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Modularity maximization is the most popular technique for the detection of community structure in graphs. The
resolution limit of the method is supposedly solvable with the introduction of modified versions of the measure,
with tunable resolution parameters. We show that multiresolution modularity suffers from two opposite coexisting
problems: the tendency to merge small subgraphs, which dominates when the resolution is low; the tendency to
split large subgraphs, which dominates when the resolution is high. In benchmark networks with heterogeneous
distributions of cluster sizes, the simultaneous elimination of both biases is not possible and multiresolution
modularity is not capable to recover the planted community structure, not even when it is pronounced and easily
detectable by other methods, for any value of the resolution parameter. This holds for other multiresolution
techniques and it is likely to be a general problem of methods based on global optimization.
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I. INTRODUCTION

The detection and analysis of communities in graphs [1,2]
is one of the most popular topics within the modern science
of networks [3–10]. In recent years an increasing number of
large networked datasets, including millions or even billions
of vertices and edges, have become available, and a traditional
analysis based on local network properties and their global
statistics (e.g., degree distributions and the like) provides
but a partial description of the system and its function.
Communities (also called clusters or modules) are subgraphs
including vertices with similar features or function, and their
identification may disclose not only such similarities among
vertices, which are often hidden, but also how the system is
internally organized and works.

Vertices belonging to the same community have a con-
siderably higher probability of being linked to each other than
vertices belonging to different clusters. Therefore a community
appears as a region of the network with a high density of
internal links, much higher than the average link density of
the graph. The most popular method to detect communities
in graphs consists in the optimization of a quality function,
the modularity introduced by Newman and Girvan [11,12].
Modularity quantifies the deviation of the internal link density
of the clusters from the density one expects to find within
the same groups of vertices in random graphs with the same
expected degree sequence of the network at study. The idea is
that vertices linked to each other in a random way should
not form communities, as high values of the link density
cannot be attained. Consequently, high values of modularity
are supposed to indicate “suspiciously” high values of internal
link densities for the subgraphs, which are then distinct from
groups of randomly linked vertices and can be deemed as
true communities. While this is actually not true [13,14], the
optimization of the measure has been widely used in past years.

Recently, it has been pointed out that modularity opti-
mization has a number of problems. In particular, it has a
resolution limit [15] that leads to the systematic merger of

small clusters in larger modules, even when the clusters are
well defined and loosely connected to each other. A more
recent analysis of the resolution limit has led to the conclusion
that the modularity landscape is “glassy” and includes an
exponentially growing (with system size) number of local
maxima whose values are very close to the absolute maximum
of the measure, even if the corresponding partitions may
be topologically quite different from each other [16]. This
implies, on the one hand, that it is not too difficult to find
a good approximation of the modularity maximum for many
techniques; on the other hand, the maximum is essentially
unreachable. A recent comparative analysis of community
finding algorithms has indeed revealed that modularity fails to
properly identify clusters on benchmark graphs with built-in
community structure and that other methods are much more
effective [17].

Nevertheless, modularity optimization is still being used.
The main reason is the claim that the resolution limit can
be removed by adopting suitable multiresolution versions of
modularity, like those introduced by Reichardt and Bornholdt
[18] and by Arenas, Fernández, and Gómez [19]. In these
variations, a tunable resolution parameter enables one to set
the size of the clusters to arbitrary values, from very large
to very small. However, real networks are characterized by
the coexistence of clusters of very different sizes, whose
distributions are quite well described by power laws [20–22].
Therefore, there is no characteristic cluster size and tuning
a resolution parameter may not help. Indeed, in this paper
we show that multiresolution modularity is not capable of
identifying the right partition of the network in realistic settings
and that, therefore, it does not solve the problems of modularity
maximization in practical applications. The problem is that
modularity maximization is not only inclined to merge small
clusters but also to break large clusters, and it seems basically
impossible to avoid both biases simultaneously. This applies
to other multiresolution methods as well and is probably a
general feature of methods based on the optimization of a
global measure.
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The paper is structured as follows. In Sec. II we present
a general analysis of some relevant mathematical properties
of multiresolution modularity, with respect to the merger or
split of subgraphs, leading to the identification of a range of
values of the resolution parameter, where modularity should
be safe from the above-mentioned problems. In Sec. III we
test the result on realistic benchmark graphs with community
structure, showing that it is often impossible to find a value
of the resolution parameter that delivers the planted partition.
Conclusions are reported in Sec. IV.

II. THE PROBLEM OF MERGING
AND SPLITTING CLUSTERS

A. Multiresolution modularity

Our conclusions are not significantly affected by the
specific modularity formula one chooses, as we will show
in Sec. III. For the analytical discussion of this section we
adopt the generalized modularity Qλ proposed by Reichardt
and Bornholdt [18], which reads

Qλ =
∑

S

[
kS

in

2M
− λ

(
kS

tot

2M

)2
]

, (1)

where the sum runs over all the clusters, 2M is the total
degree of the network, kS

tot is the sum of the degrees of
vertices in module S, and kS

in is twice the number of internal
edges in module S. So, we have kS

tot = kS
in only if the module

is disconnected from the rest of the graph. Here, λ works
like a resolution parameter: high values of λ lead to smaller
modules because the term (kS

tot/2M)2 in the sum of Eq. (1)
becomes more important and its minimization, induced by the
maximization of Qλ, favors smaller clusters.

We ask when it is proficuous for modularity to keep
two subgraphs together or separate. For this, we need to
compute the difference �Qλ = Qλ (partition with merged
subgraphs) −Qλ (partition with separated subgraphs): if
�Qλ > 0 modularity would be higher for the partition where
the subgraphs are merged; otherwise, the split would be more
convenient.

We indicate with A and B the two subgraphs (see Fig. 1).
Let QA−B

λ and QAUB
λ denote the value of modularity when A

and B are kept separated and merged, respectively.

QA−B
λ =

[ ∑
S �=A,B

. . .

]
+ kA

in

2M
+ kB

in

2M

− λ

(
kA

in + l + v

2M

)2

− λ

(
kB

in + r + v

2M

)2

, (2)

where v denotes the number of links joining A with B, l

the number of links joining A with the rest of the network
(excluding B), and r is the equivalent of l for B. For QAUB

λ we
have:

QAUB
λ =

[ ∑
S �=A,B

. . .

]
+ kA

in

2M
+ kB

in

2M
+ 2v

2M

− λ

(
kA

in + l + v + kB
in + r + v

2M

)2

. (3)

l
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v
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FIG. 1. (Color online) Schematic representation of the problem of
merging versus splitting subgraphs. Here A and B are two subgraphs,
the problem is whether one yields a higher value for modularity by
merging them in a single subgraph or by keeping them separated. The
parameters involved in the decision are the number of internal links in
A and B (multiplied by 2), kA

in and kB
in, the number of links v between

A and B (here v = 3), the number of links l between A and vertices
belonging neither to A nor to B (here l = 4), and its equivalent r for
B (here r = 2).

The difference �Qλ = QAUB
λ − QA−B

λ reads

�Qλ = 2v

2M
− λ

kA
ink

B
in + lkB

in + rkA
in + lr

2M2

− λ
v
(
kA

in + kB
in + l + r

) + v2

2M2
. (4)

To simplify a little Eq. (4), we can define � = 2M�Qλ

� = 2v − λ
kA

ink
B
in + lkB

in + rkA
in + lr

M

− λ
v
(
kA

in + kB
in + l + r

) + v2

M
. (5)

Modularity is higher for A and B merged if and only if � > 0.
Equation (5) is rather general, but we are just interested

in testing modularity for some special cases, for which
calculations are easy. Here in particular, we will consider the
case l = r = η and kA

in = kB
in = ξ . Equation (5) becomes

� = 2v − λ
(ξ + v + η)2

M
. (6)

These results are essential to follow the discussion of the
next subsections.

B. Splitting clusters

Despite the different approaches to the problem of detecting
clusters in networks, there are some general ideas that are
shared by most scholars. One of them is that a random
graph has no communities, so it should not be split by an
algorithm in smaller pieces, with the only exception of the
trivial split in singletons, i.e., in groups containing each just
a single vertex, which is still an acceptable answer. Another
shared belief is that a complete graph (or clique), i.e., a graph
whose vertices are all connected to each other, is a perfect
community (due to the fact that the internal link density
reaches the highest possible value of 1). So, if cliques are
just loosely connected to each other, one would expect that
a good method should detect them as separate clusters. We
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would like to find the mathematical conditions, in particular
the choice of the resolution parameter λ, that satisfy both
requisites. In this subsection we search for the condition to
avoid the splitting of random subgraphs, while the condition
to avoid the merger of cliques will be given in the next
subsection.

Let us consider a random subgraphS with total degree 2MS ,
which is part of a larger network with total degree 2M . The
goal is to check under which condition S is split by optimizing
modularity. Here, for simplicity, we consider only bipartitions.
The expected optimal modularity Q2 for the bipartition of a
random graph has been computed by Reichardt and Bornholdt
[23],

QRB = 0.765
〈√k〉S
〈k〉S , (7)

where the brackets indicate expectation values over the
ensemble of random graphs with the same expected degree
sequence of the subgraph at study.

We now express Q2 in terms of the number of edges v

between the clusters of the bipartition with optimal modularity.
We obtain

2MSQ2 = 2MS − 2v − k2
A + k2

B

2MS
= 2kAkB

2MS
− 2v (8)

where kA (kB) is the total degree of module A (B). Since
modularity is optimal when the two modules are of about
equal size, i.e., when kA ≈ kB ≈ MS , we have

2MSQ2 = MS − 2v, (9)

from which we can derive v:

v = MS
(

1
2 − Q2

)
. (10)

For Q2 = 0 we would have v = MS/2, which is the
expected average number of links joining two modules of
equal size, arbitrarily chosen. Equation (10) implies that
optimizing modularity decreases the number of expected
links between the modules, with respect to arbitrary bi-
partitions, while it increases the internal density of links
of the modules. One also sees that, for v to be positive,
Q2 � 0.5. Actually, in the calculation of Reichardt and
Bornholdt, this holds only if 〈k〉 is big enough. To give an
idea of the numbers that one could have, Q2 ≈ 0.17 when
all vertices have degree k = 20, so v ≈ 0.33 × MS , which is
actually a not too bad approximation also for other degree
distributions (for all vertices having degree k = 10, v ≈
0.25 × MS ). Let us call αS this proportionality factor between
v and MS ,

v = αSMS and kA
in = kB

in = (1 − αS )MS . (11)

From Eqs. (7), (10), and (11) we get

αS = 1

2
− 0.765

〈√k〉S
〈k〉S . (12)
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FIG. 2. (Color online) The plot shows αS measured on Erdös-
Rényi and scale-free graphs. For each type of graph, we plot
the analytical estimate of Reichardt and Bornholdt (RB) and a
numerical estimate obtained by optimizing modularity with simulated
annealing (SA) [13]. The minimum cut v = αS × MS was measured
by optimizing modularity for different values of λ over the set of
bipartitions. To optimize modularity, we are looking for small values
of v and equal values of kA and kB , so tuning λ just controls the
importance of either requirement. However, simulations show that
the dependence on λ is quite weak, validating our approximation
kA ≈ kB .

In Fig. 2 we compare the values of αS from Eq. (12)
with numerical estimates derived by putting in Eq. (10) the
maximum modularity Q2, derived with simulated annealing.
The calculation of Q2 is carried out for different values of λ,
but the results seem to be essentially independent of λ. We
consider both Erdös-Rényi (ER) and scale-free (SF) graphs,
with 1000 vertices and average degree 〈k〉 = 20 (left panel)
and 10 (right panel). The SF graphs have degree exponent 2.
As we can see from Fig. 2, the analytical estimate of Eq. (12)
yields a good approximation of αS .

Let us now consider our splitting-merging problem, con-
sidering A and B as candidates. We set η = 1, which means
that only two links come out of S (ideally one from A, the
other from B). In this case, we would like to have � > 0, to
avoid the split of the random subgraph S. From Eqs. (6) and
(11) we get (remember that ξ = kA

in = kB
in):

2αSMS >
λ(MS + 1)2

M
, (13)

which implies

λ <
2αSM

MS
. (14)

Alternatively, we can incorporate the correction factor
[MS/(MS + 1)]2 ≈ 1 in αS , so that we call αS what is actually
αS [MS/(MS + 1)]2. If the subgraph is a clique, αS ≈ 0.5, and
modularity can even split a clique when

λ � M

MS
. (15)

066122-3



ANDREA LANCICHINETTI AND SANTO FORTUNATO PHYSICAL REVIEW E 84, 066122 (2011)

C. Merging clusters

Let us now consider two equal-sized subgraphs connected
with one edge (v = 1 and η = 1) and let kA

in = kB
in = ξC .

Equation (6) becomes

� = 2 − λ
(ξC + 2)2

M
. (16)

In this case, we want � < 0 (we wish to keep the two subgraphs
separated), which implies

λ > λC = 2M

(ξC + 2)2
. (17)

If ξC is very small, λ has to be very big (for λC > 1 the
subgraphs cannot be resolved by standard modularity, which
corresponds to λ = 1, and we recover the resolution limit of
Ref. [15]). On the other hand, if ξC is large, the subgraphs will
be resolved for a large range of λ values.

If the subgraphs are two cliques of nC nodes each, for
instance, ξC = nC(nC − 1).

D. Condition on the ineliminability of the bias

We now put together Eqs. (14) and (17). We have that

λ2 < λ < λ1, (18)

where

λ1 = 2αSM

MS
and λ2 = 2M

(ξC + 2)2
. (19)

Above λ1, modularity splits random subgraphs, below λ2 it
puts together subgraphs even if they are connected by just one
link (even in the case in which they are cliques). In the range
between λ1 and λ2 it should be possible to avoid both biases.
However, if

λ1 < λ2, (20)

the biases cannot be both simultaneously lifted. Equation (20)
holds when, by setting MS/αS = βS ,

(ξC + 2)2 < βS . (21)

Note that Eq. (21) does not depend on the size of the whole
network, either in terms of vertices or edges.

To be more concrete, we consider a simple example. We
examine a network made out of two identical cliques of nC
vertices each and an internally random subgraph of nS vertices
and average degree 〈k〉S . The three clusters are all connected
to each other by one edge only (see Fig. 3). In Fig. 4 we
plot the relation between nC and nS coming from the equality
λ1 = λ2 [obtained turning the inequality of Eq. (21) to an
equality] for some values of 〈k〉S . We used Eq. (12) to evaluate
αS , with the approximation 〈√k〉S = √〈k〉S and the relations
ξC = nC(nC − 1) and MS = nS〈k〉S/2. For any given value of
〈k〉S , the inequality of Eq. (21) holds above the corresponding
curve. In Fig. 5 we plot λ1 and λ2 as a function of nS , for
nC = 13 and 〈k〉S = 100. For λ1 we show two curves, one
corresponding to the exact function, determined numerically,
while for the other we have used the theoretical approximation
of αS described above. The lines divide the λ − nS plane in
four areas, characterized by the presence or absence of the two

FIG. 3. (Color online) Schematic network with two cliques and a
random subgraph, which are the natural communities of the network.

biases. As we can see, the portion of the plane in which both
biases are simultaneously absent (gray area) is quite small.

One might still wonder that it could be possible to find a
value of λ high enough that the random subgraph S is split
in nS vertices and the two cliques are still correctly detected.
Let us consider Eq. (5) when A consists of a single vertex,
so that v is the internal degree of the vertex with respect to
B and l + v = kA is the total degree of A. Recalling that
kB

in + r + v = kB
tot, Eq. (5) becomes:

� = 2v − λ
kB

totk
A

M
. (22)

Therefore, A and B would be kept separated when

λ >
2Mv

kB
totk

A
. (23)

By increasing λ, we can actually separate some vertices of S
and we would eventually split it in nS clusters when λ > 2M

x
,

where x is the minimum kikj over all the connected vertices
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FIG. 4. (Color online) This plot shows Eq. (21) as a function of
nS and nC for the simple network with the three clusters described
in the legend of Fig. 3. Above the curves, modularity cannot find the
right partition for any value of λ.
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FIG. 5. (Color online) Threshold parameters λ1 and λ2 as a
function of nS (nC = 13, 〈k〉S = 100). The theoretical line for λ1

is obtained by approximating αS as described in the text. We see
that λ1 > λ2, up to nS ≈230, so that no λ can eliminate the biases
for bigger values of nS . When nS < ≈230, the biases can be both
eliminated only in the shadowed area between the curves.

(i,j ) of S. Similarly, the condition for the cliques not to be
split reads:

λ <
2M

(nC − 1)(nC − 2)
, (24)

since the denominator is the total degree of a clique of nC − 1
vertices (we neglected r) and we considered kA = v (the vertex
does not have external connections).

In conclusion, if there are two connected vertices in S such
that the product of their degrees is smaller than (nC − 1)(nC −
2), no values of λ are suitable to guess the right answer(s).
This is very likely to happen if the degree distribution of S is
broad, so that there are many low-degree vertices.

III. TESTS ON BENCHMARK GRAPHS

We want now to check the practical consequences of the
limits of multiresolution modularity. For that we take the
LFR benchmark, a model of graphs with built-in community
structure that we have recently introduced [24]. It is an
extension of the planted �-partition model introduced by
Condon and Karp [25]. Each graph has power law distributions
of degree and community size, which are common features of
real graphs with community structure. The degree of mixture
between clusters is measured by the mixing parameter μ,
expressing the ratio between the number of neighbors of
a vertex outside its community and the total number of
neighbors. So, μ = 0 indicates that clusters are topologically
disconnected from each other, as each vertex has neighbors
within its community only, while μ = 1 indicates that vertices
are connected only to vertices outside their group, so the
groups are not communities. Vertices are linked to each other
at random, compatible with the constraints on the distributions
of degree and community size and to the fact that μ has to be
(approximately) the same for all vertices. So, the clusters are
essentially random subgraphs.

We want to specialize Eq. (5) to the LFR benchmark graphs.
Let us consider a cluster S with nb nodes, total degree 2mb,
and internal degree 2MSb. We split it into two equal-sized
subgraphs, such that the internal degree of either part is the
same: kA

in = kB
in. Moreover, for simplicity we assume that the

split is done such to keep an equal number of edges between
each of the subgraphs and the rest of the network: l = r .
We have MSb = (1 − μ)mb, l = r = μmb, v = αSbMSb =
αSb(1 − μ)mb. The condition of non-splitting is

2v > λ
(MSb + l)2

M
, (25)

which is

2αSb(1 − μ)mb > λ
m2

b

M
. (26)

So,

λ < λ1 where λ1 = 2αSb(1 − μ)
M

mb

. (27)

We now search for the condition that leads to the merger of
two clusters of an LFR benchmark graph. For that we should
know how many edges they share, which depends on the
graph size and the number of clusters. We call vxy the number
of edges between modules x and y, and 2mx and 2my are
their total degrees. Equation (5) becomes

� = 2vxy − λ
4mxmy

M
. (28)

The condition to keep the clusters separated is λ > λ2, where

λ2 = Mvxy

2mxmy

. (29)

So, the two biases can be simultaneously removed if λ1 > λ2,
which amounts to

2αSb(1 − μ)
M

mb

>
Mvxy

2mxmy

. (30)

The inequality of Eq. (30) has to hold for all triples of clusters
x, y, and b, and this is usually unlikely to happen. In order
to show that, we check whether multiresolution modularity is
able to deliver the planted partition of the LFR benchmark
graphs for any value of the resolution parameter λ. The results
are shown in Figs. 6 and 7. We plot the fraction of vertices that
are incorrectly classified by modularity as a function of λ. We
consider the misclassifications caused by merging (circles) or
splitting (squares) the clusters of the planted partition of the
graphs. We see that, for small values of λ, modularity merges
many clusters and essentially splits none, whereas for large
λ there is a dominance of splitting over merging. The plots
clearly show that, for every value of λ, there will be some
misclassification due to cluster merging, splitting, or both. The
fraction of affected vertices does not go below 10% but it can
be considerably larger. Figure 6 refers to graphs with 10 000
vertices, but the situation does not improve if we go to larger
graph sizes (50 000 vertices for the benchmark graphs used for
Fig. 7). We point out that we have chosen low values of the
mixing parameter μ (0.1 and 0.3), corresponding to clusters
that are well separated from each other. Modern algorithms for
community detection (like Infomap [26] and OSLOM [27])
would easily find the correct partitions in the graphs we have
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FIG. 6. (Color online) Test of multiresolution modularity on LFR
benchmark graphs. Each panel shows the fraction of misclassified
vertices due to artificial mergers (circles) and splits (squares) of
clusters, as a function of the resolution parameter λ. The panels
correspond to different choices of the exponent τ2 of the cluster
size distribution of the graph and of the mixing parameter μ.
Each point represents an average over 100 benchmark graphs. All
graphs have 10 000 vertices. The other parameters are: average
degree 〈k〉 = 20; maximum degree kmax = 100; minimum cluster
size cmin = 10; maximum cluster size cmax = 1000; degree exponent
τ1 = 2.

used for the tests of Figs. 6 and 7 (see Ref. [17]). One may
object that our estimate of the modularity maximum for each
graph is just an approximation of the actual result, whose
search is an NP-complete problem [28]. However, we have
checked in each case that the partitions found have a higher
modularity than the planted partition of the benchmark graphs.

Finally, we check how general our results are. We have
focused on the multiresolution modularity proposed by Re-
ichardt and Bornholdt in Ref. [18]. In this paper, however, the
authors had proposed a general ansatz for the quality function,
and their multiresolution modularity was just a specific case of
it. In a recent work [29], Traag et al. have shown that this ansatz
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FIG. 7. (Color online) Same as Fig. 6, but for LFR benchmark
graphs of 50 000 vertices. All other parameters are the same as for
the graphs used in Fig. 6.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
Mixing parameter  μ

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Infomap
OSLOM
RB
AFG
CPM

N=1000, S N=1000, B

N=5000, S N=5000, B

FIG. 8. (Color online) Comparative analysis of several multires-
olution techniques on the LFR benchmark. The graphs are made
of 1000 and 5000 vertices, the exponent of the degree distribution
τ1 = 2, the exponent of the clusters size distribution τ2 = 1, the
average degree 〈k〉 = 20, the maximum degree kmax = 50, the cluster
size ranges are S = [10,50] and B = [20,100].

can be specialized to include other known measures, such as
the multiresolution modularity by Arenas et al. [19] and the
quality function adopted by Ronhovde and Nussinov [30],
which is characterized by not having a null model term, in
contrast to modularity. In fact, Traag et al. derived another
model from the general class of functions of Reichardt and
Bornholdt, which they called Constant Potts Model (CPM),
which allegedly has no resolution limit. In Fig. 8 we reproduce
the results of the comparative analysis performed by Traag
et al. on the LFR benchmark. Here, we compare five methods:
Infomap, OSLOM, the optimization of the multiresolution
modularities of Reichardt and Bornholdt (RB), and Arenas
et al. (AFG), and the CPM by Traag et al. For each selected
value of the mixing parameter μ, we generated 100 realizations
of the LFR benchmark and averaged on them the values of
the similarity between the detected and the planted partition.
As a similarity measure, we took the normalized mutual
information (NMI) [31], which has become a standard in this
kind of evaluation. In our computations, we used a modified
version of the measure of Ref. [32], recently introduced by the
authors of this paper, which is able to estimate the similarity of
partitions as well as the similarity of covers, i.e., of divisions
of a network into overlapping communities. We have used this
version of the NMI in our comparative analysis of community
detection algorithms [17], so we stick to it for consistency. We
stress, however, that the clusters of the graphs we considered
are not overlapping.

As found in Ref. [29], it is possible to find values of the
resolution parameter for RB and CPM, which make these
methods outperform both Infomap and OSLOM. This holds
for AFG as well, whose performance is essentially identical
as RB. However, this is due to the fact that the cluster sizes
are too close to each other, spanning less than one order of
magnitude. This is demonstrated by Fig. 9, in which we take
LFR benchmark graphs with the same parameters as those
used for Fig. 6. Now we have 10 000 vertices and cluster sizes
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FIG. 9. (Color online) Comparative analysis of several multires-
olution techniques on the LFR benchmark. The network parameters
are now the same as for the graphs used in Fig. 6. In particular,
the network size is 10 000 and the cluster size spans two orders of
magnitude. The two panels correspond to τ2 = 2 (left) and τ2 = 3
(right).

vary from 10 to 1000 vertices. Again, for the multiresolution
methods we use the values of the resolution parameters that
give the best results. The figure shows that the multiresolution
methods fail to detect the planted partition even for very low
values of the mixing parameter μ, especially when the cluster
size distribution is broader (τ2 = 2). This is consistent with the
results of Figs. 6 and 7. Infomap and OSLOM, on the other
hand, have a clearly better performance, despite the fact that
they do not have a tunable resolution parameter. In particular,
Infomap always detects the right partition, for the range of μ

explored here. Most networks of current interest have many
more than 10 000 vertices, and accordingly, community sizes
span much broader ranges of values. Figure 9 suggests that in
such cases the performance of multiresolution methods might
become far worse.

IV. CONCLUSIONS

We have shown that multiresolution modularity maximiza-
tion is characterized by two concurrent biases: the tendency to
merge small clusters and to split large ones. We have seen that
it is usually very difficult, and often impossible, to tune the
resolution such to avoid both biases simultaneously. Tests on
artificial benchmark graphs with community structure indeed
show that a considerable fraction of vertices is misclassified,
for any value of the resolution parameter, even when clusters
are well separated and easily identified by other methods.
Since, in practical applications, one knows very little about the
community structure of the graphs at study, it is impossible
a priori to quantify the systematic error induced by the use
of modularity. Moreover, it is not easy to implement a way
to “heal” the partition delivered by modularity, just because
there are two sources of errors. If modularity simply combined
smaller clusters in larger ones, as people have been thinking
until now, one could hope to recover the real partition by
looking inside the clusters delivered by modularity. Instead,
since clusters can be both split and merged, the real partition

must be recovered by splitting some clusters and merging
others, and it is very difficult to understand which clusters
contain smaller ones and which others are parts of larger
clusters instead. This would require a careful exploration of
groups of clusters.

Our results hold for various types of quality functions,
including the recently introduced Constant Potts Model by
Traag et al. [29]. One could argue that, after all, multiresolution
methods have a remarkable performance in some cases (see
Fig. 8) and a poor one in others (see Fig. 9), just like any
method, including Infomap and OSLOM (from the same
figures). This objection is, however, not sustainable, since we
believe that, when clusters are so weakly connected to each
other that one could even distinguish them by visual inspection,
a good method cannot fail to detect them. While this is a shared
view among scholars, it is still unclear where to set the limit of
fuzziness between subgraphs that separates a regime in which
they are clusters from one in which they are not. This problem
has attracted some attention lately [33,34]. So, in the tests we
reported (Figs. 8 and 9), it is not clear up to which value of the
mixing parameter μ the subgraphs of the benchmark graphs
are still “significant” clusters, beyond random fluctuations. But
there is no doubt that they are cluster for very small values of
the mixing parameter μ.

We want to stress here that we are not advocating the superi-
ority of some methods over others. The problems that we point
out in this paper are probably common to many other methods.
Infomap, for instance, is a method based on the optimization
of a global measure, like modularity, and is likely to have a
resolution limit as well, although it probably emerges only on
large networks. In addition, it may also break random sub-
graphs, although its performance is perfect for well-separated
communities in all tests we have performed. OSLOM could
be also improved, since it occasionally fails to detect the right
partition for small μ. Still, at variance with multiresolution
methods, neither Infomap nor OSLOM have a tunable resolu-
tion parameter, so their performance is quite remarkable.

We conjecture that the tendency to simultaneously merge
and split clusters is an inevitable feature of methods based on
global optimization and that it could be more easily circum-
vented by local approaches. Global optimization techniques
work well when clusters are approximately of the same size; if
clusters span a broad range of sizes, which is likely to happen
on very large networks, such techniques get confused and may
fail to detect some of the clusters, even when they are clearly
identifiable. Resolution parameters improve things, but they
do not (cannot?) solve the problem.

We hope that the scientific community working on the
problem of community detection will address this issue in the
future and that general structural limits of classes of methods
will be identified and, possibly, removed. In this way, it will be
possible to define safe guidelines to design new methods that
do not suffer from such problems and that, therefore, could be
more reliable in practical applications.
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