattern. Furthermore,
Eq. (6) shows that steady states (extrema of Leff) exist if ϕ

is a multiple of π [32]. There are two distinct states ϕ = 0
and π , both corresponding to even solutions but with the
maximum of the envelope function sech(Bx) coinciding with
a maximum or minimum of the wave cos(kx), as shown by
the numerical continuation method in Sec. I. Note that this
result does not depend on our choice of ansatz. For any slowly
varying, even modulation function f (Bx), the integrals in
the Lagrangian involve powers of f (Bx) and its derivatives
multiplied by cos(kx) cos(ϕ), yielding an exponentially small
quantity multiplied by cos(ϕ), and hence stationary states
with ϕ = 0,π . In the symmetric cubic-quintic case [30],
only even powers of u appear in the integrand, leading to
integrals only involving even powers of cos(kx + ϕ) that can
be written in terms of cos(2kx) cos(2ϕ) (plus higher, even

harmonics that are exponentially smaller) and hence there are
stationary solutions with ϕ = 0,π/2,π,3π/2. This argument
indicates that generically in pattern-forming problems, the
stationary states have ϕ = 0,π , but in the special case of
systems with an additional symmetry u → −u, steady states
have ϕ = 0,π/2,π,3π/2, a result also shown by the spatial
dynamics approach in Ref. [15].

Seeking stationary values of the effective Lagrangian

∂

∂α
Leff = 0 (7)

gives us a system of nonlinear equations for α, with α =
A,B,C,k,ϕ, that makes Eq. (4) an approximate extremal
solution for Eq. (2). Neglecting the exponentially small terms
in the effective Lagrangian in Eqs. (6) and (7) can be solved
perturbatively about r = 0 to yield

A =
(

8

4b2
2 − 3b3

)1/2 √−r + O((−r)3/2), (8)
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FIG. 2. Localized solutions on one branch of Fig. 1. From top to bottom, r = −0.01, −0.05, −0.146, and −0.158 (N = 5.15).
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B = 1

2

√−r + O(−r), (9)

C = − 4b2

4b2
2 − 3b3

r + O((−r)3/2), (10)

k =
√

1 − B2 = 1 + r

8
+ O((−r)2). (11)

It is important to note that the presence of C �= 0 plays an
important role in the calculations above, unlike the case of the
cubic-quintic equation [30], where it was possible to include
only the first term in Eq. (4). Taking C = 0 would result in
the leading-order expression of A independent of b2, which is
incorrect. This occurs because when C = 0 the cubic term in
the Lagrangian, which corresponds to the crucial symmetry-
breaking quadratic term in Eq. (1), does not contribute to
the Lagrangian integral except through an exponentially small
term. Note that C = b2A

2/2, a result that is also easily obtained
at second order in the asymptotic analysis of the problem. A
similar Lagrangian method was used by Wadee and Bassom
[31], using more terms in the ansatz in Eq. (4) but with ϕ = 0.
The results above for A and C are almost the same as those ob-
tained using multiple-scale expansions [16,31]. A slight differ-
ence arises as we have, for simplicity, omitted a second-order
term in sech2(Bx) cos(2kx + 2ϕ); including this term would
give exact agreement between the Lagrangian method and the
asymptotic analysis. According to Eq. (8), the transition from a
subcritical to a supercritical bifurcation occurs at b2

2/b3 = 3/4,
which is very close to the true value of 27/38 [28].

When neglecting the exponentially small terms, the phase
shift ϕ at this order is arbitrary, which also agrees with
the multiple-scale result. However, taking into account the
equation ∂ϕLeff = 0, in which all the terms are exponentially
small, ϕ has to be a multiple of π , as mentioned above.

The ansatz in Eq. (4) is appropriate only for small values
of |r|, away from the Maxwell point (see Figs. 1 and 2). In
the snaking region near the Maxwell point, the envelope of the
localized states resembles two connected fronts. The following
section introduces a suitable ansatz for this regime.

B. Analysis of solutions near the Maxwell point

For values of b2 in the neighbourhood of

b20 =
(

27

38
b3

)1/2

, (12)

the bifurcation is only slightly subcritical and the Maxwell
point is within reach of weakly nonlinear analysis. In this case
the quadratic-cubic Swift-Hohenberg equation (1) has a front
solution, which is approximately given by [28]

u = AM

cos
(
x − 1

2
√

734
ln(1 + eaMx)

)
√

1 + e−aMx
, (13)

with

AM =
(

38
√−rM√
734b3

)1/2

, aM = √−rM, (14)

rM = − 6859

17 616b3
(b2 − b20)2. (15)

In analytically estimating the width of the snaking region in
the equation using variational approximations, we will employ

a front solution that is similar to Eq. (13). Considering this
solution, one can note that the oscillation wave number k of
the front changes in space. In the limits x → ±∞, k → 1,
and 1 − aM (2

√
734)−1 ≈ 1, respectively. Therefore, we will

fix k = 1 to simplify the analysis.
It turns out that as in the case of the sech solutions

considered in the previous section, if only the leading order
front solution Eq. (13) is used as the ansatz, the leading terms
in the Lagrangian do not depend on b2, giving qualitatively
incorrect results. We therefore adopt an ansatz of the form

u = A cos(x + φ)√
1 + eB(|x|−L)

+ b2A
2

2(1 + eB(|x|−L))
. (16)

The second term here arises at second order in the weakly
nonlinear expansion [31], included for a similar reason as
discussed in Sec. II A. This term is responsible for the
upward displacement of the periodic pattern that is apparent in
Fig. 2. To simplify the calculation we have set the value of
the coefficient of this term in advance rather than leaving it
as a free parameter. The asymptotic analysis includes another
second-order term, proportional to cos 2(x + ϕ) [31], which
is omitted partly in the interests of simplicity and partly
because it is smaller by a factor of 9 than the term we have
included.

Evaluation of the Lagrangian integral is considerably more
complicated than in the cubic-quintic case [30]. This is
partly because of the two-term ansatz and partly because the
dominant terms come from odd powers of the square root
function, requiring integrals that cannot simply be computed
using residues. These integrals can be evaluated in terms of
multiplications of γ functions of a complex argument, which
in turn can be expanded using Stirling’s formula when B is
small, giving the anticipated exponentially small terms. There
are many of these exponentially small terms and the calculation
is complicated by the fact that terms involving higher powers
of u, which one might expect to give a smaller contribution, in
fact all give exponentially small terms of the same order. Some
of the details of these calculations are given in the Appendix.
Computing the Lagrangian in Eq. (2) assuming that B is small
but BL is large (so the fronts are well separated) yields the
effective Lagrangian

Leff = A2

1920B

(
15B4 + 480B2 − 160A2b2

2B
2

+ 16A2b2
2B

4 + 480A2b2
2 + 480A2rb2

2

+ 240A4b4
2 − 360A2b3 − 1080A4b3b

2
2 − 110A6b3b

4
2

)
+ LA2

96

(
18A2b3 − 24A2b2

2 − 48r − 24A2rb2
2

− 8A4b4
2 + 36A4b3b

2
2 + 3A6b3b

4
2

)
+ cos(ϕ)

A3
√

2
√

πb2

420
e−π/BB−7/2

× [K+ cos(L) + K− sin(L)]

+O(e−2π/B[sin(2L), cos(2L)],e−BL), (17)

where

K± = ±56A4b2
2b3 + 280A2b2

2B − 420A2b3B

±156B2 ± 840rB2 − 763B3 + 70rB3. (18)
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Note that two types of exponentially small terms appear in
the analysis: the phase-locking terms involving cos(ϕ)e−π/B

and the front interaction terms proportional to e−BL. Since we
are mainly interested in the pinning mechanism we assume
that the former dominate, so that the fronts are well separated,
with L � B−2.

Consider first the terms that are not exponentially small,
that is, the terms that do not involve the phase ϕ. Bearing
in mind the anticipated scaling from Eq. (14), A = O(r1/4),
the dominant terms in the brackets multiplied by LA2 in
Eq. (17) are the first two terms, so Leff only has a minimum
over L if at leading order b2

2 = 3b3/4. This is very close to the
asymptotic result Eq. (12) and would be exactly the same if
we had included the cos 2(x + ϕ) term mentioned above. We
therefore set

b2 =
√

3b3/4 + �, |�| � 1 (19)

and expect that � and B are O(r1/2), in which case the leading
terms in the Lagrangian are

Llead
eff = A2

128B

(
32B2 + 32

√
3b3A

2� − 45A4b2
3

)
+ LA2

96

(
45A4b2

3/2 − 48r − 24
√

3b3A
2�

)
. (20)

Finding and solving the equations obtained from differentiat-
ing the effective Lagrangian in Eq. (20) with respect to L, A,
and B gives the values

A2 = 8
√

3�

15b
3/2
3

, B =
√

10�

5
√

b3
(21)

and yields the Maxwell point

rM = −2�2

5b3
= −B2, (22)

which is within 3% of the asymptotic value given in Eq. (15).
Note that the length L is not determined by these equations.
Substituting these values of A, B, and rM into the leading
terms of the Lagrangian, we find that the minimum is

min
(
Llead

eff

) = 4
√

30�2

75b2
3

. (23)

Thus, although the Maxwell point can be determined by the
condition that L is zero for both the zero state and the periodic
state, the value of L is not zero for the localized state due to
the presence of the fronts. In fact, L is positive and of the same
order as r .

Considering now the exponentially small term involving ϕ,
it is clear from ∂ϕLeff = 0 that there are two distinct branches of
stationary snaking solutions, with ϕ = 0 and π , corresponding
to the center of the localized pattern being a local maximum
or minimum, respectively. However, another possible way to
satisfy ∂ϕLeff = 0 is that the coefficient multiplying the cos ϕ

term vanishes, i.e.,

K+ cos(L) + K− sin(L) = 0. (24)

Substituting the above values of A and B and taking the leading
terms in K±, solutions of this type occur for values of L given
by

tan L = −K+/K−, (25)

where K± is given in Eq. (18), which to leading order is

K± = 8(30)1/4√π

7875b3
(±307

√
3 − 210

√
10). (26)

Hence, for small B these states exist if L = −0.110 219 · · · +
mπ for integer values of m. These solutions have been referred
to as “bridges” [33] or “ladders” [34] and were identified in the
exponential asymptotics of Eq. (1) by Yang and Akylas [32]
and Chapman and Kozyreff [27]. The ladder states (not shown
in Fig. 1) have no reflection symmetry and connect the two
snaking branches, bifurcating from them near the saddle-node
bifurcations.

To find the snaking range, we set sin(ϕ) = 0 and r = rM +
δr and the Lagrangian simplifies to

Leff = 4
√

30�2

75b2
3

− δrA2L

2

+ e−π/B [K+ cos(L) + K− sin(L)], (27)

with K± given in Eq. (26). This can be minimized over L

to give the exponentially small value of δr for stationary
solutions,

δr = 2e−π/B

A2
[K− cos(L) − K+ sin(L)]. (28)

The maximum value of δr (half the width of the snaking
region) is then, using the leading-order approximations for
b2, A, and B given above,

δrm = 2e−π/B

525�

√
241 249πb3(120)1/4. (29)

Note that the dependence of the snaking width on the small
parameter � is very similar to that for the small parameter
b3 in the cubic-quintic case [30]. The dependence in Eq. (29)
is the same as that obtained by Kozyreff and Chapman [28]
using the methods of exponential asymptotics, although the
comparison is not immediate since they regard b2 as the control
parameter rather than r . Note that the numerical coefficient was
determined by fitting in Ref. [28].

A useful feature of the Lagrangian method is that we can
examine the stability of steady states since we know that stable
equilibria are local minima of the Lagrangian. Considering the
exponentially small terms, with A and B fixed and r = rM +
δr , the dependence of L on δr , L, and ϕ can be represented by
the function

Le(δr,L,ϕ) = −δrL + cos ϕ cos(L − L0), (30)

where the phase shift L0 satisfies Eq. (25) and for convenience
we have set the constants equal to 1. Figure 3(a) shows a
surface plot of Le for δr = 0. The solutions on the snaking
branches, with ϕ = 0,π and L − L0 = mπ , are either maxima
or minima, and so are either stable or unstable with two positive
eigenvalues. The ladder solutions at ϕ = π/2,3π/2 and L −
L0 = π/2 + mπ are saddle points and are therefore always
unstable. The surface plot for δr = 0.4 is shown in Fig. 3(b).
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FIG. 3. (Color online) Surface plots of the simplified Lagrangian
in Eq. (30) with (a) δr = 0 and (b) δr = 0.4.

The symmetric snaking solutions remain at ϕ = 0,π but are
shifted in L, while the ladder states are shifted in ϕ but remain
at the same values of L.

C. Numerical results

In this section we compare the above results from the
variational method with numerical solutions of the quadratic-
cubic Swift-Hohenberg equation (1). We have solved the
equation numerically for localized states, using a pseudo-
arc-length continuation method with periodic boundary con-
ditions, implemented with a Fourier spectral discretization.
Plotted in Fig. 4(a) is the bifurcation diagram showing two
branches of localized solutions for b2 = 1.3 and b3 = 1. Also
shown by the dashed line are our analytical results obtained
from Eq. (7) using the hyberbolic secant ansatz, where one can
see that the variational calculation approximates the numerics
very well for relatively small |r|. As r decreases further and
enters the snaking region, the approximation deviates from the
numerics. In Fig. 4(b) we plot the profile of a localized solution
at r = −0.06 and its approximation.

Considering Eqs. (8)–(11), one can conclude that for larger
values of the parameter b2, the parameter |r| can be larger
while keeping the amplitude A in Eq. (8) small. This implies
that the hyberbolic secant ansatz can have a longer validity

region for large b2. It is important to note that the ansatz might
be able to quantitatively capture the first snaking bifurcation
for a larger value of b2.

In Fig. 4(c) we plot the Lagrangian in Eq. (2) corresponding
to the bifurcation diagram [Fig. 4(a)] as a function of the length
of the solution’s plateau 2L, which is calculated numerically
as

2L ≈
8
∫ l/2
−l/2 u2dx

(uM − um)2 + 2(uM + um)2
,

where uM = max{u} and um = min {u}. The integration is
a definite integration over the computational domain. Also
plotted in Fig. 4(c) is our effective Lagrangian in Eq. (27).
There is good agreement for the average numerical value of
the Lagrangian and the qualitative nature of the oscillations, but
the amplitude of the oscillations appears to be underestimated
in the variational approximation. Note that the amplitude of
the oscillations in L increases with L since from Eq. (27) with
δr ∝ cos(L) there are oscillations of the form L cos(L).

Finally, in Fig. 4(d) we show the width of the snaking
region as a function of b2 numerically and analytically, where
one can see that our approximation is in fairly good agreement.
For the smallest values of � shown the numerical result differs
from Eq. (29) by a factor of 2. Note that, as in many problems
involving exponential asymptotics, it is not possible to observe
the true asymptotic regime numerically.

The numerical method can also be used to check the stability
of the steady-state solutions (since the Jacobian is already
computed as part of the Newton-Raphson iteration). This
confirms that the snaking states are in general either stable or
unstable with two small positive eigenvalues. One eigenvalue
changes sign at the saddle-node bifurcation and another at the
nearby bifurcation to the ladder states. The ladder states are
found to be unstable with one positive eigenvalue, consistent
with the fact that they are saddle points of the Lagrangian.

III. SNAKING IN DISCRETE SYSTEMS

To illustrate the wide-ranging applicability of the varia-
tional method in describing the snaking behavior, we analyze
in this section an analogous problem in discrete systems. This
turns out to be remarkably similar to the continuous case.
Consider the system of ordinary differential equations

dun

dt
= C(un+1 − 2un + un−1) + μun + 2u3

n − u5
n, (31)

with the condition that un → 0 as n → ±∞. We assume that
C > 0 and look for stationary solutions of Eq. (31). This
system has been considered in Refs. [20–23] and very similar
systems have been studied in Refs. [25,26]. The system in
Eq. (31) can be interpreted as a discrete form of the nonlinear
Schrödinger equation with cubic-quintic nonlinearity, which
is relevant to the physics of nonlinear optics [35] as well as
Bose-Einstein condensates [36] and can also be regarded as
a discrete subcritical Allen-Cahn equation [23], with physical
relevance to lattice-gas models for phase transitions [37].

These previous studies have used numerical continuation
to obtain bifurcation diagrams that show a snaking structure
that is very similar to that seen in the continuous Swift-
Hohenberg equation (1). Note, however, that Eq. (31) is not
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FIG. 4. (a) Bifurcation diagram obtained numerically and our approximation obtained from solving Eq. (7) with the ansatz in Eq. (4)
for b2 = 1.3. (b) Numerically obtained localized solution and its approximation from the variational formulation for ϕ = 0 and r = −0.06.
(c) Numerically computed Lagrangian in Eq. (2) as a function of the length of the plateau 2L, corresponding to (a). The dashed line is our
approximation calculated from the effective Lagrangian in Eq. (27). (d) Width of the snaking region as a function of b2. Solid circles are
numerical results and the solid line shows the analytical result, i.e., 2δrm Eq. (29). The inset shows the same comparison on a logarithmic scale.
In all panels, b3 = 1.

a discrete form of the Swift-Hohenberg equation. Rather it is
a discrete form of the subcritical Ginzburg-Landau equation
that describes the slowly varying envelope function for
Eq. (1). Thus the snaking behavior seen in Eq. (31) results
from a locking mechanism to the discrete lattice, with the
lattice points providing the analog of the small-scale pattern in
the Swift-Hohenberg equation. In view of this, computational
investigation of the snaking in Eq. (31) is much easier than in
Eq. (1) since there is no small-scale structure to resolve.

The grid-locking behavior of fronts in Eq. (31) can
be seen as an indication of numerical error in the finite-
difference approximation of the bistable partial differential
equation

∂u

∂t
= ∂2u

∂X2
+ μu + 2u3 − u5. (32)

When Eq. (32) is discretized with second-order finite differ-
ences with mesh spacing ε, the result is Eq. (31) with C = ε−2.
Frontlike solutions to Eq. (32) are traveling waves for all values
of μ except exactly at the Maxwell point. Thus the snaking
branch of Eq. (31) indicates a range of values of μ where
the numerical approximation incorrectly finds a stationary
solution. It is therefore of interest to determine the width of this
region for small values of ε (large values of C). An alternative
scaling, similar to that in Sec. II, is to set C = 1 and replace
the 2 in Eq. (31) by a small parameter b2; however, we will use
the form of Eq. (31) to facilitate comparison with the previous
work cited above.

The Lagrangian for Eq. (31) is

L =
∞∑

n=−∞

C

2
(un+1 − un)2 − μ

2
u2

n − 1

2
u4

n + 1

6
u6

n. (33)
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Note that a variational method has been used in Refs. [20,21]
to study the case of small C, but here the focus will be
on large C. The uniform solutions of Eq. (31) are given by
un = 0 and

u2
n = 1 ±

√
1 + μ, (34)

so there is a saddle-node bifurcation at μ = −1 and there is
bistability of both the zero state and the larger nonzero solution
in Eq. (34) for −1 < μ < 0. By finding the Lagrangian of this
nonzero state, it is straightforward to show that the Maxwell
point is at μ = −3/4 and so at this point the stable nonzero
state is un = √

3/2.
For large C we expect the solution to Eq. (31) to be close to

that of the continuous system Eq. (32). At the Maxwell point
there is an exact stationary frontlike solution of Eq. (32), u(X),
given by

u2 = A2

1 + eαX
, (35)

where A2 = 3/2 and α = √
3. In the discretized system, un =

u(εn) and we wish to consider a localized state linking two
fronts. The ansatz analogous to that used in the continuous
case Eq. (16) is then

u2
n = A2

1 + eαε(|n−φ|−L)
. (36)

Here the length of the front (measured in terms of the
number of mesh points) is 2L and φ is a phase variable,
which is arbitrary at this stage but will be determined by
exponentially small terms. If φ = 0, then uj = u−j and the
localized state is symmetrical and site centered. Similarly, a
bond-centered symmetrical state, with the property uj = u1−j ,
can be obtained by setting φ = 1/2. Note that it is not
necessary to include higher-order terms in Eq. (36) as in
Eq. (16); this is because Eq. (31) only has nonlinear terms
with odd powers and therefore is more analogous to the
cubic-quintic Swift-Hohenberg equation analyzed with the
Lagrangian approach in Ref. [30].

Consider now the sum
∑∞

n=−∞ u2
n that appears in L. This

can be evaluated by writing the sum as an integral of a function
multiplied by a sum of δ functions and then writing the sum
of δ functions as a Fourier series:

∞∑
n=−∞

u2
n =

∞∑
n=−∞

A2

1 + eαε(|n−φ|−L)

=
∫ ∞

−∞

A2

1 + eαε(|x−φ|−L)

∞∑
n=−∞

δ(x − n)dx

=
∫ ∞

−∞

A2

1 + eαε(|x−φ|−L)

∞∑
k=−∞

e2ikπxdx.

Note that x here is not the same as X in Eq. (32); rather
it is a continuous form of the variable n. Of course the
Fourier series representation of the δ function is not uniformly
convergent, but the integral converges very rapidly, in fact,
exponentially. From the term k = 0 we obtain an order-one

contribution∫ ∞

−∞

A2

1 + eαε(|x−φ|−L)
dx = 2LA2 + O(e−αεL). (37)

The terms with k = ±1 give a contribution∫ ∞

−∞

A2
(
e2iπx + e−2iπx

)
1 + eαε(|x−φ|−L)

dx, (38)

which is exponentially small in ε, and the terms arising from
larger values of k are smaller by an exponentially small
factor. Note that the integrals that are needed here, for the
discrete case, are essentially exactly the same integrals that
were needed for the continuous case in Sec. II and Ref. [30].

The integral in Eq. (38) can be found using contour
integration. For the term in e2iπx the contour is closed in
the upper half plane and is dominated by the poles at x =
φ ± L + iπ/αε. The sum of the residues at these two poles is

−2i sin(2πL)e2iπφ A2

αε
e−2π2/αε. (39)

The value of Eq. (38) is found by multiplying this by 2iπ and
adding the complex conjugate to account for the e−2iπx term.
Hence the required sum is

∞∑
n=−∞

u2
n = 2LA2 + 8π sin(2πL) cos(2πφ)

A2

αε
e−2π2/αε

+O
(
e−4π2/αε,e−αεL

)
. (40)

As in the continuous snaking case, we suppose that the
exponential terms responsible for the grid locking dominate
those from the interaction between the two fronts. This requires
L � ε−2.

In a similar way it can be shown that

∞∑
n=−∞

u4
n = 2LA4 − 2A4

αε
− 8πA4

α2ε2
cos(2πφ)[2π cos(2πL)

−αε sin(2πL)]e−2π2/αε (41)

and

∞∑
n=−∞

u6
n = 2LA6 − 3A6

αε
− 8πA6

α3ε3
cos(2πφ)[3παε cos(2πL)

+ (2π2 − α2ε2) sin(2πL)]e−2π2/αε, (42)

where again terms of orders e−4π2/αε and e−αεL have been
dropped. Note that for small ε, the dominant exponentially
small term comes from Eq. (42).

The remaining term required for the Lagrangian is

∞∑
n=−∞

(un+1 − un)2

=
∞∑

n=−∞
A2

(
1

1 + eαε(|n+1−φ|−L)
− 1

1 + eαε(|n−φ|−L)

)2

.

(43)
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As with the other terms, this can be written as an integral∫ ∞

−∞
A2

(
1

1 + eαε(|x+1−φ|−L)
− 1

1 + eαε(|x−φ|−L)

)2

× (1 + e2iπx + e−2iπx + · · ·)dx,

leading again to a part that is independent of φ and an exponen-
tially small φ-dependent term. For the part that does not depend
on φ, we can write the integrand as [f (X + ε) − f (X)]2,
where f (X) = A/

√
1 + eαX and X = εx, and use a Taylor

expansion to find the dominant contribution to Eq. (43) in the
form

1

4
A2αε − 1

384
A2α3ε3 + O(ε5).

If the same method is applied for the exponentially small
terms, it turns out that each term in the Taylor expansion
yields a contribution that is of the same order after the
exponentially small integral has been evaluated. Each term
gives a contribution proportional to

A2

αε
cos(2πφ) sin(2πL)e−2π2/αε,

with a different numerical constant. Thus we know the scaling
but not the magnitude of this term. Since Eq. (43) is multiplied
by C = ε−2 in Eq. (33), this term is of the same order as the
u6 term in Eq. (33).

Using the above results, the leading terms in the Lagrangian
in Eq. (33) are

Llead = A2α

8ε
+ A4

αε
− A6

2αε
+ L

(
−μA2 − A4 + A6

3

)
. (44)

By making this expression stationary with respect to A, L, and
α we recover the results given earlier, A2 = 3/2, α = √

3, and
μ = −3/4.

To find the width of the snaking region, we set μ = −3/4 +
�μ and introduce the largest of the exponentially small terms,
arising from the u6 term and the difference term in Eq. (33),
to obtain

L = 3
√

3

8ε
− 3

2
L�μ − (8π3 + D)A6

3α3ε3

× cos(2πφ) sin(2πL)e−2π2/αε, (45)

where D is an unknown constant representing the contribution
from Eq. (43) where only the scaling is known. By making
Eq. (45) stationary with respect to φ it follows that snaking
branches branches exist with φ = 0 or 1/2, corresponding to
the site-centered and bond-centered states found numerically.
For these snaking branches, differentiating with respect to L

shows that

�μ ∝ 1

ε3
cos(2πL)e−2π2/αε,

so the scaling for the width of the snaking region in Eq. (31)
for large C is

�μ ∝ C3/2e−2π2√C/3. (46)

Furthermore, differentiating Eq. (45) with respect to φ predicts
that the ladder states, with sin(2πφ) �= 0, occur for integer
values of L.
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FIG. 5. A log-log plot showing numerically obtained values of
�μe2π2√

C/3 (points) together with the 3/2 scaling law expected
according to Eq. (46) (line).

To check the scaling predicted by Eq. (46), snaking
curves for the equation were obtained numerically using a
continuation software method. With 200 grid points it was
possible to obtain snaking bifurcations up to a value C = 14 (at
which point the snaking width is of the order of 10−14). Figure 5
shows the numerically obtained snaking width multiplied by
the predicted exponential factor e2π2√C/3. This shows a clear
power-law behavior, with a power very close to the value 3/2
predicted by Eq. (46).

IV. CONCLUSION

In this paper we have used the variational approximation
to study the snaking behavior of localized patterns in the
quadratic-cubic Swift-Hohenberg equation and the discrete
bistable Allen-Cahn equation. With a simple ansatz, inspired
by asymptotic analysis, the exponentially small terms respon-
sible for the snaking appear in the Lagrangian. This enables
the branches of snaking solutions to be found, along with the
asymmetric ladder states that link these branches.

These solutions cannot be found by a conventional multiple-
scale method since they involve a locking mechanism between
the long and short scales, but are accessible through exponen-
tial asymptotics [27,28]. The Lagrangian approach provides
a useful complement to the exponential asymptotic method.
Both methods give the same scaling for the relationship
between the width of the snaking region and the small
parameter of the system.

We have shown that a close similarity exist between the
pinning phenomena in continuous and discrete systems. This
arises partly because the continuous limit of the discrete
system considered is exactly the same as the Ginzburg-Landau
equation describing spatial modulation of the pattern in the
continuous case and partly because the sums in the Lagrangian
for the discrete case can be converted into integrals very similar
to those that appear in the continuous problem.
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The variational method has a number of advantageous
features in addition to the fact that the Lagrangian integral
immediately generates the necessary exponentially small
terms. Based on the minimization of the Lagrangian, it is
easy to distinguish between stable and unstable equilibria. We
have concentrated on the case of small parameters, making
use of the first terms of known asymptotic series; in future
work it will be useful to examine the effect of including more
terms from the series in the ansatz. However, the method is
not restricted to this regime. In future work it may be possible
to apply the method to cases where no parameters are small
and make useful comparisons with numerical or experimental
results. A further aspect of some models is the appearance of
slanted snaking, due to a nonlocal term [38] or a spatial forcing
term [39], and the variational method may be applied to these
problems. Since snaking is also seen in nonvariational systems,
another interesting question is whether the variational method
can be adapted to such systems (see, e.g., Refs. [40–42], where
variational methods have also been applied to nonvariational
systems). In this paper we have concentrated on stationary
solutions, but the method could also be used to study the
slow dynamics of well-separated fronts [18]. An additional
challenge will be to extend the results to two-dimensional
systems [15,22,43].
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APPENDIX

To illustrate some of the steps in the calculation of the
Lagrangian in Sec. II B consider the term

∫ ∞
−∞ u2dx, which

is the defined norm in Eq. (3) and one of the terms in the
Lagrangian density in Eq. (2). Using the ansatz, this can be
written as

∫ ∞

−∞
u2dx =

∫ ∞

0

A2
(
1 + b2

2A
2/2 + eB(x−L)

)
(1 + eB(x−L))2

+ 2b2A
3 cos(φ) cos(x)

(1 + eB(x−L))3/2
+ A2 cos(2φ) cos(2x)

1 + eB(−L+x)
dx,

(A1)

after using the double-angle formula and the fact that the
envelope function is even. The first term, which is independent
of φ, in the integral can be evaluated directly and gives
the answer A2L(1 + A2b2

2/2) − A4b2
2/2B + O(e−BL). The

integral of the third term can be found by using contour
integration, similarly to that used in Ref. [30]. However, we are
not interested in the explicit expression of it, as it contributes an
exponentially small term of order e−2π/B that is much smaller
than that due to the second term. The second term is of our
interest, giving a leading exponentially small contribution of
order e−π/B . Unfortunately, the integral cannot be immediately
evaluated by using the residue method as mentioned above. By
using MATHEMATICA, one obtains that

∫ ∞

0

cos(x)dx

(1 + eB(x−L))3/2
= ie−iL�

(
3B+2i

2B

)
�

(−i+B
B

)
√

π
− ieiL�

(
3B−2i

2B

)
�

(
i+B
B

)
√

π

+ eBL

B

[
2eBL

√
1 + e−BL

1 + eBL
− 2F1

(
i − B

B
,
1

2
,
i

B
, − e−BL

)
− 2F1

(
− i + B

B
,
1

2
, − i

B
, − e−BL

)]
, (A2)

where � and 2F1 are the Gamma and the hypergeometric
functions, respectively.

The hypergeometric function can be written in a series
form as

2F1(a,b,c,z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
,

where (·)n = ·(· + 1) · · · (· + n − 1) is the Pochhammer
symbol. The series is convergent in our case, i.e., 0 < B � 1
and BL � 1, such that up to O(e−2BL),

2F1

(
i − B

B
,
1

2
,
i

B
, − e−BL

)
= 1 − 1

2
e−BL (1 + iB) ,

2F1

(
− i + B

B
,
1

2
,
−i

B
, − e−BL

)
= 1 − 1

2
e−BL (1 − iB) .

As for the � function, it can be approximated by the Stirling
formula

�(z) =
(

2π

z

)1/2 (
z

e

)z [
1 + O

(
1

z

)]
,

when z is large enough in absolute value. Then, the first two
terms on the right-hand side of Eq. (A2) can be approximated
by

e−π/B

2B3/2

(
π

2

)1/2

[(−8 + 3B) cos(L) + (8 + 3B) sin(L)].

(A3)

The second term of Eq. (A1) can also be evaluated in the limit
of large L using tabulated integrals as follows. Denoting this
term by I2, we have

I2 =
∫ ∞

0

cos(x)dx

(1 + eB(x−L))3/2

=
∫ ∞

0

cos(x)e−3B(x−L)/4dx

(e−B(x−L)/2 + eB(x−L)/2)3/2

=
∫ ∞

−L

cos(x + L)e−3Bx/4dx

[2 cosh(Bx/2)]3/2
, (A4)
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where the integration variable has been shifted a distance L in
the last line. Taking the limit L → ∞, this can be written as

I2 = Re
∫ ∞

−∞

eiLeixe−3Bx/4dx

[2 cosh(Bx/2)]3/2
; (A5)

then splitting this integral into the parts where x > 0 and
x < 0 it can be written in terms of a cosine of a complex
argument

I2 = 2 Re
∫ ∞

0

eiL cos[(1 + 3iB/4)x]dx

[2 cosh(Bx/2)]3/2
. (A6)

This can now be evaluated using tabulated integral
transforms [44], giving the result

I2 = Re(2eiL�(i/B)�(3/2 − i/B))/B
√

π, (A7)

which agrees with the product of � functions given in
Eq. (A2).

Combining the approximations above, one will obtain that

∫ ∞

−∞
u2dx = A2L

(
1 + 1

2
A2b2

2

)
− A4b2

2

2B

+ A3b2

B3/2
exp

(
− π

B

)(
π

2

)1/2

cos(φ)

× [(−8 + 3B) cos(L) + (8 + 3B) sin(L)]

+O( exp(−2π/B)) + O(e−BL). (A8)

Equation (A8) indicates that in the snaking region, solutions
with a larger norm correspond to longer plateaus.
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