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We study the statistical behavior under random sequential renormalization (RSR) of several network models
including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR
the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to
all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London)
433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels
new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a
second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub
and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition
exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For
critical trees it happens as N/N0 → 0 in the limit of large systems (where N0 is the initial size of the graph and
N its size at a given RSR step). In contrast, it happens at finite N/N0 in sparse ER graphs and in the annealed
model, while it happens for N/N0 → 1 on scale-free networks. Critical exponents seem to depend on the type
of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the
annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks
exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)].
While degree distributions are of main interest when regarding the scheme as network renormalization, mass
distributions (which are more relevant when considering “supernodes” as clusters) are much easier to study using
the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.
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I. INTRODUCTION

Complex networks provide a useful representation for
complex phenomena in a variety of settings including social,
biological, and technological systems and have been studied
extensively in the past decade [1–3]. A common property
of many complex real world networks is the heterogeneity
of nodes leading to wide (power-law, “scale-free”) degree
distributions [4].

For systems embedded in Euclidean space, scale-free statis-
tics is often related to the notion of self-similarity. In statistical
physics and critical phenomena this is usually studied by using
the renormalization group (RG) technique, where degrees of
freedom of the system are eliminated successively by coarse
graining. The scaling behavior of the systems close to the
fixed point of the RG flow is then examined and systems
with similar scaling behavior are classified into universality
classes [5,6].

While renormalization is well defined and extensively
studied for spatially extended systems (including regular
lattices and disordered systems), it is not clear whether it can
be applied to complex networks that have no spatial structure,
where the topology is given only by the network itself.
Naively one would expect that the “small-world” property
displayed by many real networks [7,8] means that they
cannot be embedded in any finite dimensional space, and thus
renormalization schemes should be less useful. Nevertheless,
a real space renormalization transformation for such networks
was introduced by Song et al. [9,10]. In this scheme, the entire
network is covered in each RG step by a set of boxes, and each
box is considered as a “supernode” in the next RG step. Several
complex networks were claimed to have a finite self-similar

or fractal dimension; that is, the number of boxes needed
to cover the network seemed to show a power-law relation
with the diameter of the box, in blatant contradiction to their
small-world property. Although this issue was never solved,
it was suggested that the fractality of real world networks
depends on self-organization in the growth mechanism [11],
assortativity of fractal networks [12], and fractality of their
underlying structure [13–17].

This conflict between the “small-world” property and any
fractality of complex networks was avoided by Radicchi
et al. [18,19] by using an RG analysis based on the same
box covering idea, but studying carefully the RG flow itself,
without using any length scale dependence for making claims
about fractality.

There are some technical concerns in these previous box
covering methods for renormalizing networks. First, according
to the original idea of Hausdorff [20], the sizes of boxes should
be individually optimized, whereas in the suggested methods
all boxes are of equal size. This is a particularly severe problem
due to the heterogeneous connectivity in complex networks
that leads also to very wide distributions of nodes per box,
most of them being nearly empty. Second, even when boxes
of the same size are used, the precise placement of boxes
strongly affects the result, and optimizing their positions is
not practically feasible. Although the suggested methods in
Refs. [9–11,13] are claimed to overcome this problem, their
results still depend on the order in which the boxes are laid
down, making these schemes quasisequential. In particular, the
number of nodes per box decreases strongly with the number
of boxes already put down. Finally, during each RG step the
size of the network decreases dramatically, which results in a
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small number of data points in the RG flow. For networks with
small-world property this is particularly serious, as the dia-
meter of the networks scales only with log(N ) (N being the
size of the network). To compensate for this, only parts of the
network have been coarse grained in Ref. [17] at each step of
renormalization, which adds more complexity to the process
and makes the results even more difficult to interpret.

In our previous work [21], we suggested a completely
sequential renormalization scheme for undirected and un-
weighted graphs called random sequential renormalization
(RSR). In RSR at each step of renormalization one node is
chosen randomly, and all nodes within a given distance b are
replaced by a single supernode. All links from the outside to
the (removed) neighborhood are redirected to the supernode,
and the supernode is then treated like any other node in the
network. The parameter b is called the box radius.

RSR has the advantage that it does not involve any optimum
tiling and is very easy to code and understand. It avoids the
problem of mostly empty boxes. Furthermore, as the network
is affected only locally and the decimation is considerably less
at each step of RSR, the whole flow generates much more
statistics, which allows a more detailed analysis.

Another advantage of RSR is that it can be interpreted as a
cluster growth process, where initially all nodes are considered
to be clusters of mass one. At each step of RSR a randomly
chosen cluster grows by agglomerating with all its neighboring
clusters. Using the fast Monte Carlo algorithm for percolation
introduced by Newman and Ziff (NZ) [22,23], RSR can be
easily implemented on networks with millions of nodes.

In our first paper on RSR [21], we applied this method
to critical trees. Their simple structure makes it possible to
study the renormalization flow analytically, giving perfect
agreement with results from numerical simulations. We found
three regimes in the evolution of critical trees under RSR.
(i) First is an initial regime with small fluctuations in the
region N

1/2
0 � N < N0 (with N0 being the initial size of the

network and N its size at a given renormalization step). (ii)
The second is an intermediate regime for N

1/4
0 � N � N

1/2
0

where the network is a fat, short tree whose structure is
dominated by a giant hub. The transition between these two
regimes is associated with emergence of a power-law degree
distribution and is described by crossover functions exhibiting
finite-size scaling. (iii) A third regime extends down to N = 1
where the network is a star with a central hub and many
leaves.

The appearance of power-law distributions and scaling is
associated with a continuous transition, called “agglomerative
percolation” (AP) [24]. In one dimension (i.e., graphs consist-
ing of a simple 1D chain), AP has been solved exactly [25,26].
There it shows nontrivial scaling with exponents that depend
on the box size [25]. In two dimensions, AP is for triangular
lattices in the same universality class as ordinary percolation
(OP), whereas it shows different critical behavior for square
lattices [24]. This is related to the bipartite structure of the
square lattice as every site on the boundary of any cluster is
on the same sublattice [27]. The fact that patently nonfractal
structures like 1D and 2D lattices also exhibit scaling under
RSR suggests that some of the scaling laws previously found
in small-world networks are due to AP transition, rather than
any underlying fractality of most networks.

In the present paper we study the behavior of sparse Erdös-
Rényi (ER) graphs and of the scale-free model of Barabási and
Albert (BA) [4] under RSR. For sparse ER graphs under RSR
with b = 1, we find a continuous percolation transition at finite
x = N/N0. Using finite size scaling methods, we show that the
corresponding critical exponents are consistent with a scaling
theory based on two independent exponents. Within our error
estimates, these exponents appear to be independent of the
initial average degree of the ER graphs. For the BA model the
transition seems to be pushed to x = 1, which makes it more
difficult to obtain precise numerical results.

We also study RSR analytically using a mean-field theory
based on generating functions. The behavior of graphs before
the AP transition is consistent with this theory. After the
transition the theory fails due to large fluctuations, as well
as due to the effect of loops that are negligible before the
transition. The predictions of the theory are in agreement with
our simulations of an annealed model.

We introduce our model and simulation method in Sec. II,
where we also define the graphs and the sizes of the ensembles
under study. Section III presents our simulation results for
ER graphs. We show evidence of a continuous percolation
transition, find the scaling properties and the corresponding
critical exponents numerically, and show that they obey the
common scaling relations of OP. In Sec. IV we develop
a mean-field theory for the evolution of ER graphs under
RSR and compare its results with our simulations of an
annealed model. We discuss the behavior of graphs beyond
the percolation transition in Sec. V. Sections VI and VII
are devoted to the results of simulations on ER graphs with
different average degrees as well as RSR with larger box
sizes. Finally, in Sec. VIII we examine BA networks, and
we conclude our study in Sec. IX.

II. THE MODEL

A. Random sequential renormalization

Random sequential renormalization with radius b(b =
1,2, . . .) is the process of consecutively applying a local coarse
graining (one step of RSR), on a given network G0, which leads
to a series of graphs Gt (0 � t � T ) with strictly decreasing
sizes Nt . In the following, t is called time. The initial graph
at t = 0 has N0 nodes, and the final graph at t = T is just
a single node. We also assign masses to the nodes (initially
mi = 1; ∀ i ∈ G0). For any undirected and unweighted graph
with N nodes of masses mi , one step of RSR (as shown in
Fig. 1) proceeds as follows.

(i) Choose randomly one of the nodes in the graph as the
target.

(ii) Define the neighborhood N around the target to include
all nodes within a distance d � b from the target. Distance is
measured by the number of links that make the shortest path
between two nodes.

(iii) Delete all the nodes in N , except for the target.
(iv) Delete all the internal links of N .
(v) Redirect to the target all links that connect nodes in N

to the rest of the network.
(vi) If a multiple link appears, replace it with a single link.

(vii) Update the mass of the target to m = ∑
i mi , with i ∈

N .
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FIG. 1. (Color online) One step of RSR with radius b = 1. The
randomly chosen target node [yellow (white)] absorbs all its nearest
neighbors [red (light gray)]. All links to the absorbed nodes [blue
(dark gray)] are then redirected to the target. Alternatively, one can
view the supernode as a cluster that grows by eating all its neighboring
clusters. RSR with any b > 1 can be performed by applying the above
procedure on the same target b times.

Hence, the target node and all its neighbors up to distance
b in the network are replaced by a supernode. This process
preserves all the links to the outside but discards the internal
details in the target’s neighborhood, analog to course graining
in real space renormalization. The supernode is then treated
like any other node in the network. We consecutively repeat
this procedure until the graph is reduced to a single node.
Alternatively, one can also define RSR such that the target node
is chosen with probability proportional to its mass [24,26] or
degree, but we only discuss the unweighted form here.

For b = 1 the target absorbs only its nearest neighbors. The
easiest way to implement RSR with any b > 1 is to apply RSR
with b = 1 on the same target for b successive steps. Although
this is slightly slower than an optimal coding, we use it in our
simulations to reduce code complexity and potential sources
of errors.

As indicated in Fig. 1 RSR can also be interpreted as a
cluster growth process on the graph. The target cluster is
chosen at random and grows by absorbing all clusters within
distance b of it. Hence, the fast NZ algorithm for growth of
percolation clusters can be easily adapted to this problem,
and it makes sense to speak of a percolation transition beyond
which one of the clusters occupies a finite fraction of the nodes.

B. The graph ensembles under discussion

We mainly focus on connected ER graphs with average
degree 〈k〉 slightly larger than 2. The ensemble is produced in
the following way: For each graph size N0 we make several
ER graphs with fixed size N∗ > N0 and a fixed number of
links such that the average degree 〈k〉∗ = 2 and determine
their giant component (which contains about 80% of the nodes
for this value of 〈k〉∗). If the size of the giant component is
N0 ± 1%—corresponding to N0 = (0.80 ± 0.01)N∗—we add
the giant component to the ensemble; otherwise it is discarded.
Notice that this leads to a slight scatter of N0 and of the
average degree of the graphs at the start of RSR. The latter
is ≈〈k〉0 = 2.4. For each N∗ the ensembles typically contain
≈104 networks, and we apply several realizations of RSR on
each of them.

We also examine RSR on ER graphs with 〈k〉∗ 	= 2, as
well as the scale-free model of Barabási and Albert [4]. In
each case, the ensemble of connected graphs is generated in a
similar manner.

C. Algorithms and quantities of interest

In network studies much attention has focused on the
statistics of the number of links (degree) of nodes in a network.
The degree distribution, the maximum degree, the average, and
higher moments of the distribution are also often considered.
However, keeping track of the degrees of all nodes under RSR
is time consuming and seriously confines the system sizes and
statistics of numerical studies. In this paper we have performed
numerical simulations with degree measurements for networks
up to N∗ = 2.4 × 105 nodes.

As mentioned previously, the NZ algorithm can be adapted
to keep track of cluster masses rather than their degrees. With
the NZ algorithm large network sizes with high statistics
can be simulated in a reasonable time. We have performed
RSR with mass analyses on networks up to N∗ = 107 nodes.
Unfortunately, all our efforts to track the degrees of the nodes
using the NZ or other algorithms have led to extremely long
running times; thus, we restrict our analysis to degrees of
smaller networks and measure only masses for larger ones. As
far as critical behavior is concerned, we show that mass and
degree distributions lead to similar conclusions.

D. Averaging over the ensemble

When discussing ensemble averages, one can use different
quantities as independent control parameters. In particular,
one can average over RSR trajectories at fixed N or at fixed
t . As shown in Fig. 2, these two ways of averaging give
different results at late times (and hence small N ), due to large
fluctuations in the number of nodes eliminated per RSR step
in the hub dominant phase. In the same figure we also show
the result of a mean-field theory (MFT) discussed in Sec. IV.
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0
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FIG. 2. (Color online) Time dependence of network size, N , in
rescaled units. The size decreases monotonically under RSR. Data
is obtained from ER graphs with 〈k〉∗ = 2 under RSR with b = 1.
The curves with dashed lines are obtained by averaging t values
corresponding to fixed N , and the curves with solid lines are obtained
by averaging N for fixed t . The magenta (gray) solid line shows the
mean-field theory prediction (see Sec. IV). The two averages differ
when mean-field theory breaks down due to fluctuations. In the rest
of the paper we choose N as the independent variable and average all
other quantities at fixed N . Numbers in the legend show the initial
size of the ER graph, N∗, from which the initial giant components
are obtained.
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During the initial stages of the flow, MFT gives an accurate
description of RSR, but breaks down when different ensembles
lead to different results. Some RSR flows last a much longer
time than others and since we want to keep the number of
members in the ensemble more or less fixed to obtain each
data point, we choose to average at fixed N (rather than t) in
the rest of this paper.

III. SIMULATION RESULTS FOR ER GRAPHS
WITH INITIAL 〈k〉∗=2

We focus in detail on the behavior of the giant component
of ER graphs with 〈k〉∗ = 2 under RSR with b = 1. For
these graphs the average degree of the giant component is
〈k〉0 = 2.4. We find evidence for a continuous AP transition in
the evolution of these networks under RSR. The transition
is associated with the emergence of a giant hub or the
percolation of a giant cluster on the network. We study scaling
properties at this transition and measure the corresponding
critical exponents numerically. We show that these exponents
obey scaling relations associated with percolation, although
RSR represents a different universality class than OP, even in
the mean-field limit.

A. Evidence for a phase transition

We begin by studying the behavior of the maximum degree
kmax, as a function of N/N0, for various initial system sizes, as
shown in Fig. 3. Note that the direction of the renormalization
flow—or time—is from right to left. The initial ER graph has a
narrow Poisson degree distribution with no hubs and kmax/N0

is O(1/N0). As RSR aggregates nodes locally, although
higher degree nodes appear in the system, kmax/N0 remains
small. However, as shown in Fig. 3, kmax/N0, suddenly at

FIG. 3. (Color online) Plot of kmax/N0 vs N/N0 for ER graphs
with 〈k〉∗ = 2 and several initial sizes. Note that the direction of the
RSR flow is from right to left. While kmax/N0 is close to zero in the
mean-field regime, the hub at late times absorbs a finite and increasing
fraction of the nodes. The transition gets sharper with increased
system size. (Inset) Similar behavior for the rescaled maximal cluster
mass Mmax/N0. Note that Mmax always increases monotonically under
RSR, whereas kmax has to finally decrease. Using the Newman-Ziff
algorithm mass related properties can be measured on much larger
systems than degree related properties.

N/N0 ∼ 0.7, starts to increase more rapidly. This implies
the existence of at least two regimes in the evolution of ER
graphs under RSR: first, a no-hub (or mean-field; see Sec. IV)
regime, where the degree distribution is narrow, fluctuations
are negligible, and a mean-field theory describes the evolution
of the system; second, a hub regime where a growing hub
exists and our mean-field theory breaks down. This is due to
large fluctuations as well as the effect of loops in the network.
Loops are present in the networks initially, but they typically
are large and the graphs are locally treelike. As RSR proceeds,
these loops become shorter and the graphs no longer remain
locally treelike. As indicated in Fig. 3, the transition between
these two regimes becomes sharper on increasing system size
N0.

The same behavior can be observed for the mass of
the larger cluster, Mmax, as shown in the inset of Fig. 3.
Initially m = 1 for all nodes. Although clusters grow under the
renormalization flow in the mean-field regime, the maximum
mass remains O(1). In the critical region a node with the
largest mass percolates and separates itself from the rest of the
distribution in terms of both size and degree.

This is also indicated in Fig. 4, where both kmax and the
second largest degree kmax,2 are plotted vs N/N0. While the
two largest degrees are about the same size in the mean-field
regime, after the transition the largest hub grows and the
second largest degree shrinks, which is another indication of
a percolation transition. Similar behavior for Mmax and the
second largest mass, Mmax,2, is shown in the inset.

The detailed relation between mass and degree is discussed
in the Appendix. No singular behavior in kmax vs Mmax appears
in the critical region, and this smoothness holds statistically
for the mass and degree of other nodes as well. Thus, either
variable can be used to extract the critical properties of the
phase transition. Since RSR with mass measurement is much

FIG. 4. (Color online) The largest degree kmax and the second
largest degree, kmax,2, are of comparable size in the mean-field regime,
but in the hub regime a giant hub takes over and the second largest
degree shrinks. This behavior is also consistent with a continuous
percolation transition and shows that there is only one outstanding
hub (cluster) in every network. The inset shows the same behavior for
the largest and the second largest mass. The data are obtained from
ER graphs with 〈k〉∗ = 2.
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FIG. 5. (Color online) Cluster mass distribution at different stages
of the RSR flow for ER graphs of N∗ = 106 nodes, and 〈k〉∗ = 2.
This distribution broadens and approaches a power law pm ∼ m−τ as
x = N/N0 decreases. The power law is broadest at x∗(N0) = 0.645,
for this system size. For N0 → ∞, the critical point converges to
x∗ → xc = 0.688 (the green dashed-dotted curve). For x < x∗ a giant
cluster emerges and a gap expands between this cluster and the rest
of the distribution. Note that the size distribution of the giant cluster
has a shoulder on the right (unlike OP). This is due to the possibility
of selecting the hub as a target node and is discussed in more detail
in Sec. V.

faster using the NZ algorithm, we mostly base our discussions
on the masses of nodes.

B. Finite size scaling analysis

In order to analyze the RG flow in the critical region, we
perform a finite size scaling (FSS) analysis on a number of
quantities and their distributions. Initially, all the nodes have
mass m = 1. As shown in Fig. 5, the mass distribution broadens
with the number of RSR steps, until a power-law distribution
pm ∼ m−τ emerges in the critical region. As the RSR flow
continues, an expanding gap appears between the giant cluster
and the rest of the clusters. As shown by the curve for x ≡
N/N0 = 0.576 (below the transition), the peak corresponding
to the giant cluster has a pronounced shoulder on the right.
This is different from OP, where the peak is featureless. As
discussed in more detail in Sec. V, this shoulder results from
the giant cluster being chosen repeatedly as the target of RSR.
These are rare events, but they have dramatic effects on the
flow.

Setting x = N/N0, the effective critical point for a finite
system, x∗(N0), is defined as the value at which the system has
the broadest power law in its mass distribution. In Fig. 6, we
illustrate the convergence of x∗ as the system size increases.
The limiting value for infinite system size, xc, is consistent
with xc = 0.688, as shown in the inset.

To proceed further, we make a conventional scaling ansatz
for the mass distribution of a finite system in terms of a
homogeneous scaling function [6],

pm = m−τ g
(
nN

1/ν

0 ,m
/
ND

0

)
, (1)

where

n = (x − xc)/xc. (2)

FIG. 6. (Color online) Convergence of the effective critical point,
x∗(N0), to xc = 0.688 as the system size increases. (Inset) The critical
point xc and the exponent 1/ν are consistent with the values xc =
0.688 and −1/ν = −0.225, as indicated by the slope of the straight
line.

Note that such an ansatz is never perfect, and all critical
parameters discussed in the following are obtained by com-
promises to get the best overall data collapses for all quantities
of interest and by assuming the scaling relations between
critical exponents implied by the FSS ansatz. A summary of all
critical exponents, the equations defining them and the figures
demonstrating numerical evidence, is given in Table I.

Our best estimate for the critical point—mainly from
Fig. 6, but also taking into account the consistency checks
in Sec. III C—is

xc = 0.688 ± 0.002. (3)

The exponent 1/ν in Eq. (1), describing the convergence of x∗
to xc with increase of system size, is determined to be

1/ν = 0.225 ± 0.005. (4)

The exponent D, giving the scaling of the maximum mass with
system size (see Fig. 7), is

D = 0.60 ± 0.01. (5)

It is related to the Fisher exponent τ by demanding that there
is O(1) cluster of size � ND

0 and using Eq. (1) [6]:

τ = 1 + D

D
= 2.67 ± 0.03. (6)

Degree distributions behave similar to the mass distribu-
tions. The initial ER graph has a Poisson degree distribution.
As RSR proceeds, higher degree nodes appear and the degree
distribution broadens. At the phase transition local hubs join
together to make a single hub much larger than all others.
Just before the giant hub emerges, the degree distribution is
approximately a power law with a power τk that is consistent
with the power τ of the mass distribution. Afterward, the hub
continues to grow, but not forever. Figure 8 shows the degree
distribution at different values of x = N/N0. At x ≈ 0.7 the
distribution resembles a power law; at x ≈ 0.6 a bump appears
at the rightmost end of the distribution. Later, when x < 0.6,
a growing gap forms between the giant hub and the rest of the
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TABLE I. Summary of critical exponents for ER graphs with 〈k〉∗ = 2 under RSR with b = 1. All exponents are obtained by best
compromise for the data collapses shown in the figures listed in column 5 and by requiring the scaling relations in column 3 to hold, except
for the exponent α (last line). The critical exponents are clearly different from those of mean-field OP (column 6) and for mean-field AP(last
column).

Exponent Value (RSR) Scaling relation Eq(s). Fig(s). Mean-field OP Mean-field AP

D 0.60 ± 0.01 (1) 7 2/3
ν 4.44 ± 0.10 (1) 6, 7 3 4.4 ± 0.3
τ 2.67 ± 0.03 (1 + D)/D (1), (6) 7 5/2 3
β 1.78 ± 0.08 (1 − D)ν (7), (8), (9) 9 1
σ 0.375 ± 0.015 1/(Dν) (11), (12), (13) 10 1/2
γ 0.88 ± 0.10 2Dν − ν (15), (16), (17) 11 1 1/2
α 6.8 ± 0.3 See text (18) 12 4

nodes. This continues until the shrinking system size forces
the degree of the giant hub to decrease.

C. Consistency checks

In this section we check for consistency of our simulations
with the scaling theory based on the FSS ansatz in Eq. (1)
by showing data collapses for different quantities of interest.
Notice that the well known scaling relations between critical
exponents [6] follow from Eq. (1) by considering appropriate
limits.

1. The order parameter

An order parameter is any property of a system that
can unravel the singularity at the critical point, which is
nonzero only on one side of the transition. Typically, P∞, the
probability that a given site belongs to the percolating cluster,
is considered as an order parameter for percolation. For RSR
on graphs both kmax/N0 and Mmax/N0 can be used as order
parameters. Notice that the latter is equal to P∞.

An FSS ansatz for Mmax follows by multiplying Eq. (1) by
my , integrating over m, and taking the limit y → ∞. Using
also Eq. (6) gives

Mmax

ND
0

= h
(
nN

1/ν

0

)
. (7)

FIG. 7. (Color online) Data collapse using the FSS ansatz in
Eq. (1) for the mass distribution at x∗(N0). The exponent D = 0.6
gives the best data collapse, and τ = 2.67 fits the power law (see the
inset). These values are consistent with Eq. (6).

Assume now that h(z) satisfies a power law, h(z) ∼ zβ for
z → 0. Equation (7) gives then in the supercritical case n < 0
(where we expect Mmax ∝ N0),

D = 1 − β

ν
(8)

and

Mmax

N0
∼ |n|β. (9)

Figure 9 shows a data collapse according to Eq. (7), with
xc = 0.688 and critical exponents as given in Table I. The
analogous FSS ansatz for kmax,

kmax

N
1−βk/νk

0

= hk

(
nN

1/νk

0

)
, (10)

with νk = ν and βk = β is shown in the inset of Fig. 9. The
exponents for maximal mass and degree are equal within our
errors.

2. The cutoff scale for the cluster size distribution

The size of the second large cluster, Mmax,2 (resp. kmax,2),
determines the cutoff for the finite clusters (excluding the hub).

FIG. 8. (Color online) Degree distributions for N∗ = 1.2 × 105

at different stages of the RSR flow. The initial, narrow distribution
gets broader and approaches a power law pk = k−τk close to the
transition. Then a giant hub stands out and a gap opens between the
hub and the rest of the nodes.
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FIG. 9. (Color online) Scaling plot of Mmax in the critical region.
The value of xc = 0.688 in here and the following figures is the same
as in Fig. 6, and the critical exponents are those given in Table I. The
inset shows that the exponents νk and βk for the maximum degree are
the same as those for the maximum mass within error.

An FSS ansatz based on Eq. (1) gives

Mmax,2

N
1/σν

0

= h2
(
nN

1/ν

0

)
, (11)

and for the infinite system limit

Mmax,2 ∼ n−1/σ . (12)

The exponent σ is related to other exponents by

σ = 1

Dν
= 0.375 ± 0.015. (13)

One can write similar equations for kmax,2. Figure 10 shows
data collapse plots with 1/σν = 1/σkν = 0.57 for the second
largest mass and degree. This leads to

σ = σk = 0.395. (14)

This estimate was chosen as it gives the best data collapse. It
is consistent with the value obtained in Eq. (13), within error.

3. Average cluster size

The average size of the cluster to which a randomly chosen
node of the original network belongs is equal to the second
moment of the mass distribution. An FSS ansatz for the average
cluster size can be written as

〈m2〉
N

γ/ν

0

= J
(
nN

1/ν

0

)
, (15)

and in the limit of N0 → ∞
〈m2〉 = n−γ . (16)

The exponent γ obeys the scaling relation

γ = (2D − 1)ν = 0.88 ± 0.10. (17)

Figure 11 shows the corresponding FSS analysis, with γ /ν =
0.17 chosen for an optimal data collapse. Within errors, this
is consistent with the value γ /ν = 0.20 ± 0.20 obtained in
Eq. (17). In the inset we show the second moment of the mass

FIG. 10. (Color online) Data collapse for the second largest mass
and the second largest degree. Again ν is taken from Table I, while
σ is fitted for optimal collapse. The value of σk used in the inset is
equal to σ , which is here σ = 0.395.

distribution excluding the largest cluster, 〈m2〉ex , with the same
scaling exponents. The exponent γk for the degree moment is
found to be the same as that for the mass moment within error
(data not shown).

4. Variance of the maximal cluster size

The variance of kmax and Mmax also diverge at the critical
point. Because of technical problems we do not have precise
values of the latter, and we concentrate on the variance of kmax.
It should scale as

V ar[kmax]

N
αk/νk

0

= J ′(nN
1/νk

0

)
. (18)

Figure 12 shows the corresponding scaling plot. In OP the
standard deviation of the order parameter has the same

nN 0.225
0

m
2

/N
0
.1

7
0

30 × 103

60 × 103

120 × 103

nN 0.225
0

m
2

e
x
/
N

0
.1

7
0

FIG. 11. (Color online) Scaling plot of the second moment of
the mass distribution, 〈m2〉, for ER graphs, with γ /ν = 0.17 ± 0.03.
The inset shows the same plot for 〈m2〉ex . The same exponents are
obtained.
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FIG. 12. (Color online) Scaling plot for the variance of the
maximum degree, with xc = 0.688, 1/ν = 0.225, and αk/ν = 1.53 ±
0.02.

critical exponent as the order parameter itself [28], implying
ν − β = α/2. This is not what we find for RSR on ER graphs,
if we assume α = αk . To clarify this we directly looked at the
distribution of kmax at x∗ for each of the system sizes shown
in Fig. 12 (data not shown). The distribution is flat on the
left side, but has an approximate power-law tail on the right.
The fluctuations in this case grow faster than the average,
unlike in OP. We thus believe that the observed violation of
the scaling relation is not due to α 	= αk , but shows that the
relation ν − β = α/2 is violated in AP.

This stems from the difference in the growth process in
agglomerative and OP. Adding a bond (or site) in OP might
merge only a few clusters into the giant cluster, leading to
an additive growth of its size (and degree). In contrast, if the
hub is chosen as the RSR target, it absorbs all its neighboring
clusters. This leads to multiplicative growth. Thus, in RSR we
expect to see larger relative fluctuations in the hub size near
the transition comparing to OP (see also Sec. V).

IV. MEAN-FIELD THEORY AND AN ANNEALED MODEL

We now approach the problem analytically using a mean-
field theory (MFT) based on generating functions [29]. We
show that the critical exponents for mean-field RSR do not
agree with the ones for ordinary mean-field percolation.

A. General formalism

Let nk be the number of nodes with degree k. The total
number of nodes in the network is N = ∑

k nk and the
probability of picking a node with degree k is pk = nk/N .
The change of nk in one step of RSR can be written as the sum
of a loss term rk associated with eliminating a k-degree node
and a gain term qk associated with creating one,

dnk

dt
= rk + qk. (19)

The loss term rk is

rk = −pk −
∑
k′

k′ kpk∑
l lpl

pk′ = −(k + 1)pk. (20)

The first term in the central expression is the probability
of targeting a k-degree node, and the second term is the
probability that any of the neighbors of the target have degree k.
Note that the mean-field assumption is to ignore any potential
correlations between the degrees of neighboring nodes.

In order to obtain an equation for dN/dt one does not need
to know qk in detail; one just has to know that exactly one new
node is created, whence

∑
k qk = 1. Summing Eq. (19) over k

leads then, indeed, to

dN

dt
= −〈k〉, (21)

as expected from the fact that all neighbors of a randomly
chosen node are eliminated in one RSR step.

To get qk , assume that the target has m neighbors with
degrees k1,k2, . . . ,km. The new degree of the target will be
the number of its second nearest neighbors. If all degrees
are uncorrelated and the target’s neighbors are not connected
among themselves,

qk =
∑
m

pm

∑
k1,k2,...,km

m∏
i=1

kipki

〈k〉 δk1+···+km,k+m. (22)

We use generating functions to proceed. The degree distribu-
tion is generated by

G(x) =
∑

k

pkx
k, (23)

and qk by

Q(x) =
∑

k

qkx
k. (24)

The degree distribution of the neighbors of the target is
proportional to kpk; thus, their remaining degree is generated
by ∑

k kpkx
k−1∑

k kpk

= G
′
(x)

〈k〉 . (25)

Equation (22) gives then

Q(x) =
∑
m

pm

(
G

′
(x)

〈k〉
)m

= G

(
G

′
(x)

〈k〉
)

. (26)

Using Eqs. (19) through (26) one can write the master equation
for the generating function of the degree distribution as

d

dt
G(x) = 1

N

[
G

(
G

′
(x)

〈k〉
)

+ 〈k − 1〉G(x) − xG
′
(x)

]
. (27)

B. The average degree

The moments of the distribution can be obtained from

〈km〉 =
[(

x
d

dx

)m

G(x)

]
x=1

. (28)
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One can check that the time derivative of the zeroth moment
is zero, that is, normalization is correct. The time derivative of
the first moment is given by

d〈k〉
dt

= 1

N
[〈k〉2 − 2〈k〉]. (29)

Using Eq. (21) to convert to the derivative with respect to N

(for subtleties in this, see [21]) and integrating gives

〈k〉 = aN0

N
+ 2, (30)

where a = 〈k〉0 − 2 and the subscript zero refers to the initial
value.

To test the results of MFT we have simulated RSR for an
annealed random graph model (AM) in the following way: We
start with the degree sequence of the giant component of the
ER graphs studied in the previous section, remembering for
each of the N0 nodes its degree, but remove all links. During
each RSR step we first pick a random target node and read its
degree k. Then we pick k other random nodes i = 1, . . . ,k,
this time with probabilities proportional to their degrees ki .
Finally, we update the degree of the target to k′ = (

∑k
1 ki) − k

and discard the other k nodes.
Figure 13 compares Eq. (30) to the simulation results of

the AM and of the model discussed in the last section starting
with ER graphs. In all three cases we used 〈k〉∗ = 2. Due to
loops in the ER graphs, the average degree of the ER graphs is
always less than or equal to that of the AM or MFT. Note that
ER graphs are locally treelike and the effect of loops can be
ignored initially. Thus, before the transition—in the mean-field
regime—there is complete agreement between the results of
MFT, the AM, and the ER graphs. However, after the transition,
the effect of loops as well as fluctuations (which we discuss
later) results in a breakdown of the mean-field assumptions
and the average degree of the ER graphs no longer agrees with
the other two cases.

N/N0

k

ER: 240 × 103

ER: 120 × 103

MFT

AM: 48 × 103

FIG. 13. (Color online) Comparison between the annealed model
(AM), mean-field theory (MFT), and ER graphs with 〈k〉∗ = 2. There
is good agreement between theory and data in the mean-field regime
x � xc. After the transition the effect of loops in ER graphs can no
longer be ignored and results in smaller 〈k〉 for ER graphs.

In the mean-field regime the system size, N , can be found
as an implicit function of t by using Eqs. (21) and (30) to get

t = −1

2

{
N − N0 − aN0

2
ln

[
a + 2N/N0

a + 2

]}
. (31)

This result is shown in Fig. 2 and is in good agreement with
simulation results in the mean-field regime.

C. Divergence of degree fluctuations

Also within MFT, the variance of the degree distribution
diverges at the transition point. For ease of calculations we
switch to factorial moments of the degree distribution obtained
by consecutive derivatives of the generating function,

〈km
−〉 = 〈k(k − 1) · · · (k − m + 1)〉

=
[(

d

dx

)m

G(x)

]
x=1

. (32)

Using Eq. (27), the time derivative of the second factorial
moment is

d

dt
〈k2

−〉 = 〈k2
−〉

N

[ 〈k2
−〉2

〈k〉2
+ 〈k〉 − 3

]
. (33)

We next define a variable u = 〈k2
−〉/〈k〉 and use Eqs. (21), (29),

and (30) to get

du

u3 − u
= − dN

aN0 + 2N
= − dx

a + 2x
, (34)

with x = N/N0. Integrating this equation leads to

u2 = a + 2x

a − c + 2x
, (35)

where

c = u2
0 − 1

u2
0

(a + 2), (36)

and u0 is the initial value of u. Since the average degree 〈k〉 does
not diverge at the transition, the divergence of u is the same
as the divergence of the variance of the degree distribution.
The quantity u diverges when the denominator of Eq. (35)
vanishes, so the critical point is at

xc = Nc

N0
= 1

2
[c − (〈k〉0 − 2)] . (37)

Equations (36) and (37) result in xc = 0.718 . . . for the AM
model with 〈k〉0 = 2.4 we study here (notice that the initial
degree distribution is not strictly Poissonian due to the
restriction to the giant component of the original ER graph).
Substituting n = (x − xc)/xc into Eq. (35) we get

〈k2〉 ∼ u ∼ n−γ with γ = 1/2. (38)

For a finite system, we make the FSS ansatz

〈k2〉
N

γ/ν

0

= f
(
nN

1/ν

0

)
. (39)

Figure 14 shows an FSS analysis of 〈k2〉 for the annealed
model, close to criticality, and for several system sizes. The
values of xc = 0.718 and γ = 0.112/0.225 = 0.5 used in
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FIG. 14. (Color online) FSS analysis of the second moment of the
degree distribution, 〈k2〉, close to criticality for the AM. The values of
xc = 0.718 and γ = 0.5 used in the plot are those obtained from the
MFT. While the exponent 1/ν = 0.225 ± 0.015, obtained from the
FSS data collapse, is similar to ER graphs, the exponent γ is different
from γ = 0.88 in ER graphs.

the FSS analysis are taken from MFT and give excellent
agreement.

D. Other critical exponents

To get all other exponents in MFT we use Eqs. (27) and (32)
to find the time derivative of the third factorial moment,
h = 〈k3

−〉,
dh

dt
= hu3

N
+ · · · , (40)

where the dots stand for terms that are less divergent for
x → xc. Together with du/dt ∼ u3/N + · · · this gives near
the critical point

ln h ∼ u ∼ n−1/2 ⇒ h ∼ e1/n1/2
, (41)

suggesting that the third moment has an essential singularity.
The latter seems to be contradictory to scaling theory, but it
really is not, and there exists a consistent solution showing
these features. Assume the scaling ansatz

pk = k−τ f (k/kcutoff) (42)

for the degree distribution near the critical point, with kcutoff

diverging at x → xc. For u to diverge, τ must be �3. If τ

were strictly <3, we would have u ∼ k3−τ
cutoff and h ∼ k4−τ

cutoff ;
that is, there would be a power relation between them: h ∼
u(4−τ )/(3−τ ). The only way to obtain u ∼ ln h is by having a
logarithmic divergence of the sum

∑
k k2pk , that is,

τ = 3. (43)

In order to have γ = 1/2, one needs furthermore kcutoff ∼
e1/n1/2 ∼ N0, giving then also Eq. (41). The fact that kcutoff

diverges faster than a power for x → xc means that there is no
simple scaling theory near the transition due to the singularity.

E. Limiting behavior for 〈k〉∗→1

In the limit 〈k〉∗ = 1, the giant components of ER networks
become trees with 〈k〉0 = 2. Since trees remain trees during
RSR, 〈k〉 = 2 during the entire RSR flow, consistent with
Eq. (29). On the other hand, 〈k2〉 does increase with t .
Equation (35) leads to

u2 = 2x

2x − c
, (44)

and Eq. (37) gives

xc = u2
0 − 1

u2
0

> 0. (45)

This is in contrast to the result of [21], where we found xc = 0
for critical trees. Indeed, the limit 〈k〉∗ → 1 of the present
model is not the model of critical trees that was treated in [21].

This follows from how the critical trees of [21] and critical
ER graphs are generated. In ER graphs links are distributed
among nodes completely at random. If a node is picked
at random, the degrees of all its neighbors are distributed
according to

kpk

/ ∑
l

lpl, (46)

and there is no further structure. In contrast, the critical trees of
[21] are generated by a critical random branching process that
starts from one particular node and imprints on them a rooted
structure. Therefore, if a node is picked randomly, there are
relations that hold seperately for its mother and its daughters.
While the degree distribution for the mother satisfies Eq. (46)
with k replaced by k − 1, the degree distribution of the
daughters is simply pk . One might think that this subtle
difference can be neglected in a mean-field approximation, but
this is not true: Since each RSR step affects three generations of
nodes, a consistent grandmother-mother-daughter relationship
has an effect on the RSR flow. However, it is not intuitively
clear why this small difference has such a strong influence
on the threshold for AP. Notice that an even more surprising
dependence on minor details, leading indeed to a violation of
universality, is seen also in AP on 2D lattices [24].

We did not study the case 〈k〉∗ = 1 numerically, because
the size of the largest component in critical ER graphs of size
N0 is ∼N

2/3
0 , making it very difficult to create large initial

connected graphs.

V. FLUCTUATIONS IN THE HUB PHASE

If the giant cluster (or hub) is itself a target of RSR, the size
of the network decreases significantly in that time step. This
gives rise to large fluctuations in the size of the network.

Figure 15 shows a scatter plot of t vs N in rescaled units
for an ensemble of ER networks with N∗ = 1.2 × 105 and
〈k〉∗ = 2. The x and y axes in this plot are coarse grained
into 500 and 200 bins, respectively, giving 100 000 pixels.
The color of each pixel represents the frequency of this (N,t)
pair relative to the frequency of the most populated pixel. As
one can see, an envelope exists corresponding to the largest
N at a given time (and biggest time for a given N ). There is
also a second band (of high probability) which corresponds to
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FIG. 15. (Color online) Scatter plot of t vs N in rescaled units for
ER graphs with 〈k〉∗ = 2 and N∗ = 120 × 103. The color map shows
the relative frequency of each (N,t) pair in the ensemble. The main,
intermediate, and weak bands correspond to realizations where the
giant hub has been hit zero, one, or two times, respectively. The inset
shows the probability that the giant hub is targeted f times by RSR.

intermediate N . A third but weak band also appears at smaller
system sizes, which is more difficult to distinguish due to the
considerable fluctuations.

The inset of Fig. 15 shows the fraction of realizations in
which the giant hub is hit f times, conditioned on kmax/N0 >

0.1. Most often the hub is hit only once and never more than
three times. Evidently, the envelope (the uppermost band)
comes from the realizations in which the giant hub was not hit
at all, the intermediate band results from cases where the giant
hub is hit once, and the third weak band is due to rare cases
where the giant hub is hit twice.

The slopes of the main bands are also informative. The
uppermost band starts with slope −1

〈k〉0
, in agreement with

Eq. (21). At the final stages, where the structure is starlike
(as discussed in the following section), the bands have slope
−1, which means that in most cases a leaf is targeted and
thus one node is removed in one time step. The wide range
of values for realizations as shown in Fig. 15 explains why in
Fig. 2 averaging over t at fixed N gave a different result than
averaging over N at fixed t .

The distribution of times T for the networks to reach N = 1
corresponds to the leftmost column in Fig. 15. This distribution
has a shoulder where the uppermost band hits the y axis,
(at t/N0 ≈ 0.47) and a peak where the second one hits it
(t/N0 ≈ 0.38). These distributions show perfect data collapses
for different system sizes (data not shown). For networks with
〈k〉∗ > 2 the shoulder turns into a second peak which grows
and becomes the dominant peak on increasing 〈k〉∗. It should
disappear for 〈k〉∗ → 1.

A. Scaling behavior at late times

Eventually, as the networks shrinks, kmax starts to decrease
and at the same time the network topology moves toward a
starlike structure.

N/N0

κ

30 × 103

60 × 103

120 × 103

240 × 103

N/N0

χ
/N

0

FIG. 16. (Color online) The relative maximum degree, κ = kmax/

(N − 1), vs N/N0 for different system sizes. The plot shows that the
network is starlike at late times since κ approaches 1. (Inset) Variance
of κ vs N/N0. Although the qualitative behavior of graphs under RSR
at late times is the same as for the (quasi-)parallel renormalization
method [18], the quoted exponents are different.

The relative size of the largest hub κ = kmax/(N − 1) is a
good measure for the similarity of a graph to a star which is a
graph whose nodes are at most a distance two apart. Figure 16
shows κ and its variance χ as a function of the relative system
size. As one can see, at late stages of RSR κ is close to one,
and thus the network has a starlike structure.

The starlike regime was also observed in previous
(quasi-) parallel methods used for renormalizing networks
[18,19]. Comparing our analysis with those studies, RSR
shows scaling and criticality in the flow at early times that
was not picked up previously, because the renormalization
steps in the quasiparallel method were too large and jumped
over the AP transition. Thus, only the scaling at late times
was observed in [18,19]. Although the graphs under RSR look
qualitatively similar to those obtained with the quasiparallel
method at late times, the quoted exponents are different (our
Fig. 16 should be compared with Fig. 1 in Ref. [18]).

B. The star regime

We define N� to be the last size of the network one step
before it collapses into a single node. By definition the network
has to be a pure star at this point. Figure 17 shows a data
collapse for the distribution of N� for ER graphs of different
sizes. It is a broad distribution following the scaling ansatz

p(N�) ∼ 1

N
τs

�

f

(
N

N
Ds

0

)
, (47)

with τs = 1.40 ± 0.15 and Ds = 0.25 ± 0.05.
The exponents τs and Ds are similar to the ones obtained

for critical trees [21]. This suggests universality in the final
structure of the graphs, regardless of the starting structure, as
the graph collapses into a single node and all original structure
is lost.
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FIG. 17. (Color online) Data collapse for the distribution of the
last sizes. The distribution follows the FSS ansatz in Eq. (47) with τs =
1.40 ± 0.15 and Ds = 0.25 ± 0.05, except for the leftmost points.
The reason for their special behavior is given in [21].

VI. STARTING WITH OTHER AVERAGE DEGREES

Up to now we studied the behavior of ER graphs with
〈k〉∗ = 2. Here we discuss the effect of the initial average
degree on RSR flow, still considering ER graphs.

Figure 18 represents kmax for ER graphs with different
values of 〈k〉∗. The figure demonstrates similar critical behav-
ior for these networks. For higher initial average degree the
transition gets sharper and moves to the right, that is, toward
earlier times. This is also predicted from Eq. (37). For larger
〈k〉∗, xc approaches 1. Note that both 〈k〉0 and 〈k2〉0 affect the
position of xc.

Figure 19 shows an FSS analysis of Mmax for ER graphs
with 〈k〉∗ = 4. The critical point xc = 0.865 ± 0.010 and the
exponents 1/ν = 0.215 ± 0.030 and 1 − β/ν = 0.62 ± 0.05
are obtained by finding the best data collapse. The value of xc

is in agreement with Eq. (37) and the exponent ν and β agree
with those for 〈k〉∗ = 2, within our error estimates. For even
higher average degrees (not shown) the exponents still agree

N/N0
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k ∗ = 6

k ∗ = 10

FIG. 18. (Color online) Rescaled maximum degree, kmax/N0 vs
system size for ER graphs with N∗ = 30 000. The transition shifts to
the right with increase of 〈k〉∗.
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FIG. 19. (Color online) Scaling of Mmax for ER graphs with
〈k〉∗ = 4. The values xc = 0.865 ± 0.010, 1/ν = 0.215 ± 0.030, and
1 − β/ν = 0.62 ± 0.05, obtained by finding the best data collapse,
agree with Eq. (37) and the exponents for ER graphs with 〈k〉∗ = 2
within error bars.

with the ones obtained for 〈k〉∗ = 2, although the error bars
are rather large.

VII. RSR WITH LARGER BOX SIZES

In this section we study RSR with box radius b > 1 on
ER graphs with 〈k〉∗ = 2. We see evidence for a transition at
early times. Figure 20 shows the order parameter as a function
of N/N0 for networks of different system sizes under RSR
with b = 2. Although one can clearly see evidence for a phase
transition at early times, extrapolating the critical point for the
infinite system with precision is not possible.

One of the main differences between the b = 1 case and
b > 1 is that for larger box radii there is no star regime. Once
the network has diameter two, it will die in the next step with
probability one.

N/N0
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FIG. 20. (Color online) Flow of the order parameter under RSR
with box radius b = 2 for ER graphs of 〈k〉∗ = 2 and several sizes. The
data show a sharp transition at early times, but a clean FSS analysis
including precisely locating the critical point is not numerically
tractable.
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Another point to mention is that with any box size larger
than one, the possibility to incorporate the hub at any step
is large. The reason is that RSR with b > 1 is performed by
targeting the same node b successive times. Although the target
itself is not likely to be the hub, it is likely that it is the
neighbor of the hub and thus merges with it. Hitting the same
node again means then hitting the hub with high probability.
With this argument any box size higher than one is similar to a
weighted RSR, where nodes are being targeted with probability
proportional to their mass or degree.

VIII. SCALE-FREE NETWORKS

Models with broad or “scale-free” degree distributions are
often more interesting in view of their application to real-world
networks. We have studied RSR on the Barabasi-Albert model
[4]. Figure 21 shows the behavior of the maximum degree un-
der RSR. Since these networks are scale free at the beginning,
the transition is pushed all the way to N/N0 = 1. There is
perfect data collapse after the hubs are well established.

The critical point can also be obtained from Eq. (37). The
value of 〈k2〉0—and thus also the value of u0 = 〈k2

−〉0/〈k〉0—
diverge for scale-free networks, giving xc ≈ 1 − 1/u2

0 ≈ 1.
When analyzing mass distributions for renormalized scale-

free networks, it can be argued that one should not give masses
m = 1 to all nodes of the initial graph. Instead, one might
assign to every node a mass equal to its degree, as this allows
one to consider mass as a proxy for the degree of nodes in the
simulation of the RG flow.

This convention is used in Fig. 22, which illustrates an
FSS analysis for the maximum cluster mass, Mmax, and the
second moment of the mass distribution excluding the largest
cluster, 〈m2〉ex , in BA networks of several sizes. Setting the
critical point at xc = 1, we obtained 1/ν = 0.18 ± 0.02, D =
0.5 ± 0.1, and γ /ν = 0.25 ± 0.03.

IX. CONCLUSION

In this paper we have extended random sequential renor-
malization (RSR) to several networks, namely Erdös-Rényi
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FIG. 21. (Color online) FSS analysis of kmax/N0 for the BA
model. The critical point is pushed toward one, and there is a perfect
data collapse after the hubs are well established.
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FIG. 22. (Color online) FSS analysis of Mmax and 〈m2〉ex for the
BA model. The critical point is set at xc = 1. The exponents 1/ν =
0.18 ± 0.02, D = 0.5 ± 0.1, and γ /ν = 0.25 ± 0.03 are obtained
from the data collapse.

(ER) graphs and scale-free networks. In each step of RSR
only a local part of the network within a fixed distance from
a randomly chosen node is coarse-grained into one node.
This is in contrast to (quasi-)parallel RG schemes that tile
and coarse grain the whole network in one step, which,
however, has to be broken up into sequential local substeps
for technical reasons. Apart from simplicity of the algorithm,
RSR generates considerably larger amount of statistics and
allows for a more detailed analysis of the renormalization flow.
RSR can be interpreted as a cluster growth process where at
each step a randomly chosen cluster grows at its boundary
by agglomerating to all its neighboring clusters. Hence, the
fast Monte Carlo algorithm of Newman and Ziff [22,23] for
percolation can be used to simulate RSR on networks of up to
millions—or even billions—of nodes.

For all the graphs we studied, RSR leads to a contin-
uous agglomerative percolation transition (AP) where the
largest cluster (node) outgrows all others both in terms of
its mass and degree. We found three universality classes
(critical trees, sparse ER graphs, and mean-field AP) for
evolution of networks under RSR. For sparse ER graphs
we derived the corresponding critical exponents numeri-
cally and found that the exponents obtained by analysis of
the masses of the clusters are not different from the ones
obtained by analyzing the degrees of the nodes. Since mass
analysis can be performed much faster with the help of the NZ
algorithm, we suggest that mass analysis may be better suited
to extracting scaling properties of large networks. Regardless
of the initial average degree of the ER graph, we found the same
critical exponents for the percolation transition, within error.
At late stages of RSR, graphs experience a regime in which
they switch to a star structure for b = 1. For both ER graphs and
critical trees this regime extends in the range 1 < N < N

1/4
0 .

For scale-free networks the transition is forced to xc = 1.
Hence, our data collapse methods for finding the critical
exponents of scale-free networks are not as neat as for ER
graphs, and this makes it hard to decide whether BA and ER
networks are in the same universality class.

While the scaling behavior of critical trees under RSR
is similar to graph behavior under the (quasi-)parallel
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FIG. 23. (Color online) Log-log plot of normalized maximum
degree kmax/N0 vs Mmax/N0 for ER graphs with 〈k〉∗ = 2 and size
N∗ = 1.2 × 105. These are proportional to each other in a region
close to criticality which extends over larger domains with increase
of system size. While Mmax increases with N0 monotonically, kmax is
confined to the current system size N and starts to decrease deep in
the hub phase. The inset shows the ratio of maximal mass and degree
on a linear scale. The curve is linear in the critical region.

renormalization scheme studied by Radicchi et al. [18,19],
the percolation transition revealed by our method in the early
stages of the RG flow is not seen in their analysis. We
conjecture that it exists also there in principle, but it would
be very hard to study due to the coarseness of their RG flow
observation. At final stages RSR and parallel schemes lead
to the same qualitative picture, namely, a starlike structure
for b = 1, but the scaling behavior and the corresponding
exponents are different.

The simplicity of RSR as well as the fact that it is a
percolation process both for networks and lattices makes it
a useful tool for studying complex networks. For real-world
networks finite-size scaling analysis is not generally possible
since every network has a fixed (finite) size. However, even in
that case high statistics of RSR flow and the efficiency of the
algorithm make it possible to study the scaling properties of
individual large networks.
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APPENDIX: RELATIONSHIP BETWEEN MASS
AND DEGREE OF NODES

Figure 23 depicts the linear relation between kmax and
Mmax in the critical region for ER graphs with 〈k〉∗ = 2 and

FIG. 24. (Color online) Scatter plot of masses and degrees of
all clusters close to criticality. The data are obtained from one RSR
trajectory of an ER graph of N∗ = 1.2 × 105 nodes, with 〈k〉∗ = 2 at
N/N0 = 0.688. The red line with circles shows the average degree
of clusters of a given mass, and the green line with squares shows
the average masses of nodes with a given degree. The inset shows the
number of clusters of a given mass (wm) and the number of nodes of
a given degree (wk).

several system sizes. This shows that either of them can
be used to extract renormalization flow properties near the
transition. Since RSR can be simulated much faster if we
only measure the mass-related quantities (instead of degree),
we suggest that the RG analysis in the critical region can
be confined to mass-related quantities. In the final stages of
the flow (N/N0 � 0.3), kmax decreases as it cannot exceed
the number of nodes present in the system. Mmax, on the other
hand, increases monotonically till the end of the process where
Mmax = N0.

The correlation between mass and degree of clusters close to
criticality is shown in Fig. 24 for ER graphs of N∗ = 1.2 × 105

at N/N0 = 0.688. Each point in the scatter plot shows one
(m,k) pair in the whole network. Also shown are the average
degree 〈k〉m of nodes of a given mass and the average mass
〈m〉k of clusters with a given degree. In the inset we show the
number of clusters with a given mass, wm, and the number of
nodes with a given degree, wk .

The average mass of nodes with degree one is close to 1,
which means that most of them have not been hit by RSR, and
the average degree of clusters with mass one is more than two,
which means that the nodes that have not been hit by RSR
keep their starting average degree. Since the two averages
differ only for masses (degrees) less than 10, we suggest that
one can use either of them to extract the properties of the
percolation transition.
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