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Tweedie convergence: A mathematical basis for Taylor’s power law, 1/ f noise, and multifractality
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Plants and animals of a given species tend to cluster within their habitats in accordance with a power function
between their mean density and the variance. This relationship, Taylor’s power law, has been variously explained
by ecologists in terms of animal behavior, interspecies interactions, demographic effects, etc., all without
consensus. Taylor’s law also manifests within a wide range of other biological and physical processes, sometimes
being referred to as fluctuation scaling and attributed to effects of the second law of thermodynamics. 1/f noise
refers to power spectra that have an approximately inverse dependence on frequency. Like Taylor’s law these
spectra manifest from a wide range of biological and physical processes, without general agreement as to cause.
One contemporary paradigm for 1/f noise has been based on the physics of self-organized criticality. We show
here that Taylor’s law (when derived from sequential data using the method of expanding bins) implies 1/f noise,
and that both phenomena can be explained by a central limit-like effect that establishes the class of Tweedie
exponential dispersion models as foci for this convergence. These Tweedie models are probabilistic models
characterized by closure under additive and reproductive convolution as well as under scale transformation, and
consequently manifest a variance to mean power function. We provide examples of Taylor’s law, 1/f noise, and
multifractality within the eigenvalue deviations of the Gaussian unitary and orthogonal ensembles, and show
that these deviations conform to the Tweedie compound Poisson distribution. The Tweedie convergence theorem
provides a unified mathematical explanation for the origin of Taylor’s law and 1/f noise applicable to a wide
range of biological, physical, and mathematical processes, as well as to multifractality.

DOI: 10.1103/PhysRevE.84.066120 PACS number(s): 89.75.Da, 05.40.Ca

I. INTRODUCTION

Plants and animals tend to aggregate within their habitats
such that the variance of their density relates to the mean
in accordance with a power function relationship [1]. Taylor,
who first observed this effect with viruses, protozoa, insects,
mollusks, vertebrates, and plants [1,2], explained it in terms of
intraspecies behavior [3]; others have postulated demographic
mechanisms [4], stochastic variations in reproductive rates
[5], and interspecies interactions [6]. Taylor’s power law
also manifests within nonecological systems such as HIV
epidemiology [7], regional organ blood flow [8], the genomic
distributions of single nucleotide polymorphisms (SNPs) [9],
and genes [10], as well as within physical and econometric
systems where it has been called fluctuation scaling [11,12].
When applied to sequential data, with expanding enumerative
bins, Taylor’s law also implies long-range correlations and 1/f

noise [13]. Taylor’s law, and consequently 1/f noise, can be
shown to have their origin through a mathematical convergence
effect related to the central limit theorem (CLT) [14]. In this
regard there exists a class of probabilistic models, the Tweedie
exponential dispersion models, characterized by Taylor’s law,
that act as convergence foci for a broad range of non-Gaussian
data [15]. It will be argued here that virtually any statistical
model designed to produce Taylor’s law must, on mathematical
grounds, converge to a Tweedie distribution. This convergence
theorem provides a mechanistic explanation for the disparate
biological, physical, and mathematical manifestations of both
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Taylor’s law and 1/f noise, based upon the statistical theory
of errors.

Taylor used the empirical power function σ̂ 2 = aμ̂p,
between the variance σ̂ 2 of the spatial density of organisms
and its corresponding mean μ̂, to describe aggregation within
their environments (a and p are constants). In most ecological
cases p tends to range between 1 and 2, which indicates
clustering. The logarithm of this power function yields a linear
relationship, with p now expressed as a slope, thus providing
a simple demonstration of what has become known as Taylor’s
power law.

II. SELF-SIMILAR PROCESSES

We will focus here on Taylor’s power law within sequential
data, where in the description of self-similar processes it
manifests implicitly. Much of the early development of
self-similar processes was provided by Leland [16], which
we summarize here: Consider the discrete sequence Y =
(Yi : i = 0,1,2,...,N ), which could represent time series data,
spatial measurements, or abstract mathematical sequences.
Given the mean μ̂ = E[Y i] and the deviations from the mean
yi = Yi − μ̂ one may construct an autocorrelation function

r(k) = E[yiyi+k]/E
[
y2

i

]
, (1)

with the lag k. The corresponding variance is also

var[Y ] = var[y] = σ̂ 2 = E
[
y2

i

]
. (2)

Self-similar processes have, by their definition, long-range
autocorrelations of the form

r (k) ∼ k−βL(k), k → ∞, (3)
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where the exponent β is a real-valued constant bounded by 0 <

β < 1, and L(k) is a slowly varying function for large values
of k. One can construct a cover of equal-sized, adjacent and
nonoverlapping enumerative bins of integer size m to produce
the new sequences Y (m) with a reproductive property,

Y
(m)
i = 1

m
(Yim−m+1 + · · · + Yim), i > 1. (4)

Here m is chosen so that N/m is an integer. The mean μ̂

and variance σ̂ 2 of Y can be regarded as constants, provided
that the initial sequence remains unaltered during the analysis,
μ̂ = E[Y ] = E[Y (m)]. The reproductive sequences Y (m) will
obey the variance–bin-size relationship,

var[Y (m)] = σ̂ 2m−β, (5)

if and only if the autocorrelation function of the primary
sequence takes the form [17]

r(k) = 1
2 [(k + 1)2−β − 2k2−β + (k − 1)2−β ]. (6)

This autocorrelation can be shown to have the limiting
behavior,

lim
k→∞

r(k)

k−β
= 1

2
(2 − β)(1 − β), (7)

as per Eq. (3). The constant β given here relates to the
Hurst parameter H introduced by Mandelbrot and van Ness
to describe fractional Brownian motion [18], such that β =
2(1 − H ). H is a real-valued number within the interval
(0,1); if H = 1/2, the process represents Brownian motion,
H > 1/2 implies a positive correlation in the increments of
the process, and H < 1/2 implies a negative correlation.

One can also construct a second set of sequences that are
additive:

Z
(m)
i = (Yim−m+1 + · · · + Yim). (8)

These reproductive and additive sequences are related to each
other by the equation Z

(m)
i = mY

(m)
i , from which we have the

relationships between their means and variances: E[Z(m)] =
mE[Y (m)] and var[Z(m)] = m2 var[Y (m)]. Additive sequences,
derived by the method of expanding enumerative bins, thus
have the variance function

var
[
Z

(m)
i

] = m2 var[Y (m)] = (σ̂ 2/μ̂2−β )E
[
Z

(m)
i

]2−β
. (9)

Since μ̂ and σ̂ 2 are constants, Eq. (9) expresses Taylor’s
power law with the exponent p = 2 − β, and thus H =
p/2. Consequent to the biconditional relationship between
Eqs. (5) and (6), any sequence that reveals Taylor’s law, by
the method of expanding bins, will also express long-range
autocorrelations that approximate r(k) ∼ c1k

−β , where c1 is a
constant.

As examples of Taylor’s law from sequential data we
present here the N × N random symmetric matrices with
Gaussian distributed elements known as the Gaussian unitary
ensemble (GUE) and the Gaussian orthogonal ensemble
(GOE) [19]. The GUE and GOE, being purely mathematical
constructs, are germane to our argument that the demonstration
of Taylor’s law and 1/f noise would be best attributable to a
universally applicable mathematical mechanism rather than to
the ad hoc behavioral, biological, or physical processes that
have been conventionally considered.

The GUE represents complex Hermitian matrices, invariant
under unitary transformations; the GOE are real symmetric
matrices, invariant under orthogonal transformations. The
diagonal elements Hnn of a N × N GOE matrix are Gaussian
distributed with mean of 0 and variance of 1; for m < n

the elements Hnm are Gaussian distributed with mean of 0
but variance of 1

2 ; elements for which n > m are given by
Hmn = Hnm. In the GUE the diagonal elements are the same;
however, for m < n the elements Hnm have independent real
and imaginary components that are Gaussian distributed with
mean of 0 and variance of 1

2 ; those for n > m are given by the
conjugate transpose Hmn = H ∗

nm.
The ranked eigenvalues from such random matrices are not

uniformly distributed. Wigner proposed that the average den-
sity of the ranked eigenvalues ρ̄(E) should obey a semicircular
probability density as N → ∞ so that

ρ̄(E) =
{√

2N − E2/π, |E| <
√

2N

0, |E| >
√

2N
(10)

for eigenvalues of magnitude E [19]. This semicircular rule can
be integrated to obtain the number of eigenvalues on average
less than the value E,

η(E) = 1

2π

[
E

√
2N − E2 + 2N sin−1

(
E√
2N

)
+ πN

]
.

(11)

This function can be used to unfold (renormalize) individual
eigenvalues En by means of the equation

en = η̄(En) =
∫ En

−∞
dE′ ρ̄(E′). (12)

Unfolding effectively removes the main trend of the
sequence from the fluctuating portion, and allows for a
comparison between different parts of the fluctuating portion.
In the unfolded metric the average of the spacing interval, sn =
en+1 − en, between consecutive ranked eigenvalues is 1, and
the individual spacing values will obey specific distribution
functions for each ensemble. These nearest neighbor spacing
distributions indeed have been used to model the spectral
fluctuations of quantum systems [20].

We will focus on the ranked eigenvalues E1, E2 . . . EN

of these N × N random matrices to estimate the deviations
between the actual and the expected cumulative number of
eigenvalues,

D̄n = n − η(En). (13)

This particular measure has also been employed in number
theoretic studies to study the fluctuations of the prime counting
function π (x) from predictive formulas for the prime number
positions [21], as well as in random matrix theory (RMT) to
study the energy levels of complex systems [22].

We begin our examples with an empirical examination of
the absolute values of these deviations |D̄n| as obtained from
10 000 × 10 000 matrices of the GUE [Fig. 1(a)] and GOE
[Fig. 2(a)]. The plots of these sequences demonstrated regions
where larger deviation values appeared to be clustered together.
A closer inspection of these deviations indicated the existence
of cusplike patterns suggestive of multifractal singularities.
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FIG. 1. (a) GUE deviations. The deviations
∣∣D̄n

∣∣ between the observed and predicted number of eigenvalues below the size En were estimated
for a 10 000 × 10 000 matrix from the GUE, and are plotted here. (b) Variance function. The data sequence

∣∣D̄n

∣∣ was divided into a series of
sequential, nonoverlapping and equal-sized counting bins; the values within each bin were summed and the mean and variance of these summed
values were determined for the series of bins. The process was repeated for larger and larger bin sizes and the variances so obtained were plotted
against their respective means on logarithmic axes. A power function relationship was obtained with a = 0.483, p = 1.736, and r2 = 0.999.

(c) Power spectrum for a GUE ensemble. For each of ten repetitions the sequence of deviations was packed with zeros to yield 16 384 points
and the mean and trend were subtracted. A 49 point Hamming window was used to smooth these data and a fast Fourier transform was used to
estimate the power spectrum by squaring the modulus of the transform. An ensemble average of the spectra was computed and then a log-log
plot of these data revealed a power spectrum of the form 1/f 0.82 on linear regression. An initial flattening is evident over about the lowermost
ten points of the spectrum, comprising about 0.1% of the data sequence. This flattening can be attributed to an artifact of the discrete Fourier
transform caused by the low frequency component introduced by the rectangular data window.

We will further consider possible multifractality within
the sequences of deviations later; first, however, we assess
the apparent clustering within these sequences by means of
Taylor’s law. Each sequence was divided into adjacent and
nonoverlapping bins, two positions in length. The values of the∣∣D̄n

∣∣ within each bin were summed; the mean and variance of
these sums were calculated over all the bins. These calculations
were repeated for successively expanding bin sizes, and the
variances so obtained were plotted versus their corresponding
means. Log-log plots of the variance to mean plots from the
GUE [Fig. 1(b)] and the GOE [Fig. 2(b)] exhibited linear
relationships, in accordance with Taylor’s law.

This analysis of the GUE was repeated ten times; each
time with independently derived data. The ensemble average
of the power-law regressions yielded the constants and 95%
confidence intervals (CI), a = 0.507[0.472 − 0.542] andp =
1.722[1.663 − 1.781]. Similarly, an ensemble average of
ten 10 000 × 10 000 matrices from the GOE yielded the
values, a = 0.612[0.559 − 0.664] and p = 1.679[1.610 −
1.748]. The degree of clustering, assessed by the magnitude of
p, thus appeared similar between the GUE and GOE, with 1 <

p < 2. The behavior of the GUE and GOE variance functions
were thus characterized; in all cases a close agreement was

obtained with the power law. The statistics indicated that a
sampling of ten random matrices of this size could provide a
quantifiable assessment of the behavior of the GUE and GOE
deviations; the values of p indicated clustering.

To explore the effect of matrix size on p, a number
of ensembles from the GUE and GOE were assessed for
different sizes (Fig. 3). For matrices ranging from 30 × 30
to 10 000 × 10 000 Taylor’s law was evident with its exponent
centered on an ensemble mean of 〈p〉 = 1.65, with 90% of
the individual estimates falling within the range of 1.29–1.92.
We will return to these variations in p again, when we
consider multifractality in the deviation sequences. Before this,
however, we should discuss how Taylor’s law in self-similar
processes directly relates to 1/f noise and a class of statistical
models that inherently express Taylor’s law.

III. 1/ f NOISE FROM TAYLOR’S LAW

When dealing with time series data the concept of frequency
f is understood to represent the number of events per unit
time sequence. This concept can be extended to nontemporal
sequences, where the frequency is now measured in terms of
the number of events seen per unit measure of the discrete

066120-3



WAYNE S. KENDAL AND BENT JØRGENSEN PHYSICAL REVIEW E 84, 066120 (2011)

FIG. 2. (a) GOE deviations. The deviations |D̄n| between the observed and predicted number of eigenvalues below a specified size were
estimated from a 10 000 × 10 000 matrix from the GUE, and are plotted here. (b) Variance function. A variance to mean power function was
obtained with the values a = 0.558, p = 1.856, and r2 = 1.000 (c) Power spectrum for a GOE ensemble. Ten data sets were used to estimate
an ensemble power spectrum, which on linear regression approximated the form 1/f 0.91.

series. Numerical estimates for autocorrelations tend to be
computationally less efficient than that of those for the spectral
density function S(f ), which is related to the autocorrelation
by the Fourier transformation,

S(f ) =
∫ ∞

−∞
r(k)e−2πif k dk. (14)

It can be shown that the variance–bin-size relationship,
Eq. (5), holds for sequences Y if and only if the corresponding
power spectral density S(f ) takes the form [17]

S(f ) ∝ |e2πif − 1|2
l=∞∑
l=∞

1/ |f + l|3−β, −1/2 � f � 1/2,

(15)

where the frequency f is measured from the sequence intervals
in analogy to time series sequences.

One may alternatively use the limit from Eq. (7) to ap-
proximate the long-range autocorrelation as r(k) ∼ c1k

−β and
then apply the Wiener-Khintchine theorem [23] to surmise that
the corresponding power spectral density should approximate
S(f ) ∼ c2f

β−1, within the constant factors c1 and c2. We
know that power spectra of the form S(f ) ∝ 1/f γ , where
0 < γ < 2, are the hallmarks of 1/f noise, and consequently
we would anticipate a relationship between Taylor’s power-law
exponent and the spectral exponent such that p ∼ γ + 1. By
virtue of this biconditional relationship between Taylor’s law
[Eq. (9)], and its corresponding autocorrelation function (and
the relationship between the autocorrelation and the spectral

density), the manifestation of Taylor’s law in sequential data
implies the existence of 1/f noise.

Returning to the examples from the GUE and GOE, since
their eigenvalue fluctuations express variance to mean power
functions with exponents p ∼ 1.7, we would anticipate power
spectra proportional to about 1/f 0.7. Indeed, direct Fourier
analysis of the sequences |D̄n| from the GUE and GOE was
approximately consistent with this prediction [Figs. 1(c) and
2(c)]; the relationship between Taylor’s law and 1/f noise
was thereby supported by numerical analysis of the GUE and
GOE.

IV. A CLASS OF PROBABILITY DISTRIBUTIONS
CHARACTERIZED BY TAYLOR’S LAW

It is not widely recognized that Taylor’s law is also a
defining feature of a class of probability distributions that
are invariant under changes of scale, known as the Tweedie
exponential dispersion models (in recognition of the man
who first described them) [15]. Exponential dispersion models
(EDMs) describe error distributions for generalized linear
models and can be employed to analyze a wide variety of
non-normal data. There are two classes of these models:
additive and reproductive. The additive models are described
by a canonical equation based on the interrelated probability
measures νλ and measurable sets A such that

Pλ,θ (ZεA) =
∫

A

exp [θz − λκ (θ )]νλ(dz). (16)
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FIG. 3. Influence of matrix size on the power-law exponent.
(a) GUE. Taylor’s law exponent p was estimated for the deviations
|D̄n| of various sized matrices from the GUE. For each matrix size
the calculations were repeated ten times with independently derived
data. The mean value of p (solid dots) are provided along with their
respective 95% CIs (error bars). For 30 × 30 matrices through to
10 000 × 10 000 matrices the mean values for p ranged between 1.54
and 1.72. (b) GOE. Taylor’s law exponent p for the GOE deviations
|D̄n| were estimated for a range of matrix sizes and repeated ten times
with independently derived data. The mean values of p, and their
corresponding 95% CIs, are provided graphically. These mean values
ranged between 1.59 and 1.73 indicating that, as in the case of the
GUE, the manifestations of Taylor’s law were essentially independent
of matrix size.

Here θ is the canonical parameter and λ is the index parameter,
analogous to the scale and shape parameters of conventional
statistics, respectively.The function

κ(θ ) = (1/λ) log

[∫
eθzνλ(dz)

]
(17)

is known as the cumulant function. The distribution corre-
sponding to the random variable Pλ,θ in fact represents a
family of additive distributions E∗

D(θ,λ) that are completely
determined by θ , λ, and κ(θ ). This family has the property that
the distribution of the sum of independent random variables,
Z+ = Z1 + · · · + Zn with Zi ∼ E∗

D(θ,λi) corresponding to
fixed θ and various values of λ, belongs to the family of
distributions with the same θ , Z+ ∼ E∗

D(θ,λ1 + · · · + λn).

The cumulant function can be used to construct the
cumulant generating function (CGF) K∗(s) for the additive
model corresponding to the random variable Z based on the
generating function variable s:

K∗(s) ≡ log[E(esZ)] = λ[κ(θ + s) − κ(θ )]. (18)

The first two derivatives of K∗(s) at s = 0 therefore give the
mean and variance of Z.

The function τ (θ ) = κ ′(θ ) is known as the mean value
mapping; it gives the relationship between θ and the mean,
μ = κ ′(θ ). By means of this mapping we define the variance
function V (μ) ≡ τ ′[τ−1(μ)], where τ−1(μ) denotes the in-
verse function of τ (θ ). The mean and variance of an additive
random variable are then E(Z) = λμ and var(Z) = λV (μ).

The class of additive models is related to a second class
of reproductive EDMs, described by the random variable
Y = Z/λ ∼ ED(μ,σ 2), where σ 2 = 1/λ. These reproductive
EDMs possess the convolution property such that for n inde-
pendent random variables Yi ∼ ED(μ,σ 2/wi), with weighting
factors wi subject to the summation w = ∑n

i=1 wi , we have
1/w

∑n
i=1 wiYi ∼ ED(μ,σ 2/w). This weighted average, cor-

responding to fixed μ and σ 2 and various values of wi , belongs
to the family of distributions with the same μ and σ 2. A duality
transformation Y �→ Z = Y/σ 2 exists between the additive
and reproductive EDMs. Consequently, any theory pertaining
to one such class of models can be adapted to the other.

We have seen how EDMs are closed with respect to different
types of convolution; there remains a further property where
EDMs can be closed with respect to scale transformation. For
example, a reproductive EDM ED(μ,σ 2) can be required to
obey cED(μ,σ 2) = ED(cμ,c2−pσ 2), where c is any positive
valued real constant and p is a real-valued, unitless constant.
Under this scale transformation the new random variable
Ŷ = cY belongs to the same family of distributions with fixed
μ and σ 2 but different values of c. The variance function will
now necessarily obey the relationship V (cμ) = g(c)V (μ) for
some function g(c). Scale invariance implies that g(c) = V (c),
and thus V (μ) = μp. This scale invariance becomes the
defining feature of a class of EDMs known as the Tweedie
models.

The general properties of exponential dispersion models
provide two useful differential equations [24]: one is the
relationship between the mean value mapping and the variance
function,

∂τ−1(μ)

∂μ
= 1

V (μ)
. (19)

The other shows how the mean value mapping relates to the
cumulant function,

∂κ(θ )

∂θ
= τ (θ ). (20)

These equations can be solved to express the cumulant function
corresponding to the Tweedie EDMs for different values of
p [24],

κp(θ ) =

⎧⎪⎨
⎪⎩

eθ for p = 1
α−1
α

(
θ

α−1

)α
for p = 1,2

− log(−θ ) for p = 2.

. (21)
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The CGFs for the additive Tweedie EDMs also will take
different forms depending upon the value of p,

K∗
p(s; θ,λ) =

⎧⎪⎨
⎪⎩

λeθ (es − 1) for p = 1

λκp(θ )
{(

1 + s
θ

)α − 1
}

for p = 1,2

−λ log
(
1 + s

θ

)
for p = 2.

.

(22)

The exponent α, employed here for brevity, is related to
the power-law exponent p, α = (p − 2)/(p − 1). For those
readers who require a more detailed description of the Tweedie
EDMs we recommend the monograph of Jørgensen [24].

A family of Tweedie models is thus described which
includes the extreme stable (p < 0), Gaussian (p = 0),
Poisson (p = 1), compound Poisson-gamma (PG) (1 < p <

2), gamma (p = 2), positive stable (2 < p < 3), inverse
Gaussian (p = 3), positive stable (p > 3), and extreme stable
(p = ∞) distributions [24]. The Tweedie models are therefore
quite comprehensive; they include the Poisson, gamma, and
Gaussian distributions as well as some less frequently em-
ployed distributions.

From these CGFs one can confirm that the variance of any
additive Tweedie model will relate to the mean by the power
function,

var(Z) = aE(Z)p; (23)

that is, Taylor’s power law. For most ecological data as well as
for the GUE and GOE deviations, 1 < p < 2, corresponding
to the compound PG distribution.

Pursuant to our examples of the GUE and GOE deviations
|D̄n|, we now determine how well the Tweedie PG model
corresponds to the empirical cumulative distribution functions
(CDFs) from these random matrices. The PG distribution is
specified by three independent adjustable parameters α, λ, and
θ to be fitted to the data. The additive PG probability density
function is given by the equation [24]

p∗(z; θ,λ,α) = c∗(z; λ) exp[θz − λκ(θ )], (24)

where

c∗(z; λ) =
⎧⎨
⎩

1
z

∞∑
n=1

λnκn(−1/z)/�(−α · n)n! for z > 0

1 for z = 0.

(25)

The theoretical CDF was then fitted to the empirical
CDFs. The probability-probability plots (Fig. 4) revealed
qualitative agreement between the theoretical PG distributions
and the data. Moreover, the fitted values for α obtained
here were consistent with the exponent p obtained from the
corresponding Taylor plot. We would expect for sequential
data governed by the PG distribution (assessed by the method
of expanding bins) to express Taylor’s law with exponent
1 < p < 2 and to provide 1/f power spectra that would give
1/f γ ∼ 1/f p−1 with 0 < p − 1 < 1, approximately.

Earlier we noted that the power-law exponent p from such
sequential data could be related to the Hurst parameter H

through the behavior of the autocorrelation function, H =
p/2. Given the range of values for p seen for the deviations
|D̄n| this would imply that 0.5 < H < 1, indicating a degree

FIG. 4. Probability-probability plots. (a) GUE. An empirical CDF
was derived from the data of Fig. 1(a), and a theoretical CDF,
based on the Tweedie PG distribution [Eq. (25)], was fitted to the
empirical CDF (θ = −3.717, λ = 2.186, and α = −0.333 so that
p = 1.75). The empirical CDF was plotted versus the theoretical
CDF to yield a linear relationship, demonstrating consistency of the
Tweedie model with the GUE data. (b) GOE. The empirical CDF
derived from the data of Fig. 2(a) was plotted versus a theoretical PG
CDF (θ = −2.054, λ = 1.885, and α = −0.358 so that p = 1.74).
The PG model was consistent with these data.

of positive correlation within the sequences of deviations.
The Hurst parameter also relates linearly to the Hausdorff
(or fractal) dimension DH for the sequence of deviations,

DH = lim
ε→0

log[N (ε)]

log[1/ε]
, (26)

such that for an affine process on an n-dimensional space,
DH + H = n + 1 [25], and where N (ε) is the number of self-
similar structures of linear size ε needed to cover the whole
structure.

We have also seen, with the many assessments of p

from the GUE and GOE deviations, that there existed a
degree of variation associated with the values of p (Fig. 3).
Two alternative hypotheses can be considered to account
for these variations: (1) they result from random numerical
error or (2) the exponents p exhibit a spectrum of values as
an intrinsic property of the system. This second hypothesis
(if true) would indicate a possible inherent multifractality
of the sequences of deviations |D̄n| [26]. Also, as noted
earlier, the sequences of deviations seemed to exhibit cusplike
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(multifractal) singularities. To further investigate this possi-
bility we performed multifractal analyses on the deviations
using the wavelet transform method [27]. Briefly, this method
utilized the wavelet transform Tψ [f ](b̃,ã) of a function f by
decomposition into contributions from an analyzing wavelet
ψ by means of translations and dilations specified through the
real-valued scale and shape parameters ã ∈ R+ and b̃ ∈ R,

Tψ [f ](b̃,ã) = 1

ã

∫ +∞

−∞
ψ

(
x − b̃

ã

)
f (x)dx. (27)

Wavelets used in our analyses were chosen from successive
derivatives of the Gaussian function,

ψ (N)(x) = dN (e−x2/2)/dxN . (28)

This analysis relied on the local Hölder exponent to
characterize singularities of a function f at some specified
point x0. The Hölder exponent h(x0) is the largest exponent
for which a polynomial Pn(x) of order n exists to satisfy the
relation

|f (x) − Pn(x − x0)| = O(|x − x0|h), (29)

for x in some neighborhood of x0. One defines the D(h) singu-
larity spectrum which represents the Hausdorff dimension for
which the Hölder exponent carries the particular value h [27],

D(h) = dimH [x| h(x) = h]. (30)

This singularity spectrum characterizes the intermittent
fluctuations in the sequence over a range of Hölder exponent
values. Parenthetically, we will add that in certain circum-
stances both h and D(h) can assume positive and negative real
values [28].

To facilitate the wavelet analysis we employed the partition
function

Z(ã,q) =
∑

l∈L(ã)

{
sup

(x,ã′)∈l

|Tψ [f ](x,ã′)|
}q

, (31)

where q ∈ R is the order of the generalized fractal dimension
and L(ã) is the set of connected wavelet maxima lines li
which reach or cross the ã scale. Under the limit ã → 0 an
exponent τ (q) (this exponent is not related to the mean value
mapping from Sec. IV that employed a similar notation) can
be determined from the power-law scaling of the partition
function, Z(ã,q) ∼ ãτ (q). The D(h) spectrum is determined
from the Legendre transform of τ (q),

D(h) = min
q

[qh − τ (q)]. (32)

Wavelet analysis of the deviations |D̄n| provided multifrac-
tal spectra τ (q) and singularity spectra D(h) for the GUE and
GOE (Fig. 5). In both cases the multifractal spectra revealed
inflexions and the singularity spectra revealed inverse convex
forms, consistent with multifractality.

V. STATISTICAL CONVERGENCE EXPLAINS BOTH
TAYLOR’S LAW AND 1/ f NOISE

The correspondence between the PG distribution and the
GUE/GOE eigenvalue fluctuations, as well as its correspon-
dence within other biological systems that have exhibited

Taylor’s law [8–10,29,30], might be dismissed as an artifact
of curve fitting of little consequence were it not for the
mathematical role that the Tweedie models have as foci
of statistical convergence: For EDMs ED(μ,σ 2) with unit
variance functions of the form V (μ) ∼ μp, Jørgensen et al.
have proven that as μ → 0 or μ → ∞ then, within the
constant factor c, c−1ED(cμ,σ 2c2−p) will converge to the
form of a Tweedie model as either c ↓ 0 or c → ∞ [14].
Since the variance functions for many probability distributions
approximate the form V (μ) ∝ μp, for small or large values of
μ, the Tweedie EDMs act as the foci of convergence for a
wide variety of data [14]. This convergence property appears
related to stable generalizations of the CLT [24], suggesting
that the Tweedie models have a role analogous to that of the
Gaussian distribution in statistical theory. The biconditional
relationship between Eqs. (5) and (6) connects Taylor’s law to
1/f noise. The manifestation of 1/f noise can thus be viewed
as a consequence of the Tweedie convergence theorem.

Up to this point the demonstrations of Taylor’s law within
the GUE and GOE have been presented as empiricisms. The
Tweedie convergence theorem, however, specifies that the
distribution functions for the deviations |D̄n| = |n − η(En)|
would be expected to converge to the form of the PG
distribution. For this reason we propose that the Tweedie PG
distribution can be employed to represent these deviations.

At this point it would be useful to consider the range of
applicability of the Tweedie convergence theorem, particularly
since it appears so central to explaining the broad manifesta-
tions of Taylor’s law and 1/f noise. The theorem states that
any EDM with an asymptotic power variance function will
be in the domain of attraction of a Tweedie distribution. It is
actually quite difficult to propose an alternative distribution
with a power variance function and finite CGF that is not in
the Tweedie domain of attraction, and constructions so derived
appear quite contrived. Moreover, any distribution function
with finite CGF will belong to an EDM, so that effectively
a wide range of distributions can be approximated by the
Tweedie models.

Other alternative models for Taylor’s law might be con-
ceived (including convergence theorems [11]), however, limit
theorems for independent and identically distributed variables,
as demonstrated with the Tweedie convergence theorem, must
be considered as fundamental explanations for the appearance
of any given distributional form, and so the Tweedie models
would be the first place to look for an explanation. One
might still wish to consider alternatively some non-EDM that
provides Taylor’s law yet appears unrelated to any Tweedie
model. But if one considers the space of all distributions with
finite moment generating functions, the natural exponential
families would form an equivalence relation on this space.
Hence, this remaining alternative would be expected to be
a member of some natural exponential family, as long as
its moment generating function was finite. If we joined
together natural exponential families to form EDMs, the same
consideration would hold, and we would expect convergence
toward a Tweedie model. Also, by the Tweedie convergence
theorem, we would expect that a large proportion of all
EDMs (i.e., those with power asymptotic variance functions)
would be well approximated by Tweedie distributions. By
similar arguments one would expect that processes subject
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FIG. 5. Multifractal analysis. (a) Multifractal spectrum of the GUE deviations. The deviations |D̄n| were estimated from a 10 000 × 10 000
matrix of the GUE and a multifractal analysis was conducted using analyzing wavelets based on the sixth derivative of the Gaussian function
(software from http://www.physionet.org/physiotools/multifractal/). Here the multifractal scale exponent τ (q) is plotted versus the dimensional
index q. (b) Singularity spectrum of the GUE deviations. The D(h) spectrum was obtained by Legendre transform of the numerical data in (a),
and is plotted versus the Hölder exponent h. (c) Multifractal spectrum of the GOE deviations. |D̄n| were estimated from a 10 000 × 10 000
matrix of the GOE and analysis was conducted using analyzing wavelets based on the sixth derivative of the Gaussian function. (d) Singularity
spectrum of the GOE deviations. This spectrum was obtained by Legendre transform of the numerical data in (c).

to many small independent perturbations would also tend to
converge toward Tweedie distributions. For these reasons, the
simulations and approximations used to model Taylor’s law
reported in the literature [1,4–6,11,31] would be expected to
converge to the form of a Tweedie distribution.

One might ask whether an alternative explanation for
Taylor’s law could be sought amongst distributions that do
not have finite moment generating functions. However such
distributions, as a rule, do not have finite moments, and hence
do not possess a variance function. But the whole point of
Taylor’s law is that the first two moments are related by a
power law, so alternative explanations basically cannot come
from considering distributions without moments. The physics
community will also be familiar with distributions like this
that exhibit heavy (or power law) tails such as the Pareto
and Lévy distributions. Whereas these distributions qualify
as EDMs [32], in general, they do not possess finite second
moments, and thus they would not express Taylor’s law.

On the basis of all these arguments, then, it is reasonable
to conclude that virtually any statistical model or simulation,
designed to produce Taylor’s law, would be mathematically re-
quired to converge to a Tweedie distribution, as a consequence
of the Tweedie convergence theorem.

The Tweedie convergence theorem provides, in essence,
a connection between the CLT (where the power variance
exponent is p = 0) and the Poisson convergence theorem

(where p = 1). There then follows a continuous scale
connection between these two extremes where a great variety
of distributions exist: We have the compound Poisson and
gamma distributions, the inverse Gaussian distribution, as
well as EDMs generated by positive and extreme stable
distributions. On the basis of this convergence theorem we
are therefore led to propose the universality of the Tweedie
exponential dispersion models for processes which express
Taylor’s law and 1/f noise.

VI. DISCUSSION

It is important to recognize that there are many different
facets to the variance to mean power function, which have
come under the rubric of Taylor’s law. Originally Taylor’s law
was used to assess spatial aggregation of members of a species
within their habitats. In these assessments a region of habitat
would be divided into rectangular quadrats, and within each
quadrat multiple samples would be obtained to enumerate the
number of individuals of the species of interest. Sampling
methods might vary for the particular species: Multiple traps
might be laid within each quadrat for more mobile species,
or insect-infested plants from each quadrat might be sampled.
For each quadrat the mean and variance of the number of
individuals per sample would be obtained and the variances
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and means from the different quadrats employed on a log-log
plot to assess for Taylor’s law.

The method of expanding bins employed herein to assess
sequential data reveals a different facet of Taylor’s law
for which the derived parameters are distinct from those
determined by the original approach. The expanding bin
method yields equations that are biconditionally related to the
spectral density determination of 1/f noise; this biconditional
relationship is not applicable to the conventional approach.
Notwithstanding these differences, we know that field data
used to demonstrate Taylor’s law by the original method
may also demonstrate Taylor’s law through the method of
expanding bins [29].

Regardless of the method used to assess for Taylor’s law, the
Tweedie EDMs are applicable to both approaches. A central
tenet proposed here is that the universality of Taylor’s law
comes from the universality of the Tweedie models that,
in turn, is grounded on the limit theorem that establishes
these models as foci of statistical convergence. Taylor’s law
manifests as an inherent and defining feature of the Tweedie
models, consequent to the mathematical requirement for their
closure with respect to scale transformation.

Much effort by ecologists has been directed toward explain-
ing Taylor’s law in terms of animal behavior. Taylor maintained
that the balanced immigration and emigration of animals
together with their competition for resources could explain his
law; he presented simulations to support this hypothesis [3].
Hanski, on the other hand, used simulations to argue that
Taylor’s law could be explained by the multiplicative effects
of reproduction [33]. Then Anderson proposed a model for
this law based on Markovian demographics, also supported by
simulations [4]. Other models followed, notably that of Perry
who demonstrated Taylor’s law through simulations based on
chaotic processes [31], and Kilpatrick and Ives, who used
both simulations and analytic approximation to demonstrate
that competitive interactions between species could give rise
to this law [6].

None of these population models could account for the
nonecological manifestation of Taylor’s law, as seen with
cancer metastasis [30], regional organ blood flow [8], and the
genomic distributions of SNPs [9] and genes [10]. Fronczak
and Fronczak attempted to provide a more general explanation
for Taylor’s law on the basis of a thermodynamic model that
employed fluctuation dissipation in the presence of an external
physical field [12]. However (at the time of this writing) there
exists no compelling observational evidence to support the
action of an external physical field in any of the biological
systems where Taylor’s law has been observed [34]. Moreover,
neither this thermodynamic model nor any of the ad hoc popu-
lation models can explain the purely numerical manifestations
of Taylor’s law reported here with the GUE and GOE, or that
with the Mertens function reported elsewhere [34].

We have demonstrated here how the GUE and GOE
fluctuations |D̄n| express both Taylor’s law and 1/f noise, and
how Taylor’s law for sequential data implies the manifestation
of this noise pattern. 1/f noise was first observed with electron
emissions in vacuum tubes [35], and a wide range of physical
[36], biological [37], and econometric [38] observations of this
pattern have since followed. Whereas the term 1/f noise has
been applied to time series data, it is not necessarily confined

to such data. In analogy to time series data, Li and Holste have
reported 1/f noise within DNA sequences [39], and Faliero
et al. have similarly reported the presence of 1/f noise from
RMT [40].

There have been many explanations for 1/f noise [41].
Bak, Tang, and Wiesenfeld (BTW) notably proposed a model
for 1/f noise where self-organized critical states naturally
evolve within extended dynamical systems that possess many
degrees of freedom [42]. They suggested that 1/f spectra
should not be considered to reflect random noise, but rather
the intrinsic (and deterministic) dynamics of the system at
hand [42]. However, the original BTW model was later (and
correctly) shown to have a power spectrum that was 1/f 2,
indicative of one-dimensional Brownian motion [43], not 1/f

noise. A nonconservative modification of the BTW model
was then proposed to explain 1/f γ noise where the frequency
exponent γ was related to the degree of dissipation within the
system [44]. Such dynamical explanations, however, would
not seem applicable to the GUE or GOE, where 1/f noise
manifests as a purely mathematical phenomenon. Since 1/f

noise manifests in the spectra associated with random matrices,
this would indicate that 1/f noise does not necessarily depend
on specific details of particular systems.

Faleiro et al. have demonstrated 1/f noise from RMT [40]
using the δn statistic,

δn =
n∑

i=1

si − 〈s〉 = en+1 − e1 − n, n = 1,...,N − 1, (33)

which describes the deviation of the (n+1)th unfolded
eigenvalue from its average value n. By means of analytic
expressions for the Fourier transforms from the GUE and
GOE they showed that the power spectra of the sequences
δn would have the form 〈P δ

k 〉 ∝ 1/k, for k � N and N �
1 [40]. Our demonstrations of 1/f noise from the GUE
and GOE here were based on the deviations between the
actual and the expected cumulative number of eigenvalues
|D̄n|, which relate to Faleiro’s statistic through the relation
δn = D̄n − D̄n+1 + 1 − n. The demonstrations of 1/f noise
by Faleiro et al. and those provided here would thus appear
related.

Much work has been done with models of chaotic quantum
systems such as nuclear shell models, chaotic quantum
billiards, and (as noted above) with classical RMT, which
demonstrates 1/f spectra [45]. It has been proposed that
1/f noise represents an intrinsic property of chaotic quantum
systems, yet the origin of this noise pattern, particularly with
energy level fluctuations, has remained uncertain [45]. We
propose a paradigm, alternative to the dynamical models,
whereby 1/f noise is explained by the mathematical con-
vergence of complex statistical systems (including chaotic
many-body systems) toward the Tweedie distributions in a
manner related to the CLT. The Tweedie convergence theorem
thus would explain the origin of 1/f noise in such systems.

We would additionally conjecture that the Tweedie con-
vergence theorem is applicable to systems where Taylor’s
exponent p might vary within a certain range. Since, in the case
of sequential data, p relates directly to the Hurst parameter,
and in turn to the fractal dimension, such a system could have
multifractal properties [26]. In this context, and for the GUE
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and GOE deviations, the Tweedie convergence theorem would
provide insight into the genesis of multifractality.

Taylor’s power law was established and confirmed through
extensive empirical observations from multiple animal and
plant species as well as from many other biological, physical,
and econometric processes. There have been many attempts
to explain Taylor’s law on the basis of process-specific
mechanisms, however, no particular explanation has found
general acceptance; moreover, such ad hoc explanations
would individually not be able to account for all the diverse
manifestations of Taylor’s law. Taylor’s law and 1/f noise
can be shown to arise mathematically through the general
convergence behavior of non-Gaussian systems, where the
Tweedie PG distribution acts as one of the mathematical

foci for convergence. Just as the CLT justifies a primary
role in biological and physical processes for the Gaussian
distribution, the Tweedie convergence theorem would indicate
a universal and fundamental role for the Tweedie distributions,
by explaining the apparent ubiquity and generality of both
Taylor’s law and 1/f noise, within biological, numerical, and
dynamical systems.
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