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We consider the Abelian sandpile model (ASM) on the square lattice with a single dissipative site (sink).
Particles are added one by one per unit time at random sites and the resulting density of particles is calculated as
a function of time. We observe different scenarios of evolution depending on the value of initial uniform density
(height) h0. During the first stage of the evolution, the density of particles increases linearly. Reaching a critical
density ρc(h0), the system changes its behavior and relaxes exponentially to the stationary state of the ASM with
density ρs . Considering initial heights −1 � h0 � 4, we observe a dramatic decrease of the difference ρc(h0) − ρs

when h0 is zero or negative. In parallel with the ASM, we consider the conservative fixed energy sandpile (FES).
The extensive Monte Carlo simulations show that the threshold density ρth(h0) of the FES converges rapidly to
ρs for h0 < 1.
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I. INTRODUCTION

A long-standing discussion of the comparative critical
properties of the dissipative Abelian sandpile model (ASM)
[1] and the conservative fixed-energy sandpile (FES) [2] has
gained recently renewed impetus due to the works by Fey
et al. [3]. The point of discussion in a laconic form can be
reduced to the single question of, given the same lattice with
open and closed boundary conditions, whether the stationary
density of the dissipative ASM ρs coincides with the threshold
density of the FES ρth. Using large-scale simulations on the
square lattice, the authors of works [3,4] gave a negative
answer to this question and supported their numerical findings
by exact solutions for some graphs of higher symmetry. A more
detailed answer lies in a description of the average density of
grains ρ(τ ) for the given density of added particles τ of the
dissipative sandpile:

ρ(τ ) = (no. grains at time t)

N2
, τ = t

N2
, (1)

where N is the linear size of the lattice and t is the number
of added particles, which plays the role of the discrete time. It
was shown in [3] that ρ(τ ) for the ASM exhibits a transition
at the point ρc, which coincides with the threshold density of
the FES ρth. For τ > ρc, the system continues evolution and
its density tends to the stationary value ρs of the ASM when
τ → ∞.

In this paper, we continue the analysis of the correspon-
dence between the ASM and FES. The focus of the work will
be three characteristics of sandpiles:

(i) the stationary density in the dissipative ASM ρs ;
(ii) the critical density in the dissipative ASM ρc;

(iii) the threshold density of FES ρth.
A peculiarity of this study is detailed consideration of

dependence ρc(h0) and ρth(h0) on the initial height h0.
Confirming the main result of [3] on the existence of critical
density ρc, we, however, present arguments that the strict
inequality ρth �= ρs in [3] should be changed into the more

sophisticated statement that ρth actually converges to ρs for
appropriate initial conditions.

Instead of usual ASM with open boundaries, we find it
useful to consider a situation when the ASM is as close as
possible to the FES, namely, the ASM on the lattice with
periodic boundary conditions with a single dissipative site
(sink). The dynamics of the nearly closed ASM is very close
to that of the FES as dissipation through the single site is
strongly restricted. To fix our notations, we will specify the
two-dimensional ASM as in [5], where all stable sites have
heights 1 � hi � 4 while sites with hi � 5 are unstable and
topple.

Traditionally, empty sites (hi = 0) and negative heights
are not considered either analytically or numerically because
they exist in transient states only and vanish when the system
approaches criticality. Nevertheless, these sites may affect the
evolution of the ASM from an initial state to the critical point
ρc(h0). Nonergodicity of the FES causing a dependence of
the threshold density upon the initial conditions has been
discussed recently in [4] and [15] for the positive initial heights.
In this paper, we consider functions ρc(h0) and ρth(h0) for
the ASM and FES in the whole interval, including zero and
negative values of h0: −1 � h0 � 4. We confirm the equality
ρc(h0) = ρth(h0) obtained in [3] for h0 = 1 and check that this
result holds for all considered initial heights.

Our main observation is the behavior of ρc(h0) and ρth(h0)
in the interval h0 = 1 to h0 = −1. For the ASM with initial
conditions h0 = 1, the value ρc(1) = 3.125 28 is close to
the threshold density of the FES obtained by Fey et al. [3]
(3.125 288). For h0 = 0, the density ρ increases linearly
with τ , reaches the value ρc(0) � ρth(0) � 3.125 0224, very
close to ρs , and then keeps fluctuating around it. For
h0 = −1 the difference ρc(−1) − ρs vanishes up to the
standard deviations. The extensive Monte Carlo simulations
of the FES allow us to compute the difference ρth(h0) −
ρs with greater accuracy. We see that values ρth(h0) − ρs

are 0.000 288,0.000 022,0.000 005 for h0 = 1,0, − 1, respec-
tively, i.e., demonstrate the rapid convergence to zero.
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In Sec. II, we give the definition of the model and remind
of the origins of the conjectured (now proved) exact value
ρs = 25/8. In Sec. III we present details of the numerical
calculations of the dissipative ASM and describe five different
scenarios of evolution for various initial conditions. Section IV
contains the results of simulations of the FES. Section V is a
short conclusion.

II. MODEL AND CRITICAL DENSITY

We consider the standard Abelian sandpile model [1] on the
N × N square lattice. To simplify the comparison between
the ASM and FES, we impose the nearly closed boundary
conditions: the lattice is a torus with a single open site i0. The
height hi at any site i beside i0 takes values hi � 4 in stable
configurations. Particles are added one by one at a random site
increasing the height at that site by 1. If the height exceeds 4,
then the site becomes unstable and topples, transferring one
particle to each of its four neighboring sites. The site i0 serves
as a sink where particles disappear. During a long evolution, the
system gets eventually into a set of recurrent configurations.
The theory of recurrent states of the ASM was developed
by Dhar [5]. An important consequence of this theory is the
bijection between the set of recurrent configurations and the
set of spanning trees on the same lattice. The bijection allows
one to find the single site height probabilities in the recurrent
state and therefore to find the stationary density ρs . Majumdar
and Dhar [6] calculated the probability of height h = 1 in the
thermodynamic limit,

P1 = 2

π2
− 4

π3
. (2)

The probabilities P2, P3, and P4 = 1 − P1 − P2 − P3 were
found in [7]:

P2 = 1

2
− 3

2π
− 2

π2
+ 12

π3
+ I1

4
, (3)

P3 = 1

4
+ 3

2π
+ 1

π2
− 12

π3
− I1

2
− 3I2

32
, (4)

P4 = 1

4
− 1

π2
+ 4

π3
+ I1

4
+ 3I2

32
, (5)

where Iν , ν = 1,2 are fourfold integrals.
Later on, an exact relation between P2 and P3 was proved in

[8], thereby eliminating one of the two integrals. A conjecture
on the value of the remaining one, based on its numerical
evaluation to 12 decimal digits, then led to the following values
for the Pi [8]:

P2 = 1

4
− 1

2π
− 3

π2
+ 12

π3
, (6)

P3 = 3

8
+ 1

π
− 12

π3
, (7)

and for the stationary density,

ρs = P1 + 2P2 + 3P3 + 4P4 = 25

8
. (8)

Recently, this conjecture has been proved in [10] (see also [11])
by the mapping of spanning trees onto monomer-dimer tiling
and independently in [12] by the method of vector bundle
Laplacian [13].

Another conjecture, coined in [3] as the “density conjec-
ture,” identifies ρs with the threshold density of the FES,
ρth [2]. The threshold density is defined as the average
maximal number of randomly dropped particles per site, which
allows the relaxation of the closed sandpile to stop. The
value ρth marks the border of stability: for any ρ > ρth, an
avalanche process started by adding a particle never stops with
probability tending to 1 as N → ∞. The conjecture ρth =
ρs was supported by numerical calculations [2]. However,
recently, starting from the initial condition h0 = 1, Fey et al.
[3] have obtained ρth = ρs + �, where � = 0.000 288 to six
decimal digits. Together with the discussion in [4] and [15]
mentioned in the Introduction, this makes the correspon-
dence between critical points of the ASM and FES rather
problematic.

We consider here a nearly closed sandpile with a single open
site i0. The idea is to retrace carefully the process of adding
particles from different initial heights h0 to the critical state
of the ASM. At the initial stage of the process, the probability
of dissipation via the sink at i0 is negligibly small for the
large lattices and the evolution of the system almost coincides
with the dynamics of the FES. When the density approaches a
critical value, the large avalanches appear and the probability
of dissipation increases. If the transition to the dissipative
regime is sufficiently sharp, we can identify the transition point
with ρc(h0). According to the process described in [3], the
system evolves with further adding of particles and reaches
eventually the stationary density of the ASM ρs . The main
difference from previous studies is in the initial conditions.
Besides the usual initial conditions 1 � h0 � 4, we consider
zero and negative h0 and show that the difference ρc(h0) − ρs

decreases rapidly when h0 goes down.

III. SIMULATIONS FOR ASM WITH ONE SINK

Consider the Abelian sandpile model with one sink on a
N × N square lattice L with periodic boundary condition in
both directions. The initial configuration is uniform, i.e., the
heights of all vertices have the same initial value h0. We add
one particle per unit time at a uniformly random site, and
let the system stabilize before a new particle is added. The
resulting density of particles is measured as a function of
time.

At the first stage of the evolution, the system loses a
negligibly small fraction of particles to the sink, and the density
of particles increases with time linearly. Eventually, the system
reaches some critical density ρc(h0) where it starts losing a
macroscopic amount of particles. At this point, the behavior
of density changes sharply. During further evolution the system
relaxes and the density tends to the stationary density of the
ASM ρs = 25/8. At the critical point, the density ρ(τ ) has
a kink, which enables one to determine ρc(h0) with reason-
able accuracy. We monitor the evolution of the system for
various h0.

A. h0 = 4

The simulations show that after dropping a finite number
of particles to the configuration of heights h0 = 4, the system
loses a large amount of particles and its density decreases
down to ρc(4) ≈ 3.44 (see Fig. 1). After this big avalanche,
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FIG. 1. The evolution of the dissipative ASM with one sink for
h0 = 4, number of samples is 1000, N = 500.

the system relaxes to its asymptotic value ρs . For large τ the
convergence is exponential. The rate of the exponential con-
vergence is universal, i.e., independent on initial conditions. It
defines the relaxation time, and is nothing but the spectral gap
of the transition matrix of the process.

B. h0 = 3

During the initial stage of evolution, the number of particles
in the finite system grows almost linearly with τ . At the critical
density ρc(3), a kind of percolation occurs which can be termed
a “weak percolation.’ It implies that sites with h = 4 do not
percolate yet, but additional sites increasing their height during
an avalanche produce together with them a percolation set,
which causes big avalanches spreading through the system.
The weak percolation point for N = 500 is visible in Fig. 2 as
a kink following the linear part of the function ρ(τ ).

The initial value h0 = 3 shows some similarity with
bootstrap percolation [14]. The differences between the two
models, however, prevent us from having a clear view of the
exact relationship between them.

The position of the kink ρc(3) [which coincides with ρth(3)
of FES] in the limit N → ∞ can be found by using the
following observation proved in [9] (see Proposition 1.4).
Consider an infinite square lattice of height 3 on all sites.

0 0.1 0.2 0.3 0.4 0.5
3.00

3.05

3.10

3.15

3.20

τ
ρ

τ

FIG. 2. The evolution of the dissipative ASM with one sink for
h0 = 3, number of samples is 1000, and lattice size N = 500.

To each site add one grain with probability ε > 0. Then,
the addition of a finite number of particles to the origin will
produce an infinite avalanche, which covers all lattices with
probability 1.

To apply this statement to our case, let us add randomly
εN2 particles to the N × N lattice with periodic boundary
conditions and initial sandpile configuration h0 = 3, where
ε > 0 is an arbitrary small constant (see Fig. 2). Then, the
probability to find a site with height h(ε) higher than a fixed
value tends to 1 when N tends to infinity. Considering this
site as the origin in the referred proposition, we conclude that
ρth(3) [and therefore ρc(3) too] tends to 3, when N → ∞.

C. h0 = 2

Due to lowering of the initial density, the percolation picture
of the sites with h = 4 becomes more pronounced, getting
close to the usual site percolation. The percolation dynamics
versus the avalanche dynamics for different background
densities in the FES has been discussed recently by Park [15].
It was demonstrated that the critical density of transition into
the unstable state strongly depends on the background density
and may differ considerably from the accepted values of ρs

and ρth(1). Our results for h0 = 2 confirm this conclusion (see
Fig. 3). In the limit of large lattices the density of particles
ρ(τ ) grows strictly linearly in time up to the transition point
ρc(2) ≈ 3.134.

At the critical point ρc(2), the avalanche mechanism is
activated and the dissipation reduces density toward ρs . It may
seem strange that lowering of the initial density from h0 = 3
to h0 = 2 leads to the increase of the critical density from
ρc(3) = 3 to ρc(2) ≈ 3.134. However, this is the result of the
competition between a larger number of percolation sites with
h = 4 for h0 = 2 and the reduced density of particles outside
the percolation cluster. Of course, the value of the critical
point ρc(2) cannot be derived directly from the site-percolation
critical probability Ps = 0.592 . . ., because the distribution of
heights outside the percolation cluster remains unknown.

D. h0 = 1

This case has been investigated with high precision in
[3]. We repeat the simulations for h0 = 1 to test the basic

1.12 1.16 1.2 1.24 1.28
3.120

3.125

3.130

3.135

3.140

τ
ρ

τ

FIG. 3. The evolution of the dissipative ASM with one sink for
h0 = 2, number of samples is 1000, and lattice size N = 500.
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FIG. 4. The evolution of the dissipative ASM with one sink for
h0 = 1, number of samples is 1000, and lattice size N = 500. Two
horizontal lines correspond to values ρth(0) = 3.125 and ρth(1) =
3.125 288 . . . .

observations of [3] in our case of the lattice with a single open
site (see Fig. 4). We found that the value ρc ≈ 3.125 28 for the
lattice with N = 500 is very close to the threshold value of
the FES ρth = 2.125 278 ± 0.000 0004 reported in [3] for the
lattice N = 512. This confirms that the nearly closed sandpile
behaves almost identically to the FES during the nondissipative
part of evolution. The results of our simulations of the FES in
the case h0 = 1 for different lattice sizes are shown in the next
section.

E. h0 = 0 and h0 = −1

The initial conditions h0 = 0 and h0 = −1 are crucial
and turn out to be different from the previous cases. Adding
particles to the empty lattice, we observe as above the linear
growth of density ρ(τ ) which indicates an almost nondissi-
pative character of evolution. The linear part changes at the
critical point ρc ≈ 3.125 into a function slightly fluctuating
around ρ(τ ) = const up to error bars (not shown in Fig. 5,
as they are of order of thickness of the curves). It means
that the excess density growth observed for initial conditions
h0 = 3,2,1, and which leads to the considerable difference

3.122 3.13 3.14 3.15 3.16 3.17 3.18
3.122

3.123

3.124

3.125

3.126

τ
ρ

τ

FIG. 5. The evolution of the dissipative ASM with one sink for
h0 = 0, number of samples is 1000, and lattice size N = 500. Two
horizontal lines correspond to values ρth(0) = 3.125 and ρth(1) =
3.125 288 . . . .
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1 N3.120

3.121

3.122

3.123

3.124

3.125

th N, 1ρ
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FIG. 6. (Color online) The threshold densities of the fixed
energy sandpile for h0 = −1, number of samples is 107, and
N = 10,11, . . . ,100. Two horizontal lines correspond to values
ρst = 3.125 and ρth(1) = 3.125 288 . . ..

between ρc and ρs , is strongly suppressed as h0 decreases.
The closeness of ρc for h0 = 0 to that for h0 = −1 makes us
continue investigations of these initial conditions with higher
accuracy. In the next section, we do this for the conservative
FES.

IV. THRESHOLD DENSITY OF FES

Along with the nearly closed sandpile, we considered
the FES for initial conditions h0 = −1,0,1,2,3 to confirm
the relation ρc = ρth established in [3] for h0 = 1 and to
determine the convergence laws of the threshold density
to its asymptotical value. To do that, we consider N × N

lattices with periodic boundary conditions in both directions
for various N . For each N , we run 107 samples of the
FES and measure the average threshold density ρth(N,h0)
together with its standard deviation Dρth(N,h0). Extrapolating
the so-obtained data for ρth(N,h0) for 1/N → 0, we find
numerically the asymptotic values of the threshold density
and its finite-size corrections for large N .

3 4 5
ln N

0.5

1.0

1.5

3.1250224 th N,0 N2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1 N3.120

3.121

3.122

3.123

3.124

3.125

th N,0ρ

ρ

FIG. 7. (Color online) The threshold densities of the fixed
energy sandpile for h0 = 0, number of samples is 107, and
N = 10,11, . . . ,100. Two horizontal lines correspond to values
ρst = 3.125 and ρth(1) = 3.125 288 . . . .
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FIG. 8. (Color online) The threshold densities of the fixed
energy sandpile for h0 = 1, number of samples is 107, and
N = 10,11, . . . ,100. Two horizontal lines correspond to values
ρst = 3.125 and ρth(1) = 3.125 288 . . ..

The results of simulations for the FES with initial conditions
h0 = −1,0,1,2,3, are shown in Figs. 6–10. The sizes of dots
in the figures are proportional to their statistical errors. After
extrapolation of the numerical data, we found the following
asymptotical values and finite-size corrections for ρth(N,h0):

ρth(N, − 1) � 3.125 00(5) − 0.48(4) ln N

N2
+ 0.64(7)

N2
,

ρth(N,0) � 3.125 02(2) − 0.48(4) ln N

N2
+ 0.64(8)

N2
,

ρth(N,1) � 3.125 2881(5) − 0.49(1) ln N

N2
+ 0.67(1)

N2
, (9)

ρth(N,2) � 3.1339(6) − 0.06(5)

Nα2
+ 18.3(5)

Nβ2
,

ρth(N,3) � 3.00(3) + 0.18(1)

(ln N )α3
+ 0.51(6)

(ln N )β3
.

Remarkably, the first three asymptotical expansions have
a universal form where coefficients at terms ln N

N2 and 1
N2 are

very similar. Therefore they can be used for determination of
the leading terms in ρth(N,−1), ρth(N,0), ρth(N,1) with high
accuracy. The asymptotical expansions for ρth(N,2), ρth(N,3)

4 5
ln N

7

8

ln 3.13396 th N,2

0.05 0.10 0.15 0.20 0.25 0.30
1 N3.1320

3.1325

3.1330

3.1335

3.1340
th N,2ρ

ρ

FIG. 9. (Color online) The threshold densities of the fixed
energy sandpile for h0 = 2, number of samples is 107, and N =
10,11, . . . ,100.
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FIG. 10. (Color online) The threshold densities of the fixed
energy sandpile for h0 = 3, number of samples is 107, for N =
10,11, . . . ,200.

do not display any universal behavior. We estimated exponents
in these expansions as α2 � 5/4, α3 � 1/2, β2 � 15/4, and
β3 � 3/2.

The obtained asymptotical values of the threshold density
of the FES ρth(h0) show that the difference between ρth(0) and
ρth(−1) is approximately ten times smaller than that between
ρth(1) and ρth(0). However, it is not zero and we may expect
that it continues to decrease for larger negative values of h0. If
so, the strict inequality ρth �= ρs in [3] has the more realistic
alternative that ρth actually converges to ρs for sufficiently
large negative initial heights.

V. CONCLUSION

The results of our numerical simulations suggest the
following three statements: (1) the density of sand held by the
lattice with a single dissipative site (or with dissipation rate
tending to zero), as a function of sand deposed, shows a kink at
a value ρc, which can be identified with the threshold density
of the corresponding FES with the same initial condition;
(2) the critical value ρc depends on the initial condition,
and consequently, there is presumably also a range of values
for the FES threshold density, also depending on the initial
condition and potentially on the way sand is dropped; (3)
when the height h0 of the uniform initial configuration goes
down, the difference between threshold ρth and the stationary
density, ρs = 25/8, becomes smaller and most probably
tends to 0.
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