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Engineering the synchronization of neuron action potentials using global
time-delayed feedback stimulation
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We experimentally demonstrate the use of continuous, time-delayed, feedback stimulation for controlling
the synchronization of neuron action potentials. Phase-based models were experimentally constructed from a
single synaptically isolated cultured hippocampal neuron. These models were used to determine the stimulation
parameters necessary to produce the desired synchronization behavior in the action potentials of a pair of neurons
coupled through a global time-delayed interaction. Measurements made using a dynamic clamp system confirm
the generation of the synchronized states predicted by the experimentally constructed phase model. This model
was then utilized to extrapolate the feedback stimulation parameters necessary to disrupt the action potential
synchronization of a large population of globally interacting neurons.
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I. INTRODUCTION

Abnormal synchronization of neural activity can be seen
in many neurological diseases, including epilepsy, Parkinson’s
disease, and essential tremors [1–4]. Neurostimulation therapy
can be used to alleviate the symptoms of these diseases [5,6];
it typically involves applying a pulse-train stimulation signal
to an electrode which has been surgically implanted into the
brain of the patient [7–9]. This electrical stimulation signal
modulates the extracellular potential of all of the neurons
within the targeted area, which is thought to alter their
collective behavior. One main challenge is to determine the
necessary stimulation parameters in order to obtain the desired
collective firing behavior. While electrical stimulation has been
shown to modulate the activity of individual neurons, its effect
on the synchronization behavior of a group of neurons is
currently under investigation [10,11]. Theoretical models have
been developed which illustrate how electrical stimulation can
be utilized to alter the firing patterns of simulated populations
of neurons [12,13].

Time-delayed feedback has been shown to desynchronize
groups of model neurons [12,14–18], and can be employed
in place of pulse-train stimulation. The feedback can be used
to design a therapeutic state of synchronization [19,20]. The
application of locally addressable stimulation has been shown
to synchronize the action potentials of neurons [21].

Here, we experimentally demonstrate the use of time-
delayed feedback stimulation for engineering the synchroniza-
tion of the action potentials of cultured neurons. Phase models
have been shown to have sufficient accuracy to allow precise
control over synchronization states of complex oscillatory
systems [21–29]. The standard approach for the construction of
a phase model involves the measurement of the phase response
of a system to a set of discrete pulses applied at specific times
in the cycle of the element [21,24,30–35]. However, precise
measurements of phase shift are difficult to obtain, particularly
when, for example, the period is nonstationary. In this paper,
an experimental method was used to construct phase-based
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models using continuous stimulation of a single patch clamped
neuron. We believe that this method overcomes some of the
limitations inherent in standard pulse-based approaches. The
mean period of the neuron was measured with and without
applied feedback. The change in the mean period of the
action potentials as a result of the application of feedback was
determined as a function of feedback delay. This allowed for
the construction of a phase model of the dynamical behavior
of the neuron. The experimentally constructed model was
then used to determine the feedback parameters necessary to
produce in-phase and antiphase synchronization states within
a two-neuron system using global stimulation. The parameters
were applied to an experimental system of two patch clamped
neurons, and the desired synchronization states were observed.
The validated model was then used to determine feedback
parameters which may disrupt the synchronization of a large
population of globally coupled neurons.

II. THEORY

A phase-based model can be constructed to represent the
dynamical behavior of a population of coupled oscillatory
elements:

dφi

dt
= ωi + K

N

N∑
j=1

H (φj − φi) for i = 1,2, . . . ,N, (1)

where φi is the phase of the element, K is the interaction
strength, ωi is the natural frequency, and H (�φ) is the
interaction function [36,37]. The interaction function can be
determined from macroscopic physical quantities:

H (�φ) = 1

2π

∫ 2π

0
Z(φ)h(φ + �φ) dφ, (2)

where Z(φ) is the response function and h(φ) is the stimulation
function [37]. The response function quantifies the sensitivity
of the neuron to perturbations as a function of phase, while
the stimulation function quantifies the amount of stimulation
applied to the neuron at a given phase.

The construction of the model proceeds by experimen-
tal determination of the response function of the neuron.
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Standard methods for determining the response function of an
oscillatory element often require large pulses [38] or access to
multiple coupled elements [39], making them difficult to apply
in experimental systems. As a result, a method was developed
which utilized weak delayed self-feedback stimulation applied
to a single oscillator [40]. A phase model can be defined for a
system composed of one element as

dφ1

dt
= ω1 + KH (φ†

1 − φ1), (3)

where φ
†
1 is the phase of the stimulation signal applied to the

element. For delayed self-feedback stimulation, the phase of
the stimulation is related to the phase of the physical element
by

φ
†
1 = φ1 − τ, (4)

where τ is the feedback delay.
The phase of an oscillator can be integrated over one cycle

and expressed as a function of the period of the oscillation:

2π =
∮

dφi =
∫ Pi+�Pi

0
dt

dφi

dt
, (5)

where Pi is the intrinsic mean period of the oscillator (2π/ωi),
and �Pi is the change in the period of the oscillator due
to external stimulations, such that Pi + �Pi is the observed
period of the element [39,41]. By substituting Eqs. (3) and (4)
into (5), H (�φ) can be analytically approximated as

H (�φ) = −2π

KP 2
1

[�P1(�φ)],

(6)
�φ = −τ.

Equation (6) allows for the determination of the interaction
function directly from experimental measurements of the
period of an oscillatory element stimulated using delayed
self-feedback. A similar method using a synaptic stimulation
function was developed by Cui et al. [42].

Z(φ) can be analytically determined from Eq. (2) given an
experimentally measured interaction function obtained under
a known stimulation. Each function in Eq. (2) can be expanded
in a Fourier series,

H (�φ) =
∞∑

n=1

Rn cos(n�φ) + Sn sin(n�φ), (7)

Z(φ) =
∞∑

m=1

Am cos(mφ) + Bm sin(mφ), (8)

h(φ) =
∞∑
l=1

Cl cos(lφ) + Dl sin(lφ). (9)

Substitution of these Fourier series into Eq. (2) and integration
yields a linear system of equations in terms of their Fourier
coefficients: (

Cn Dn

Dn −Cn

) (
An

Bn

)
=

(
2Rn

2Sn

)
, (10)

which can be solved using standard matrix techniques.

Once the response function is known, Eqs. (1) and (2) can
be used to determine how the the parameters of the stimulation
function affect the collective phase behavior of a set of two
or more neurons. For a system of two neurons, we construct a
phase model of the form

dφi

dt
= ωi + K

2

2∑
j=1

H (φj − φi) for i = 1,2, (11)

which by subtraction yields

d�φ

dt
= �ω + K

2
[H (−�φ) − H (�φ)] . (12)

Stationary solutions to this equation will occur at phase
differences which satisfy

�ω

K
= H−(�φ), (13)

where H−(�φ) is the odd part of the interaction function. A
linear stability analysis indicates that these stationary states
will be stable when

dH−(�φ)

d�φ
> 0. (14)

Synchronization states can therefore be generated by selecting
feedback stimulation parameters such that the interaction
function has the necessary properties Eqs. (13) and (14) to
stabilize the desired states.

III. EXPERIMENTAL METHODS AND APPARATUS

Rat hippocampal cells were cultured using methods mod-
ified from the literature [43,44]. Cultures were prepared
from P0-P1 Sprague-Dawley newborn rats. The newborn rats
were decapitated, and their brains were removed and placed
in cold HEPES-buffered Hank’s balanced salt solution 4-
(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)-
HBSS. The hippocampi were removed under a dissecting
microscope and collected in a small petri dish containing
HEPES-HBSS. Tissues were incubated in 0.125% trypsin
for 15 min at 37 ◦C. The trypsin solution was replaced with
5 ml HEPES-HBSS and the cells were rinsed twice more
with HEPES-HBSS at 5 min intervals. The hippocampi were
triturated until no fragments of tissue remained. Neurons were
collected by centrifugation and resuspended in 5 ml of Dul-
beccos modified Eagles medium and F-12 supplement (1:1)
(Invitrogen) with 10% fetal bovine serum (heat inactivated,
Invitrogen), 2 mM L-glutamine (Invitrogen), and penicillin
(100 U/ml)-streptomycin (100 U/ml).

Culture dishes were coated with polylysine and filled with
2 ml of culture medium. Cells were plated at a minimum
density of 50 000 per 35 mm2 dish and kept at 37 ◦C in a 5%
CO2 incubator. After 24 h, the culture medium was changed
to serum-free medium containing 2% B27 and 2 mmol/l
glutamine. The medium was replaced with fresh medium
every 2–3 days. The cultures used for the experiments were
between 9 and 15 days old. Cells were placed in external media
consisting of (in mM) 146 NaCl, 3 KCl, 2 CaCl2, 3 MgCl2, 11
glucose, and 10 HEPES, pH 7.4, osmolarity 310–315 mOsm.
The neurons were synaptically isolated by adding 50 μM
DL-2-Amino-5-phosphonopentanoic acid (DL-AP5), 50 μM
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bicuculline methiodide, and 20 μM 6,7-Dinitroquinoxaline-
2,3-dione (DNQX). In order to create periodic spiking,
50 μM of 4-aminopyridine, a common agent used to induce
seizurelike activity, was added to the external solution.

Cells were patched using a micropipette with a resis-
tance of 6–9 M� and filled with a solution of (in mM)
145 K-gluconate, 0.6 Ethylene glycol-bis(2-aminoethylether)-
N,N,N’,N’-tetraacetic acid (EGTA), 11 HEPES, 8 KCl,
3 NaCl, and 4 MgATP, pH 7.3, osmolarity 295–300 mOsm. A
silver counterelectrode was placed into the external solution.
The membrane potentials of the cells were recorded using
two Axopatch amplifiers. The amplified membrane potential
measurements were digitized using a 16-bit data acquisition
system. A Xilinx FPGA processor was programmed to
calculate a stimulation signal from the membrane potential
measurements of the neurons. The stimulation was of the form

I (t) = Iapp + δI, (15)

δI = K

N

N∑
i=1

h(Vi(t)), (16)

h(V ) = K0 + K1(V (t − τ ) − V ), (17)

where I (t) is the injected current stimulation signal, Iapp is
the baseline injected current, V is the mean value of the
neuron membrane potential, K is the feedback gain, τ is the
feedback delay, and V is the measured neuron membrane
potential. The loop rate of the controller was 25 kHz. A
schematic of the dynamic clamp apparatus is in Fig. 1. Other
similar dynamic clamp apparatuses have been discussed in the
literature [45,46].

After the cells were successfully patched, they were
hyperpolarized to −70 mV and allowed to rest for 120 s
to ensure the formation of a 1 G� seal. A baseline current
of 40 pA was injected into the neurons, causing repetitive
spiking. After allowing 1 s for accommodation, feedback
stimulation was applied to the neuron. The feedback signal

FIG. 1. (Color online) Schematic of the patch clamp apparatus
setup. For one-cell experiments only one patch clamp apparatus
was used and for the two-neuron experiments both patch clamp
apparatuses were used.

was applied for approximately 10 s, after which time the
current stimulation was removed and the neuron was allowed
to rest for a period of approximately 20–30 s, before the next
depolarization.

IV. EXPERIMENTAL RESULTS

Experiments were conducted to illustrate the use of global
feedback stimulation for controlling the synchronization
behavior of neurons. The interaction function of a single,
synaptically isolated neuron to delayed feedback stimulation
was experimentally measured. A single neuron was patch
clamped and its membrane potential was recorded over time
[Fig. 2(a)]. Delayed feedback stimulation was then applied to
the neuron. Figures 2(b)–2(d) illustrate the firing period of the
neuron as a function of feedback delay. Baseline observations
of the natural firing rate of the neuron (without applied
stimulation) were taken before and after each experiment
(left and right panels). The natural period distribution of the
neuron was observed to be approximately the same before

FIG. 2. (a) The membrane potential of a single neuron (top)
and the applied stimulation signal (bottom) as functions of time
(K0 = 13 mV, K1 = 350, τ = 0.5 rad/2π ). (b), (c), (d) Period
distributions for three separate cells. Middle panel shows the period
distribution as the feedback stimulation delay was increased from
from 0 to 1 rad/2π . Left and right panels illustrate the period distri-
bution of the neuron action potentials before and after application of
stimulation.
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FIG. 3. (a) Calculated interaction function data and Fourier fit for
three neurons. (b) Calculated response functions for three isolated
neurons. (c) Odd part of the interaction function for the experimental
system with applied global feedback (K0 = 13 mV, K1 = 350, and
τ = 0 rad/2π ). (d) Odd part of the interaction function for the
experimental system with applied global feedback (K0 = 13 mV,
K1 = 350, and τ = 0.5 rad/2π ). In (c) and (d) the open circles are
stable states and the gray squares are unstable states.

and after the application of feedback stimulation, indicating
that the stimulation did not disrupt the intrinsic behavior of
the neuron. Experiments were repeated using three different
neurons.

The period of the neuron action potentials was observed to
change as the feedback delay was increased [middle panels,
Figs. 2(b)–2(d)]. The maximum firing period was achieved
with a feedback delay of approximately τ = 0.25 rad/2π ,
while the minimum firing period was obtained at approx-
imately τ = 0.7 rad/2π . The firing period of the neuron
with τ = 1 rad/2π was close to the firing period when
τ = 0 rad/2π . Drift in the natural period of the action
potentials occurred but was small compared to the mean
period of the action potentials, except for the case of the
second cell [Fig. 2(c)]. For this cell, the mean period was
adjusted linearly from the initial prestimulation mean period
to the poststimulation mean period. The qualitative frequency
response was found to be similar for each neuron.

Equation (6) was applied to the experimental observations
in Figs. 2(b)–2(d); the resulting interaction functions are
illustrated in Fig. 3(a). The period of the neuron action
potentials was taken to be the median period of the observed
action potentials. Once the interaction functions were deter-
mined for each of the neurons, their corresponding response
functions were calculated using Eq. (2). For this calculation,
the stimulation function was set to Eq. (17) and the neuron
wave form x(φ) was set to the mean cycle of the neuron
action potential. The resulting response functions for each of
the neurons are illustrated in Fig. 3(b). Qualitative agreement
was seen between these three functions, indicating that their
sensitivities to electrical stimulation are approximately equal.

The experimentally constructed phase model was used
to determine the values of feedback delay which would
produce in-phase and antiphase synchronization states in a
system of two neurons. As indicated by Eqs. (12) and (14),
a system of two neurons will exhibit a stable phase-locked
state when the odd part of the interaction function equals
the value �ω/K with positive slope. Assuming the ratio
of �ω/K is small, the stationary states of the system can
be found as the roots of H−(�φ). The roots of H−(�φ)
for the experimental system were determined as a function
of the feedback delay. It was observed that feedback delays
less than 0.2 rad/2π produced a unique and stable in-phase
synchronization state while feedback delays between 0.4 and
0.6 rad/2π produced a unique and stable antiphase synchro-
nized state. Figures 3(c) and 3(d) illustrate the odd part of the
interaction function for feedback delays of 0 and 0.5 rad/2π ,
respectively.

The identified feedback delays were applied to the two-
neuron system in order to produce the expected in-phase and
antiphase synchronization states. To ensure that the neurons
were connected only through the feedback stimulation, they
were synaptically isolated and placed in separate cultures. Both
neurons were patch clamped using standard methods. The
recorded membrane potentials for both cells under different
experimental conditions can be seen in Figs. 4(a1)–4(a3); the
applied stimulation signal is illustrated in Figs. 4(b1)–4(b3).
The neurons were observed to experience accommodation for
the first three seconds of each experiment; these data were not
considered as part of the analysis.

Without feedback stimulation, the phases of the action
potentials of the two neurons were found to be uncorrelated
[Figs. 4(a1)–4(e1)]. The mean periods of the cells were not
observed to lock and no preferred phase orientation was found
[Fig. 4(e1)]. Application of the global feedback stimulation
with a delay of τ = 0 rad/2π caused the mean period of the two
cells to lock with a period of approximately 180 ms [Figs. 4(c2)
and 4(d2)]. The mean phase difference between the neuron
action potentials was observed to be approximately 0.05
rad/2π , indicating the presence of a nearly in-phase synchro-
nized state [Fig. 4(e2)]. This observation was consistent with
theoretical expectations [Fig. 3(c)]. The in-phase synchronized
state persisted until the feedback stimulation was removed
(not shown). Increase in the feedback delay to τ = 0.5 rad/2π

caused the action potentials of the two neurons to synchronize
in an antiphase configuration [Figs. 4(a3)–4(e3)]. This was
consistent with expectations [Fig. 3(d)].

V. DISCUSSION

Current research has explored the synchronization behavior
of neurons as a function of inhibitory and excitatory synaptic
connections [47–49]. Here we demonstrate that the phase
model can also be used to generate global electrical stimulation
parameters which can potentially overcome natural behaviors
of a neural system. Phase-based models have proven to
be a valuable tool for characterizing the individual and
collective dynamical behavior of neurons [30,31,35,50,51].
Such models are advantageous since no detailed knowledge
of the biochemistry of neurons is required; only macroscopic
measurements of membrane potential are necessary for model
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FIG. 4. (Color online) (a) Membrane potential recording of two neurons. (b) Applied stimulation current (K0 = 13 mV, K = 400). (c),
(d) Period distribution of neuron action potentials of neurons 1 and 2, respectively. (e) Observed distribution of phase differences between the
action potentials of the two neurons.

construction. Typically, models are generated from experi-
mental measurements on a single neuron and subsequently
used to infer the synchronization behavior of a population
of interacting neurons. We reverse the process by using the
phase model to determine the stimulation required to produce
a desired synchronization behavior.

Models constructed from experimental measurements on
single neurons have proved effective for estimating stimulation
parameters for controlling the action potential synchronization
of two neurons. However, the ultimate goal is the creation
(or disruption) of synchronization in large-scale systems. To
demonstrate this application, the experimentally constructed
phase model was utilized to estimate stimulation parameters
which would disrupt the collective synchronization of a
large population of globally coupled neurons. The dynamical
behavior of such a system is governed by the superposition of

all interactions (internal and external) between elements:

dφi

dt
= ωi +

N∑
j=1

Hint(φj − φi) + Hext(φj − φi)

for i = 1, . . . ,N. (18)

Typically the intrinsic interactions (Hint) of such a system
are unknown. The application of an external stimulation is
utilized to overwhelm the unknown intrinsic coupling between
elements, allowing new dynamical behaviors to be artificially
created. The challenge is in picking the stimulation parameters
which will produce the desired effect on the collective behavior
of the target system.

To create a desynchronized state, all stationary states of
the system must be simultaneously destabilized. The stability
of synchronized states can be determined by calculating the
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FIG. 5. Eigenvalues calculated for balanced cluster states as a
function of feedback stimulation delay. (a) One-, (b) two-, (c) three-,
and (d) four-cluster state. Dashed lines indicate region of possible
desynchronization. In the three-cluster state λ1 = λ2, and in the four-
cluster state λ1 = λ3.

eigenvalues associated with these states. Assuming that only
balanced phase cluster states are possible, the associated
eigenvalues can be determined from the Fourier coefficients
of the net interaction function [52,53]. To actively disrupt
phase synchronized states in a rhythmic population, a set
of feedback parameters must be selected such that all phase
cluster states have at least one eigenvalue with positive
real part.

Having experimentally obtained the response function of
the experimental neuron system, the stability of balanced
phase cluster states can be determined as a function of
the stimulation parameters. Only linear feedback will be
considered for this analysis. By adjusting the feedback delay
parameter, the stability of the synchronized states can be
externally influenced; the amplitude of the feedback signal
does not affect the stability of such states. The eigenvalues of
cluster states 1–4 were calculated as a function of feedback
delay for the experimental neuron system under first-order
feedback (Fig. 5). The eigenvalues indicate that the external
feedback signal will desynchronize a population of globally
coupled neuron when the feedback delay is between 0.35 and
0.45 rad/2π . In this parameter range each cluster state will
have at least one eignevalue with a positive real part. This
parameter range is believed to be large enough to provide a
robust starting point for future experiments.

The use of model-derived feedback signals for controlling
the synchronization behavior of neurons may represent an
improvement over the ad hoc methods of parameter estimation
for current neurostimulation therapies. We have previously
demonstrated that phase models can be used to engineer global
feedback stimulations for controlling the collective behavior of
large populations of complex rhythmic elements in nonlinear
electrochemical systems [22]. This work demonstrates a proof
of concept for the application of our engineering framework
to control the synchronization behavior of biological neurons.

As seen in Fig. 4, both in-phase and antiphase configurations
were successfully generated using global delayed feedback. In
both cases, a single common stimulation signal was applied
equally to the neurons. Such global stimulation is required
for clinical neurostimulation applications. Previous work has
demonstrated the use of addressable electrical stimulation for
influencing the synchronization of neurons [54].

The effect of synaptic connections on the synchronization
of neurons was not considered due to experimental limitations.
However, past work has shown that synaptic connectivity
and interactions may be directly incorporated into the phase
model [49,55]. Previous work has also demonstrated that
stimulation signals can be created to overwhelm intrinsic
interactions between elements and guide the target system
toward the desired state [22]. The use of nonlinear stimulation
for controlling populations of neurons has been previously
demonstrated in numerical simulations [56].

The use of a phase model for estimating neurostimulation
parameters is subjected to limitations. As derived, the phase
model requires the use of relatively periodic elements. Since
neurons under physiological conditions have long quiescent
periods, describing their natural behavior by such a model may
not be possible. However, neurological events such as seizures
have long episodes of roughly periodic neuronal activation
which may be described using such models [57].

Additionally, the use of phase models requires that the
stimulation signal remains small such that the amplitude
of the action potential remains undisturbed. However, weak
feedback stimulation is desirable since it minimizes disruption
of the natural rhythmic behavior of the neurons. This can
be seen in Fig. 2, where upon the removal of the feedback
stimulation, the period distributions of the action potentials of
the neurons return to their prestimulation baseline distribution.
No permanent changes to the neuron were observed.

VI. CONCLUSIONS

A method of constructing a phase model, using time-
delayed self-feedback, has been developed; this method
requires experimental access to only a single representative
rhythmic unit. After construction of the phase model from
observations of the action potential of a single neuron, it
was used to predict the synchronization states of a two
neuron system. Experiments were conducted to observe the
phase behavior of the action potentials of two neurons
under linear time-delayed feedback. The predictions of the
phase model were confirmed by the experimental obser-
vations. This method provides an additional approach for
the construction of dynamical models of complex rhythmic
systems.
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