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For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to
quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations
are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations
analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T ,n), where T is the
total length of the time series and n the window size. For ρDCCA(T ,n), we numerically calculated the Cauchy
inequality −1 � ρDCCA(T ,n) � 1. Here we derive −1 � ρDCCA(T ,n) � 1 for a standard variance-covariance
approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the
cross-correlations become statistically significant. For overlapping windows we numerically determine—and for
nonoverlapping windows we derive—that the standard deviation of ρDCCA(T ,n) tends with increasing T to 1/T .
Using ρDCCA(T ,n) we show that the Chinese financial market’s tendency to follow the U.S. market is extremely
weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations
between two power-law correlated time series.
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I. INTRODUCTION

Many diversified complex systems are composed of con-
stituents that mutually interact in a complex fashion in that
the current output value of each constituent depends on the
current values of other constituent outputs. The complexity of
the mutual interaction can be additionally studied if memory
is included, where the current value of each constituent
output depends not only on its own past but also on the past
values of other constituent outputs. Such complex systems
are characterized by both long-range correlations and long-
range cross-correlations. Many diverse systems exhibit these
properties, ranging from colloidal glasses [1], geophysics
[2], and finance [3] to solid-state physics [4]. In colloidal
glasses, different cross-correlation methods have revealed and
classified a hidden local order within the disorder [1]. In
seismology, the degree of cross-correlation among signals
registered by different antennas provides an alert that signals
earthquakes [2]. In finance, risk is estimated on the basis
of cross-correlation matrices for different assets [3]. In
nanodevices for quantum information processing, electronic
entanglement allows us to compute noise cross-correlations
and find whether the sign of the signal is the reverse of what
would be expected of standard devices [4].

When cross-correlations are present in stationary time
series, at least two measures quantify cross-correlations among
the constituents: the cross-correlations as a function of time
window n and the cross-covariance. Both measures are related
in that the first measure also quantifies whether the cross-
correlations are statistically significant.

When nonstationarities are present, Ref. [5] proposes a
method, based on detrended covariance, called detrended
cross-correlation analysis (DCCA), which is a modifica-
tion of standard covariance analysis in which the global

average is replaced by local trends [5–7]. The DCCA
method can be easily generalized for multifractal analysis
[8–11]. The DCCA method and its multifractal version
have been applied to diverse fields including financial data
[6,12–16], traffic flows [17–19], seismic data [20], sunspot
numbers and river flow fluctuations [21], and meteorological
data [22].

For nonstationary time series, in analogy with the cross-
correlation coefficient, Ref. [23] recently introduced a DCCA
cross-correlation coefficient, but this measure does not quan-
tify the significance of cross-correlations between different
time series. Here we examine the statistical significance of the
DCCA cross-correlation coefficient with the goal of making
it applicable to a wide range of phenomena ranging from
physiology to finance. We carry out this study of statistical
significance for both nonoverlapping [24] and overlapping [25]
windows, and for both polynomial [24] and moving average
detrending [8,10,26].

II. METHODS

Following Ref. [5], we consider two long-range cross-
correlated time series {yi} and {y ′

i} of equal length N ,
and compute two integrated signals Rk ≡ ∑k

i=1 yi and R′
k ≡∑k

i=1 y ′
i , where k = 1, . . . ,N . We divide the entire time series

into N − n overlapping windows [24], each containing n + 1
values. For both time series, in each window that starts at i and
ends at i + n, we define a “local trend,” R̃k,i [5]. We define
the “detrended walk” as the difference between the original
walk and the local trend and calculate the covariance of the
residuals in each box:

f 2
DCCA(n,i) ≡ 1/(n − 1)

i+n∑
k=i

(Rk − R̃k,i)(R
′
k − R̃′

k,i). (1)
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The detrended covariance is defined as

FDCCA(n) ≡
√√√√ 1

N − n

N−n∑
i=1

f 2
DCCA(n,i). (2)

If Rk = R′
k , we deal with one series instead of two, and so

for this case the detrended covariance becomes the detrended
variance—FDCCA(n) reduces to the average root-mean-square
fluctuation function FDFA(n) of the detrended fluctuation
analysis (DFA) [24,25,27]

FDFA(n) ≡
√√√√ 1

N − n

N−n∑
i=1

f 2
DFA(n,i), (3)

where f 2
DFA(n,i) ≡ 1/(n − 1)

∑i+n
k=i (Rk − R̃k,i)2 [24,25,27].

For the Rk = R′
k case, if a power law exists in the correlations,

then the detrended variance versus n follows a power law,
FDFA(n) ∝ nα . On average, F 2

DCCA(n) versus n should be zero
if there are no cross-correlations. However, for finite time
series, if the detrended covariance versus n fluctuates around
zero, there are no cross-correlations between {yi} and {y ′

i}. If a
power law exists in the cross-correlations, then the detrended
covariance versus n follows a power law, FDCCA(n) ∝ nλ.

Analogous to the cross-correlations coefficient applied
to stationary time series, Ref. [23] recently proposed

a DCCA cross-correlation coefficient for nonstationary
time series defined as the ratio between the detrended
covariance function DCCA of Eq. (2) and two de-
trended variance functions of Eq. (3), one for each time
series,

ρDCCA(α,α′,T ,n) = F 2
DCCA(n)

FDFA(n)F ′
DFA(n)

, (4)

which is dependent upon two time series of length T , each
characterized by DFA exponents α and α′, and window
size n. Here ρDCCA is a dimensionless coefficient ranging
between −1 � ρDCCA � 1, where the result was not derived
in Ref. [23], but was shown to hold using both artificial and
empirical time series. Here we derive, first, that this Cauchy
inequality, which holds for cross-correlations coefficients
−1 � ρ � 1, also holds for a standard variance-covariance
approach, and then for a detrending approach.

We compute two integrated signals Rk ≡ ∑k
i=1 Xi

and R′
k ≡ ∑k

i=1 X′
i , where k = 1, . . . ,n. We easily de-

rive [5] 〈R′
nRn〉 = nCX(0) + 2

∑n−1
k=1(n − k)CX(k), where

CX stands for cross-covariance. Similarly we derive
〈R2

n〉 = nC(0) + 2
∑n−1

k=1(n − k)C(k) and 〈R′2
n 〉 = nC ′(0) +

2
∑n−1

k=1(n − k)C ′(k), where C(C ′) is the covariance of X(X′).
Then we define

〈R′
nRn〉√〈

R2
n

〉〈
R′2

n

〉 = nCX(0) + 2
∑n−1

k=1(n − k)CX(k)√[
nC(0) + 2

∑n−1
k=1(n − k)C(k)

][
nC ′(0) + 2

∑n−1
k=1(n − k)C ′(k)

] . (5)

We assume for simplicity that Xi and X′
i both have the same variance and that each follows the same power law, i.e., C(k) ∝

C ′(k) ∝ k−γ . Then if power-law cross-correlations exist, cross-correlations follow the same power law CX(k) = CX(1)k−γ :

〈R′
nRn〉√〈

R2
n

〉〈
R′2

n

〉 = nCX(0) + 2
∑n−1

k=1(n − k)CX(k)

nC(0) + 2
∑n−1

k=1(n − k)C(k)
≈

∑n−1
k=1(n − k)CX(k)∑n−1
k=1(n − k)C(k)

= CX(1)

C(1)
. (6)

Since we assume that {Xi} and {X′
i} have an equal standard

deviation, V = V ′, when we employ that C(1) < C(0) ≡ V

(the covariance is a decreasing functional dependence), we
obtain

〈R′
nRn〉√〈

R2
n

〉〈
R′2

n

〉 = CX(1)

C(1)
>

CX(1)

C(0)
= CX(1)√

V V ′ = ρ(1). (7)

Generally, if a power law exists, we may assume that
correlations do not change rapidly with lags, and so there is no
big difference between correlations for lag zero and lag one.
Thus, for V ≡ C(0) ≈ C(1), then −1 � ρ(1) � 1 implies

−1 � 〈R′
nRn〉√〈

R2
n

〉〈
R′2

n

〉 � 1.

Next we show that similar result holds for the detrending
approach of Eq. (4).

For a detrending approach with l nonoverlapping boxes
each with n data points, where T = ln, we derive for

Eq. (4),

F 2
DCCA(n)

FDFA1(n)FDFA2(n)

= 1/(ln)
∑l

j=1

∑n
i=1 εj,iε

′
j,i√

1/(ln)
∑l

j=1

∑n
i=1 ε2

j,i1/(ln)
∑l

j=1

∑n
i=1 ε′2

j,i

=
∑T

k=1 εkε
′
k√∑T

k=1 ε2
k

∑T
k=1 ε′2

k

, (8)

where ε and ε′ are error terms corresponding to time series
Xt and X′

t , precisely [see Eq. (1)] εk,i = Rk − R̃k,i and
ε′
k,i = R′

k − R̃′
k,i . Using the Cauchy inequality we obtain

−1 � ρDCCA(n) � 1. If two series are equal, Xt = X′
t , then

we obtain ρDCCA(n) = 1; if X′
t = −Xt , ρDCCA(n) = −1.

A possible problem can arise, however, when one uses
ρDCCA in practice. When there are no cross-correlations,
ρDCCA = 0, we can calculate only for an infinitely long
time series. For finite time series, due to the size effect,
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FIG. 1. (Color online) PDF of critical points ρc(α,α′,T ,n) for the
statistical test of Eq. (4), where α = α′ = 0.5.

even if cross-correlations are not present, ρDCCA is not zero
but presumably some small nonzero value. Thus the DCCA
cross-correlation coefficient serves only as an indicator of the
presence of cross-correlations. Clearly, if ρDCCA is either −1
or +1, cross-correlations can be considered genuine, but what
about when ρDCCA is equal to 0.2 or 0.3? Do those values
indicate the presence or absence of cross-correlations?

To test whether the cross-correlations are genuine (signif-
icant) or not, we use ρDCCA of Eq. (4) as the first statistical
test [23]. To carry out this test we calculate critical points
ρc(α,α′,T ,n) for the 95% confidence level defined such that
the integral between −ρc(α,α′,T ,n) and ρc(α,α′,T ,n) is equal
to 0.95. We thus determine the range of ρDCCA within which the
cross-correlations can be considered statistically significant.
As is usual in statistics, we first determine the null hypothesis.

Because this is not a unique choice, we begin by assuming that,
under the null hypothesis, the time series are independent and
identically distributed random variables (i.i.d.) and calculate
the range of ρDCCA that can be obtained under the assumption
that the time series are i.i.d., thus α = α′ = 0.5.

In Fig. 1 for each of two different choices of time series
length—ranging from short T = 250 (a) to long T = 16 000
(b)—we calculate the probability distribution function (PDF)
P (ρDCCA) of the DCCA cross-correlation statistic (coefficient)
ρDCCA of Eq. (4) for four different values of window size n.
Each PDF is obtained by generating 10 000 i.i.d. time series
pairs (α = α′ = 0.5) taken from a Gaussian distribution, where
for each time series pair we calculate the detrending variance
DFA(n) and the detrending covariance DCCA(n), and then
test it using Eq. (4). We first use a trend based on a first-
order polynomial fit. We note that P (ρDCCA) is symmetric,
as expected, and that it depends on two parameters, the time
series length T and the window size n. As expected, for each
T , with increasing n, the PDF converges to a Gaussian due
to the central limit theorem [28]. Due to an unknown form of
PDF for smaller values of n, we calculate the critical values
numerically. For each PDF P (ρDCCA) defined by T and n,
we calculate the critical point ρc(α = 0.5,α′ = 0.5,T ,n) for
the 95% confidence level. We report the critical values in
Table I.

Next, using the detrending moving average method [26],
for different choice of window size n and series size T ,
we generate many i.i.d. time series pairs (with no cross-
correlations) taken from a Gaussian distribution with zero
mean and unit variance. As expected, the critical values
obtained based on the detrending moving average method in
Table II are similar to those obtained using the polynomial
trend in Table I.

In practice, we calculate ρDCCA from empirical time series
and compare it with the critical point ρc(T ,n) for each T and
n. If ρDCCA > ρc(T ,n), the cross-correlations are considered
statistically significant, and we reject the null hypothesis
that ρDCCA of Eq. (4) comes from two Gaussian i.i.d. time
series with no cross-correlations. It means that, for two series
of length T with DFA exponents α and α′ for every size
of window n, ρDCCA must be larger than the critical value
ρc(α,α′,T ,n) calculated for T and n.

Table I shows the critical values obtained using the
detrending approach with overlapping (sliding) boxes, a
widely used method that allows us to obtain better statistics
because the data points are finite [25]. For nonoverlapping
boxes, we apply Eq. (8) and calculate the variance of

TABLE I. Polynomial fit of order 1. Critical values ρc(α,α′,T ,n) for the DCCA cross-correlation coefficient of Eq. (4) when for a given
couple of time series each series is Gaussian i.i.d. with zero mean and unit variance.

i.i.d. n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

T = 250 0.137 0.152 0.193 0.271 0.383
T = 500 0.096 0.106 0.138 0.184 0.266 0.384
T = 1000 0.070 0.077 0.097 0.132 0.185 0.261 0.377
T = 2000 0.049 0.055 0.068 0.093 0.131 0.186 0.269
T = 4000 0.034 0.038 0.049 0.067 0.093 0.132 0.185
T = 8000 0.024 0.028 0.035 0.046 0.063 0.091 0.129
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TABLE II. Moving average fit. Critical values ρc(α,α′,T ,n) for the DCCA cross-correlation coefficient of Eq. (4) when for a given couple
of time series each series is Gaussian i.i.d. with zero mean and unit variance.

i.i.d. n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

T = 250 0.129 0.156 0.212 0.305 0.448
T = 500 0.091 0.109 0.147 0.210 0.302 0.447
T = 1000 0.064 0.077 0.104 0.146 0.208 0.306 0.449
T = 2000 0.045 0.054 0.073 0.102 0.145 0.209 0.304
T = 4000 0.032 0.039 0.052 0.072 0.102 0.145 0.209
T = 8000 0.023 0.027 0.037 0.051 0.072 0.102 0.146

ρDCCA(α,α′,T ,n):

E
[
ρ2

DCCA(α,α′,T ,n)
]

=
∑l

j=1

∑n
i=1

∑l
j ′=1

∑n
i ′=1 E(εj,iεj ′,i ′)E(ε′

j,iε
′
j ′,i ′ )∑l

j=1

∑n
i=1 E

(
ε2
j,i

) ∑l
j=1

∑n
i=1 E

(
ε′2
j,i

)
=

∑l
j=1

∑n
i=1

∑l
j ′=1

∑n
i ′=1 δi,i ′δj,j ′

nlnl
= 1

nl
= 1

T
. (9)

Thus we find that for nonoverlapping boxes,
E[ρ2

DCCA(α,α′,T ,n)] does not vary with box size n.
This implies that even the critical values of ρDCCA(α,α′,T ,n)
are not affected by n. When the boxes are overlapping,
however, E(ρ2

DCCA[α,α′,T ,n)] depends on n, and we calculate
the critical values numerically. Each column in Table I shows
that ρc(α,α′,T ,n) versus T follows a power law ∝ T −0.5 with
exponent −0.5.

In Fig. 1 we note that, for given T , P (ρDCCA) becomes
broader as window size n increases, implying that, for a given
T and with increasing box size n, ρDCCA also increases so
that it is larger than ρc(α,α′,T ,n) when cross-correlations are
present (see Table I). Further, for a given n, P (ρDCCA) broadens
with decreasing T .

For overlapping boxes, Fig. 2 shows the plot of critical
points ρc(T ,n) for the statistical test of Eq. (4) versus window
size n for varying values of series length T and α = α′ = 0.5.
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FIG. 2. (Color online) Scaling in critical points. Critical points
ρc(T ,n) for the statistical test of Eq. (4) with the 95% confidence
level. For varying values of series size T , we show ρc(α,α′,T ,n) vs
window size n.

Each curve represents a row of Table I. In practice, the
lengths of the time series differ from those shown in Figs. 1
and 2, and the critical values for any T and n must be
calculated by extrapolating from the critical values reported in
Table I.

For overlapping boxes, Fig. 3(a) in a linear-linear plot
shows the standard deviation of the statistical test ρc(T ,n)
of Eq. (4) versus the length of time series T for different
window sizes n. For each n, the standard deviation versus
T scales with a power law AnT

−0.5 with exponent −0.5,
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FIG. 3. (Color online) Normality in data. (a) Linear-linear plot.
Standard deviation of the statistical test ρc(T ,n) of Eq. (4) vs series
size T for different choice of window size n. For each n, standard de-
viation vs T scales with a characteristic exponent for a Gaussian PDF.
(b) Log-log plot. Standard deviation of the statistical test ρc(T ,n) of
Eq. (4) vs window size n for different choice of series size T . For
each T , standard deviation vs n scales with a characteristic exponent
for a Gaussian PDF.
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characteristic of a Gaussian PDF, which is consistent with the
scaling of the standard deviation of critical values versus n. The
parameter An calculated for n = 4, 8, 16, 32, and 64 are 1.098,
1.215, 1.604, 2.269, and 3.456, respectively. Note that, when
there are no correlations, the cross-correlation coefficients
also follow a Gaussian in distribution with standard deviation
1/T [29]. We now show that for the critical value ρc(T ,n)
of Eq. (4), the standard deviation also tends to 1/T . Note
that this is the expression for the standard deviation we
have already derived for nonoverlapping boxes in Eq. (9).
Figure 3(b) in log-log plot shows the standard deviation of
the statistical test ρc(T ,n) of Eq. (4) versus window size n

for different series size T . For each T , the standard deviation
versus n scales with a characteristic exponent for a Gaussian
PDF.

In order to test for the presence of significant power-law
cross-correlations between two time series, we may hypoth-
esize that each series must be a power-law correlated rather
than i.i.d. For a time series length T = 250, we generate 10 000
time series pairs where each pair is power-law correlated with
varying DFA exponent α = α′ and varying n. We assume that
each of two power-law correlated series Xt and X′

t , with DFA
exponent α and α′, respectively, follows an autoregressive
fractionally integrated moving-average (ARFIMA) process
xt = ∑∞

k=1 ad (k)εt with parameters d and d ′, respectively,
where ad (k) ≡ − (k−d−1)!

(−d−1)!k! [30–33]—parameter d is related
to the DFA exponent as α = 0.5 + d [34]. We calculate the
critical point ρc(α,α′,T ,n) for the 95% confidence level under
the assumption that for a given pair of time series each series is
power-law correlated with the same DFA exponent—α = α′,
but there are no cross-correlations. We study the cases α = 0.6,
α = 0.7, α = 0.8, and α = 0.9 and report the critical values in
Table III. The critical values are shown for T = 250 and 1000.
Note that, with decreasing correlations (α tending to 0.5, the
case implying no correlations), the critical point ρc(α,α,T ,n)
tends, as expected, to the value calculated for i.i.d. series
taken from a Gaussian distribution with the same T and n.
Generally we find that the critical point ρc(α,α,T ,n) increases
with the increasing of both α and window size n. Again
we see that if we have critical point information for each T

TABLE III. Polynomial fit of order 1. Critical values ρc(α,α′,T ,n)
for the DCCA cross-correlation coefficient of Eq. (4) when for a given
couple of time series each time series is power-law correlated with
the same DFA exponent but not cross-correlated.

T = 250 n = 4 n = 8 n = 16 n = 32 n = 64

i.i.d. 0.137 0.152 0.193 0.271 0.383
α = 0.6 0.137 0.158 0.203 0.295 0.406
α = 0.7 0.137 0.161 0.221 0.313 0.431
α = 0.8 0.137 0.172 0.234 0.329 0.443
α = 0.9 0.137 0.178 0.244 0.346 0.464

T = 1000 n = 4 n = 8 n = 16 n = 32 n = 64

i.i.d. 0.070 0.077 0.097 0.132 0.182
α = 0.6 0.070 0.078 0.105 0.148 0.223
α = 0.7 0.070 0.080 0.113 0.154 0.238
α = 0.8 0.070 0.082 0.123 0.165 0.247
α = 0.9 0.070 0.087 0.128 0.171 0.260

and n when we calculate ρDCCA(α,α,T ,n) from an empirical
time series, the cross-correlations are statistically significant if
ρDCCA(α,α,T ,n) is larger than the critical value ρc(α,α,T ,n)
calculated for α, T , and n.

III. EMPIRICAL APPLICATION

Finally in Fig. 4 we apply the ρ(T ,n) test in Eq. (4) to
the interaction between a U.S. and a Chinese financial index,
a U.S. and a German financial index, and between two U.S.
financial indices. For the absolute values of a return series, we
first calculateρ(T ,n) versus window size n between the NYA
(the New York Stock Exchange Composite index) and the
SSEC (the Shanghai Stock Exchange Composite index). We
also show the critical values ρc(T ,n) for the 95% confidence
level where the area below ρc(T ,n) versus n implies no
cross-correlations between indices. For daily recorded returns
over the 11-year period from January 4, 2000, to August
15, 2011, we conclude that the NYA and the SSEC follow
each other only very weakly, implying that the U.S. financial
market does not have a strong effect on the Chinese financial
market [35]. This result is not surprising and confirms that
China has become an independent financial eigenvector, since
it is only partially open to foreign investors. It is thus also not
surprising that China was one of the very few countries that
did not experience a severe recession during 2008–2009. In
contrast, a U.S. “financial ally” is Germany, and the German
index DAX strongly follows the NYA. As expected, the NYA
and the NASDAQ Industrial index strongly affect each other
since the curve of ρ(T ,n) versus n (open symbols) is well
above ρc(T ,n) versus n for each n reported. Note that for each
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FIG. 4. (Color online) Statistical test ρ(T ,n) of Eq. (4) vs window
size n calculated for absolute returns series between NYA and a
Shanghai index SSEC, NYA, and a German index DAX, and between
NYA and NASDAQ Industrial. Shown are also the critical values for
the 95% confidence level under assumption of no cross-correlations.
The area below ρc(T ,n) vs n means insignificant cross-correlations.
Chinese index and U.S. index follow each other very weakly
implying that U.S. financial market does not affect the Chinese
financial market very strongly. We also show ρ(T ,n) of Eq. (4)
vs window size n calculated for returns series between NYA and
NASDAQ.
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time series pair, ρ(T ,n) versus n has an increasing functional
dependence, as shown in Ref. [23], that continues to hold when
boxes in the detrending approach overlap.

Additionally, besides for the absolute values of return series
(open symbols), for the NYA and the NASDAQ Industrial
index in Fig. 4 we also show ρ(T ,n) versus n of Eq. (4) for
the return series (closed symbols). The cross-correlations for
return series are weaker than the cross-correlations for the
absolute values of return series, but are also significant. It is
worthy to note that the return series of financial indices are
commonly uncorrelated (or short-range correlated). Here we
calculate FDCCA versus n of Eq. (2) and obtain exponent λ =
0.485 ± 0.02 implying short-range cross-correlations among
time series (≈0.5) in agreement with short-range correlations.
To understand this result we obtained for ρ(T ,n) versus n for
return series, consider two series, X and X′, that we define
Xt ≡ εt and X′

t ≡ θt + bεt , where b is constant and εt and
θt are two Gaussian i.i.d. processes with α = α′ = 0.5. Then
cov(X,X′) = b var(X), and so the square root of cov(X,X′)
scales with n as the standard deviation of X with scaling
exponent λ ≈ 0.5 since X is uncorrelated. Then, for X and
X′ previously defined, the ρ(T ,n) test in Eq. (4) scales for
large n as

lim
n→∞

F 2
DCCA(n)

FDFA(n)F ′
DFA(n)

∝ n2λ

nαnα′ = n

n0.5n0.5
= 1. (10)

Next we show that the previous result about how the U.S.
financial market affecting other financial markets depends on
the period analyzed. In Fig. 5 we show the level of cross-
correlations quantified by FDCCA versus n of Eq. (2) between
the NYA and the SSEC for each of subperiods, 2000–2005 and
2006–2011. As expected, NYA and SSEC have become more
related during the second subperiod characterized by a severe
recession during 2008–2009.
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FIG. 5. (Color online) Statistical test ρ(T ,n) of Eq. (4) vs window
size n between NYA and a Shanghai index SSEC, NYA calculated
for two subperiods. We show both returns and absolute values of
returns. Chinese index and U.S. index follow each other stronger
during the second half of an 11-year period, characterized by a world
recession and market crashes. However, the influence between these
two indices is still much weaker than that between DAX and NYA
(see Fig. 4).

In practice, when two series are short-range correlated or
uncorrelated, and also short-range cross-correlated, we expect
that, due to size effects, ρDCCA(α,α′,T ,n) will depend on
scale n with very small scaling exponent. So, if series are
short-range correlated or uncorrelated and cross-correlations
are strong only for small number of lags, ρDCCA(α,α′,T ,n)
versus n is virtually constant since 2λ − α − α′ in Eq. (10)
is small but nonzero. However, ρDCCA(α,α′,T ,n) versus n

is also constant for two power-law correlated series with
DFA exponents α and α′ if DCCA cross-correlations ex-
ponent λ = (α + α′)/2. Then, using Eq. (10), we obtain
n2λ/(nαnα′

) = 1. Thus, the ρ(T ,n) test in Eq. (4) behaves
equally for two significantly different cases. In practice, we
must use Eq. (4) to quantify whether cross-correlations exist,
but to find out whether cross-correlations are short-range
(λ ≈ 0.5) or long-range one needs to perform the test of
Eq. (2).

IV. CONCLUSION

A number of empirical outputs in diverse phenomena
ranging from geophysics to finance [2–4,36–38] exhibit
cross-correlations with different levels of nonstationarity
ranging from multifractality [8,10] to asymmetry. In order
to quantify the statistical significance of cross-correlations
we define two statistical cross-correlation tests based on the
assumption that a series is either uncorrelated or power-law
correlated. The tests quantify for which range of statistical
tests the cross-correlations can be considered statistically
significant. These tests may aid empirical investigations
in a variety of phenomena in which cross-correlations
exist.
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APPENDIX

We also propose a second statistical test that can be used
to quantify the existence of cross-correlations between two
power-law correlated time series. We assume that each of two
power-law correlated series Xt and X′

t , with DFA exponent α

and α′, respectively, and ARFIMA process Xt = ∑∞
k=1 ad (k)εt

with parameters d and d ′, respectively [30–33]. Although
there are many other processes that can lead to power-law
correlations, we choose ARFIMA for which we can find
analytical expressions. Using the expression for covariance of
Xt equal to γk = γ−k = ρ2(d)!(k − d − 1)!/[(−d − 1)!(k +
d)!] ≈ ρ2(d)!/(−d − 1)!)k−2d−1 = Aρ2k−2d−1 [30], the vari-
ance of

Ci =
∑T

k=i+1 XkX
′
k−i√∑T

k=1 X2
k

∑T
k=1 X′2

k
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becomes [where we use E(Ci) = 0 due to uncorrelations between X and X′]

V (Ci) ≡ E
(
C2

i

) =
∑T −i

t=1

∑T −i
t ′=1 E(XtXt ′)E(X′

t+iX
′
t ′+i)

ρ2ρ ′2T 2
= 1

T 2ρ2ρ ′2

[
(T − i)ρ2ρ ′2 +

∑T −i
t=1

∑T −i
t ′ �=t=1 E(XtXt ′ )E(X′

t+iX
′
t ′+i)

ρ2ρ ′2T 2

]
,

(A1)

= (T − i)ρ2ρ ′2 + 2[(T − i)
∑T −i−1

k=1 γkγ
′
k − ∑T −i−1

k=1 kγkγ
′
k]

ρ2ρ ′2T 2
, (A2)

where by γk and γ ′
k we denote the covariance of Xt and X′

t previously defined. Finally, replacing sums by integrals, we obtain

V (Ci) = T − i

T 2

{
1 + 2AA′

2(d + d ′) + 1

[
1 − 1 + 2(d + d ′) − (T − i)−2(d+d ′)

2(d + d ′)(T − i)

]}
= T − i

T 2
[1 + F (T ,d,d ′)]. (A3)

To test whether the cross-correlations between a power-
law autocorrelated series are genuine (significant) or not, in
analogy to the χ2 distribution we propose the cross-correlation
statistic with m degrees of freedom

QDXA(d,d ′,T ,m) ≡ T 2
m∑

i=1

C2
i

(T − i)[1 + F (T ,d,d ′)]
. (A4)

Here the null hypothesis is that each of two time series is
power-law correlated with DFA power-law exponents α and
α′. It is assumed there are no cross-correlations. An alternative
hypothesis is that the time series are not only power-law
correlated, but also power-law cross-correlated. Our test is
dependent upon the pair (α,α′), the time series length T , and

m degrees of freedom. For a given (α,α′,T ,m) we generate
10 000 ARFIMA time series pairs with α,α′ respectively,
and calculate the critical point Qc(α,α′,T ,m) for the 95%
confidence level. For a given empirical time series pair of
length T , if QDXA(α,α′,T ,m) > Qc(α,α′,T ,m), we conclude
that the cross-correlations are genuine (significant). Since the
test is based on many parameters, we do not provide the critical
values in this paper.

Briefly, two power-law correlated series can be either
mutually uncorrelated (statistically independent) or correlated
where the latter case assumes either short-range or long-range
cross-correlations. The test of Eq. (A4) should be used in order
to test existence of power-law cross-correlations in case when
each series is power-law correlated.
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