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Statistical and fractal properties of the spatial distribution of earthquakes in the central zone of Chile are
studied. In particular, data are shown to behave according to the well-known Gutenberg-Richter law. The fractal
structure is evident for epicenters, not for hypocenters. The multifractal spectrum is also determined, both for
the spatial distribution of epicenters and hypocenters. For negative values of the index of multifractal measure
q, the multifractal spectrum, which usually cannot be reliably found from data, is calculated from a generalized
Cantor-set model, which fits the multifractal spectrum for q > 0, a technique which has been previously applied
for analysis of solar wind data.
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I. INTRODUCTION

Recently, there has been a growing interest in studying
Earth’s seismicity from the perspective of a complex system.
Several analytical tools developed or used in the study of
complexity, such as the calculation of fractal dimensions,
event distributions, complex network analysis, etc., have been
applied to the study of seismic activity [1–5].

Seismic activity is the result of the interaction between
tectonic plates. Relative motion between them eventually leads
to a buildup of stress, leading to an energy release in the form of
seismic waves which propagate through Earth. It is thus natural
to relate seismic activity to avalanches in sandpile models [6],
where seisms can be regarded as the result of the Earth being in
a self-organized critical state [7–10]. Evidence for this comes
from the fact that the energy release distribution (avalanche
size or seism magnitude) follows a power law in both cases,
and that the spatial distribution (of avalanches or seisms) shows
a fractal structure. Calculation of the fractal dimension of the
earthquake spatial distribution in a given zone does not only
give statistical information on past events, but has also been
proposed as a prediction tool to find precursors of volcano
eruptions, for instance [11].

In this regard, it is important to keep in mind that the study
of seismicity has important practical consequences in terms of
assessing risks for building policies, determining locations for
human settlements, and, eventually, for saving human lives.
One can take the approach of studying the detailed dynamics
of a certain fault, for instance, in order to determine how
stress is distributed, in an attempt to establish the risk of
a major event in a particular zone. Another approach is to
study a large number of seismic zones in order to gain insight
about possible universal features of seismicity, which may be
independent of the particular type of fault or soil involved, and
of the recent history of the adjacent plates. Both approaches
are complementary, and serve different purposes in the larger
objective to understand seismicity.

In this paper we deal with the second approach, analyzing
some statistical and fractal properties of seismic activity in
the central zone of Chile, an area of strong seismicity but
where few studies of these kind have been carried out, thus

strengthening the point that seismicity does have universal
qualitative and quantitative features. In particular, we find that
data follow two well-established behaviors present in other
seismic data, namely, the Gutenberg-Richter law, and the fact
that the spatial distribution of seisms has a fractal structure.

Another well-established feature in seismic data is that
the earthquake spatial distribution also exhibits a multifractal
structure [12–14]. However, usually only the region of the
multifractal spectrum corresponding to positive values of the
index of multifractal measure q can be reliably obtained from
earthquake data, due to experimental uncertaintities. In this
paper we use a generalized Cantor-set model [15,16] in order
to first fit the multifractal spectrum for q > 0, and then extend it
for negative values of q, a technique which has been previously
used for the analysis of solar wind data [17].

Thus, the purpose of this paper is to study the fractal
characteristics of the earthquake spatial distribution in the
central zone of Chile, corresponding to events occurring in
the Nazca subduction zone. First, in Sec. II, the main features
of the dataset we used for the analysis are discussed. In
Sec. III, event magnitudes are shown to follow the well-
known Gutenberg-Richter power-law distribution [18]. Then,
in Sec. IV, the spatial distribution of earthquakes is shown
to have a fractal structure, and the box-counting dimension is
calculated, both for epicenters and for hypocenters. In Sec. V,
the multifractal distribution of epicenters and hypocenters is
studied. In Sec. VI the multifractal spectrum for q < 0 is found
by using a generalized Cantor-set model. Finally, in Sec. VII
results are summarized and discussed.

II. EARTHQUAKE DATA

The data used for this paper have been provided by the
Chilean Servicio Sismológico Nacional (National Seismologic
Service) [19]. They correspond to over 17 000 seismic events
of magnitude higher that 1.6 recorded between October 2000
and January 2007, and between latitudes 29◦ S and 35.5◦ S, and
between longitudes 69.501◦ W and 73.944◦ W (central zone
of Chile), contained within a volume LNS = 730 km long in
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the North-South direction, LEW = 500 km in the East-West
direction, and Lz = 700 km in depth.

The data provide the position of the seismic event (hypocen-
ter), the time of the event, and the local or Richter magnitude
[20], which is related to the amplitude of the seismic wave and
to the energy release:

ML = log10(A) − log10(A0)δ, (1)

where δ is the distance from the epicenter, A is the amplitude
of the S waves at 600 km from the epicenter, and A0 is a
standard value, which depends on the time delay between the
P wave and the S wave at the monitoring station.

III. GUTENBERG-RICHTER LAW

One of the few universal laws regarding earthquakes is
the Gutenberg-Richter law [18], which states that N (ML), the
number of earthquakes of magnitude larger than ML, is related
to ML by

ln[N (ML)] = a + bML,

where a and b are constants. Since the local magnitude is
related to the logarithm of the energy released, it follows that
the Gutenberg-Richter law simply states that the distribution
of earthquakes as a function of energy is a power law, just as
avalanches in a sandpile model [6].

Figure 1 shows the distribution of events as a function of
local magnitude. The data do in fact follow a linear relation
for large magnitudes, with slope b = −0.901 ± 0.022 (error
calculated using the least-squares technique), thus showing
that the Gutenberg-Richter law is satisfied by the data. This is
consistent with many other similar studies for various sets of
data in different seismic zones.

Figure 1 also implies that there is no characteristic magni-
tude in seismic activity, a scale-free property which is closely
related to fractality, a feature which our data also have, as we
will show in the next section.

IV. MONOFRACTAL ANALYSIS

In order to establish the self-similar properties of the data,
we study the earthquake spatial distribution of epicenters
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FIG. 1. Distribution function of seismic events as a function of
local magnitude. Dots: data; line: linear fit.
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FIG. 2. Log-log plot of the number of boxes containing earth-
quake epicenters vs normalized box side ε/Le. A linear scaling,
consistent with Eq. (2), is present. The slope corresponds to the
box-counting dimension D0 = 1.73.

and hypocenters, and calculate its box-counting dimension
[21–24].

In the case of epicenters, we divide the rectangular zone of
area LNS × LEW in squares of side ε, and count the number of
squares N (ε) which contain data. For small ε,

N (ε) � ε−D0 , (2)

where D0 is the box-counting dimension.
Figure 2 shows that our data indeed follow the scaling

Eq. (2) for epicenters. A similar plot is also obtained for
hypocenters. In order to calculate the logarithm of an adimen-
sional quantity for the abscissas, the box side is normalized by
the square root of the total area Le = √

LNSLEW for the case
of epicenters, and it is normalized by the cubic root of the total
volume Lh = 3

√
LNSLEWLz for the case of hypocenters.

The resulting box-counting dimensions are

D
(epi)
0 = 1.73 ± 0.02,

D
(hypo)
0 = 2.02 ± 0.05,

respectively, where the error is calculated from the least-square
fit of ln N vs ln ε.

It is interesting to note that these values are similar to
the fractal dimensions calculated for other seismic zones
[13,21,22,25], and in fact approximately correspond to the
observed values for rocky soils, which matches the type of soil
in the zone studied [26].

Table I shows a comparison of the values of D0 and b for the
Chilean data studied in this paper, and data for other seismic
zones.

Also notice that the fractal structure of the data is much
more evident for epicenters. However, the fact that the fractal
dimension for hypocenters is approximately equal to 2 is also
consistent with previous results, suggesting that faults can be
modeled by a percolation model, with seisms only occurring
at the active part of the fault, leading to a low dimensionality
for hypocenter data [28,29].

It is also interesting to note that typical values of b

range between 0.8 < b < 1.2, depending on the tectonics of
the region [26,30], and our results fall in that range. Also,
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TABLE I. Values of D0 and b obtained in this paper, compared
with other references for other seismic zones. All values of D0 are for
hypocenters, except the Colombian data, which are for epicenters.

Country D0 b Ref.

Chile 1.73, 2.02 0.9
Colombia 1.61 0.57 [27]
Chile 2.1–2.2 1.2 [12]
India 1.65–1.85 [26]
Japan 1.9–2.9 0.6–1.5 [24]

the value of b can be related to the box-counting dimension
[31] b � D0/2, which is also approximately satisfied by our
results.

V. MULTIFRACTAL ANALYSIS

In this section, we will calculate the multifractal spectrum
for our dataset [12–14]. In order to do so, we will use
two methods of creating a grid for the data, either in two
dimensions (for epicenters) and in three dimensions (for
hypocenters). One method is histogram partitioning, in which
case the geographical zone is divided in boxes (squares in two
dimensions, cubes in three dimensions) of side ε, and Ni(ε),
the number of points inside each box i, is calculated. Thus,
in this case the space is divided in nonoverlapping boxes. The
second method is correlation-integral partitioning, and in this
case Ñi(ε), the number of data points inside a ball (circle in
two dimensions, sphere in three dimensions) of radius ε around
each event xi , excluding the point itself, is calculated. In this
method, the space is divided in possibly overlapping balls of
radius ε [32].

Both methods were applied to calculate the multifractal
spectrum of epicenters and hypocenters data by first calculat-
ing the generalized Rényi entropy Hq [32]. For the histogram
partitioning method

Hq = 1

1 − q
ln

[∑
i

(
Ni(ε)

N

)q
]

, (3)

where N is the total number of data points. For the correlation-
integral partitioning method, on the other hand,

Hq = 1

1 − q
ln

[
1

N

N∑
i=1

(
Ñi(ε)

N − 1

)q−1
]

. (4)

Then, the Rényi multifractal spectrum is given by Dq =
limε→0 −Hq(ε)/ ln(ε).

The strategy, then, first involves finding a range of values
of ε where Hq scales linearly with ε. Then, from the slope of
each curve, the value of Dq is determined. Finally the curves
Dq vs q can be plotted, which is shown in Figs. 3(a) and 3(b),
for epicenters and hypocenters, respectively. In principle, the
range of ε for linear scaling depends on the value of q on
the partitioning method, and on the dimension of the attractor
(hypocenters and epicenters). However, for the seismic data
used, it was found that, for q > 0, values of ln ε in the range
3 � ln ε � 5 were adequate for all methods and values of
q for hypocenters, and that 3.6 � ln ε � 5 were adequate
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FIG. 3. (Color online) Rényi fractal dimension spectrum for
(a) epicenters and (b) hypocenters. Red (gray) crosses: Histogram
partitioning. Black circles: Correlation-integral partitioning. Error
bars have been calculated from the error in calculating the slope
which yields Dq .

for epicenters. On the other hand, for epicenters and q < 0
[Fig. 3(a)], the range 4.2 � ln ε � 5.2 was used.

In Fig. 3 the two methods explained above to calculate the
Rényi fractal dimension spectrum are compared. For q > 0,
both methods yield consistent results, however, as Fig. 3(a)
shows, differences between methods can be huge for q < 0.
In general, it is very difficult to get good results for q < 0
from experimental data, a problem which we will specifically
address in Sec. VI.

It is worth noting that the values calculated for the
multifractal dimensions are consistent with values for other
seismic zones, where either only particular dimensions or the
complete spectrum (for q > 0) have been obtained [13,14].

VI. MULTIFRACTAL SPECTRUM FOR q < 0

As noted in Sec. V, it is very difficult to get consistent
results for the multifractal spectrum for experimental data, if
q < 0. In order to do this, we take an analytical multifractal
with adjustable parameters, which are chosen to fit the obtained
multifractal spectrum for q > 0. Then, the spectrum for q < 0
is calculated for the analytical model. In our case, we will
choose a generalized two-scale Cantor set [15,16]. The usual
Cantor set can be obtained from an iterative process, where in
each iteration a given segment is divided in three equal parts,
and the middle part is discarded. Instead, we consider a set
where the sum of the measures of the new segments is not
necessarily the same as the measure of the previous segment
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FIG. 4. Rényi fractal dimension spectrum for (a) epicenters
and (b) hypocenters, extended to q < 0 by using an asymmetric,
conservative Cantor-set model, Eq. (5).

(this is given by two parameters p1,p2, where p1 + p2 = 1
corresponds to the usual, conservative case), and where the
length of each new segment is not necessarily the same (this
is given by two additional parameters, l1 and l2, where l1 = l2
corresponds to the usual, symmetric Cantor set). This model
has been successfully used for an analysis similar to ours, but
for solar wind data [17].

In the model, the multifractal dimension Dq turns out to
satisfy the following equation:

p
q

1 l
(1−q)Dq

1 + p
q

2 l
(1−q)Dq

2 = 1. (5)

Thus, the values of p1, p2, l1, and l2 which best fit the curve
Dq vs q, for q > 0, are found which determines the Cantor set
and its multifractal spectrum for all values of q.

Figure 4 shows the multifractal spectrum obtained with
this method. The q > 0 region was fitted using data from
the correlation-integral partitioning method which, as seen
in Fig. 3(a), yields results which are more consistent with
the expected form of the multifractal spectrum than with
the histogram partitioning. The best fit for epicenters was
obtained for a conservative, nonsymmetric Cantor set, given
by p ≡ p1 = 1 − p2 = 0.680, l1 = 0.691, and l2 = 0.696. For
hypocenters, the best fit corresponds to p ≡ p1 = 1 − p2 =
0.675, l1 = 0.6781, and l2 = 0.797. Notice, however, that the
fit for hypocenters is better than for epicenters. This is more
evident when calculating the multifractal singularity spectrum
(see below).

Figure 5 shows the corresponding multifractal singularity
spectrum (called the Mandelbrot fractal dimension spectrum in
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FIG. 5. Same as Fig. 4, but for the multifractal singularity
spectrum. (a) Epicenters and (b) hypocenters, extended to q < 0 by
using an asymmetric, conservative Cantor-set model, Eq. (5).

Ref. [32]), obtained from the results in Fig. 4 by the Legendre
transform [15]

α = ∂

∂q
[(q − 1)Dq], f (α) = qα − (q − 1)Dq. (6)

The fit of the f (α) function is much better for hypocenters
than epicenters. This may be an indication that the multifractal
generator can be improved. The generalized Cantor set was
chosen because of its simplicity, and its good results for solar
wind data as mentioned above. However, it is probably not
adequate for every multifractal set. Thus, Fig. 5 shows that the
Cantor set can still be a proper representation for seismic data,
at least for hypocenters, although other generators should be
considered as well. We plan to deal with this in the future.

VII. SUMMARY

A statistical and fractal analysis of seismic activity in the
central zone of Chile has been carried out. The frequency of
earthquakes as a function of magnitude follows the well-known
Gutenberg-Richter power law, with a b value of −0.901. The
self-similar structure of the data is also revealed by a fractal
study of them. In effect, the box-counting dimension D0 for
epicenters and hypocenters was calculated. It is found that
D0 is not an integer, although fractality is more evident for
epicenters (D0 = 1.73).

Although the data analyzed cover a region 700 km in depth,
98% of the data have a depth above 150 km, thus they may be
considered mostly shallow events. This suggests that, at least
for these data, results obtained for epicenters may be more
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representative of the crustal and upper mantle dynamics than
for deep hypocenters.

The data also have a multifractal structure. Both the Rényi
fractal dimension spectrum and the scaling index spectrum
are calculated. Usually, only the region of the multifractal
spectrum corresponding to the positive index of multifractal
measure q is calculated, since it is the region which can be
reliably calculated from experimental data. In this paper we
have used a generalized Cantor-set model, parametrized to fit
the q > 0 region, and then use it to calculate an extension of the
spectrum for q < 0. Certainly, other multifractal set generators
can be considered, but the Cantor-set model has the advantage
of being particularly simple, and that it had been successfully
used for a similar purpose, although in a very different system
such as solar wind data.

It is interesting to note that the characteristic values
calculated (b, D0) lie within the range of calculated values for

other seismic zones, revealing that these results hold regardless
of the detailed structure of the plates and faults involved in
the seismic activity. Thus, these results should contribute to
a better understanding of the universal features of seismic
activity.
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