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Financial markets provide an ideal frame for the study of crossing or first-passage time events of non-Gaussian
correlated dynamics, mainly because large data sets are available. Tick-by-tick data of six futures markets are
herein considered, resulting in fat-tailed first-passage time probabilities. The scaling of the return with its standard
deviation collapses the probabilities of all markets examined—and also for different time horizons—into single
curves, suggesting that first-passage statistics is market independent (at least for high-frequency data). On the
other hand, a very closely related quantity, the survival probability, shows, away from the center and tails of
the distribution, a hyperbolic t−1/2 decay typical of a Markovian dynamics, albeit the existence of memory in
markets. Modifications of the Weibull and Student distributions are good candidates for the phenomenological
description of first-passage time properties under certain regimes. The scaling strategies shown may be useful
for risk control and algorithmic trading.
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I. INTRODUCTION

The first-passage time (FPT) of a given stochastic process
is a random variable representing the instant of time when
the process first attains some preassigned “critical” value. The
study of problems related to first-passage time has a long
tradition in many branches of science and engineering [1–3].
In recent years, empirical as well as theoretical analysis on
this kind of problem has gained a broader interest. Thus, new
multidisciplinary contexts like ionic transport in a bacterial
porin [4], protein folding in a crowded cell environment [5],
and epidemics spreading in human diseases or computer
viruses and human mobility [6] require a substantial analysis
of FPT events. In many cases the customary assumption of
an underlying uncorrelated Gaussian diffusion dynamic is no
longer applicable [7,8]. This is certainly the case of financial
markets because market fluctuations are away from being
Gaussian owing to fat-tails and the appearance of clustering
structures with time [9,10].

Unfortunately, the observation of first-passage time phe-
nomena requires large databases in order to get reliable
statistics of the most extreme and, hence, rare events. However,
high-frequency financial time series can be truly large, usually
containing millions of observations. This allows a rather
complete estimation of FPT probability distributions and their
tail decay (the latter ruling extreme events), going, thus,
beyond common approaches based only on the evaluation of
first moments, i.e., the mean first-passage time and the mean
exit time [11].

An additional focus of interest is linked to the financial
trading industry. The most extreme and less probable situations
become crucial to calibrate default probabilities and hence
obtaining alternative or improved credit-risk estimations [12].
Less dramatic situations involving the pricing of American
and other exotic options also need to measure statistics related
to FPT events [13,14]. Moreover, intraday algorithmic trading
strategies [15] of buying or selling a given asset could learn
from FPT statistics. Computer-based trading is thought to be
responsible for as much as 73% of trading volume in the
US in 2009 [16]. Yet, empirical FPT probabilities are quite

unexplored in financial markets [17,18], although there are
some works studying other extreme-time statistics [11,19–28].

The two main goals of this paper are: (i) the estima-
tion of FPT probabilities for a wide class of markets and
(ii) their subsequent interpretation and possible classification
as universal properties of the market as a whole. We will,
thus, look at financial databases in a high-frequency resolution
and thoroughly study the FPT statistics by taking transac-
tion to transaction data (not mid-price) of six futures con-
tracts. These are: DeutscheMark-US Dollar foreign currency
(USDM, 04/01/1993–09/12/1997), Standard & Poor’s 500
index (SP500, 04/01/1993–09/12/1997), Deutscher Aktiken
index (DAX, 2007/02/13–2007/06/13), Dow Jones Indus-
trial Average Index (DJI, 2006/03/01–2007/08/27), Euro-US
Dollar foreign currency (EURUSD, 2007/08/01–2007/08/27),
the Spanish index (IBEX, 2007/01/02–2009/12/30). Each
database contains millions of transactions. For example, the
IBEX data contains 4 613 250 nonsimultaneous transactions.
We are taking the nearest expiry future contract and look at
intraday price statistics. We are excluding the first and last
30 minutes of each trading day in order to avoid opening and
closing anomalous effects. We are also excluding big jumps
due to the roll on to the next nearest expiry future contract.

II. ANALYSIS

We will analyze the return defined as the logarithmic price
change at time t :

X(t) = ln[S(t)/S0], (1)

where S0 = S(0) is the price at the starting time t = 0. Based
on Eq. (1), the process X(t) always starts with the same
value X(t = 0) = 0, which is certainly very convenient to our
analysis.

A. Scaling across different markets and time horizons

As stated above, our main objective is estimating the
FPT probability distribution, W (x,t), which is defined as the
probability that the first-passage time to a target level x is less
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FIG. 1. (Color online) A first-passage sample event where log-
price given by Eq. (1) crosses threshold x at time t ′ before reaching
time horizon t [cf. Eq. (2)].

than t . In other words, W (x,t) is the probability that the return
first crossed level x before instant t :

W (x,t) =
{

Prob[X(t′) > x,0 < t′ < t] if x > 0

Prob[X(t ′) < x,0 < t ′ < t] if x < 0.
(2)

Note that W (x,t) always assumes that initial return is zero as
shown in Eq. (1). It is worth remarking that the analysis takes
the cumulative return between a given starting time and the
time horizon t as shown in Fig. 1. The analysis constrasts with
previous works [19,20,24–26], in which interoccurrence time
statistics between daily losses is addressed. In this paper, we
first want to address the statistics of first-crossing events, for
which the log-price [cf. Eq. (1)] reaches a certain threshold.
And, second, we elucidate the several scales involved among
different markets.

Let us first focus on the behavior of the FPT probability
across the different markets selected. Figure 2 shows W (x,t)
for different markets at a time horizon t = 15 min. Very
similar results are observed for shorter and longer times. The
discounting in futures contracts with respect to the underlying
spot price or the long-term trending behavior of futures could
make the positive (x > 0) and the negative (x < 0) wings of the
FPT probabilities look different, but these effects are not strong
enough, as observed in our results, since we mostly focus
on intraday time horizons. Great differences between positive
target values and negative target values become noticeable
only for much longer time horizons.1

If we scale the target returns x of each market with its own
standard deviation,

vt =
√

〈X(t)2〉 − 〈X(t)〉2, (3)

then Fig. 2 shows a fairly neat collapse into a single FPT
probability curve after plotting W (x,t) in terms of the scaled
returns x/vt . We observe that this is so despite the highly

1See also Ref. [17] for observing a very big difference between the
two tails when t = 22 days.
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FIG. 2. (Color online) Log-log representation of FPT probabili-
ties, W (x,t), for different assets as a function of return x (top) and
as a function of the scaled return x/vt , where vt is defined in Eq. (3)
(down) when t = 15 min. We label positive target values, x > 0, with
(+) and negative ones, x < 0, with (–). Solid line corresponds to the
Wiener case (5). The inset in the down figure shows the difference
W (x,t) − WG(x,t) with the FPT probability of the Wiener process
WG(x,t).

non-Gaussian character of data. We remind at this point that
the Wiener model,

dXG(t) = σdW (t), (4)

where dW (t) is a Gaussian stochastic process with zero-
mean and variance given by dt , has the following FPT
probability [2]:

WG(x,t) = erfc(x/
√

2σ 2t). (5)

This result presupposes that the initial return XG(0) = 0,
which is in accord with Eq. (1).

Notice that scaling enhances the distinction between the
empirical results and the corresponding Wiener model with
unit variance (see the solid line in the right frame of Fig. 2).
However, collapse still holds for target levels as high as
ten times the size of the (empirical) 15-minutes standard
deviation. The same behavior appears for shorter and longer
time horizons (from 1 to 120 minutes) as shown in Fig. 3.
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FIG. 3. (Color online) Log-log representation of the FPT probabilities as a function of the scaled return and with different times. Solid line
represents the Wiener case given by Eq. (5). Insets show the difference W (x,t) − WG(x,t).

The inset in Fig. 2 shows the difference W (x,t) − WG(x,t)
for each market as a function of the scaled return x/vt . As we
can see, the Wiener model systematically underestimates the
empirical FPT probability for large target values (x � vt ) but
somewhat overestimates W (x,t) for smaller levels (x � 0.1vt ).
This remarkable result had been theoretically predicted by two
of us using more sophisticated models such as the CIR-Heston
stochastic volatility model [17]. We believe that this fact may
have nontrivial consequences in risk management [10,12].

Our next step is to select a particular market and observe
how the FPT probability changes with time. Figure 3 shows
market data for different values of t , from 1 to 120 minutes. For
large time horizons (up to 2 hours), the insets of Fig. 3 show
that when x < vt the underestimation of the Wiener model
tends to disappear. In contrast, when x > vt the overestimation
persists and becomes more pronounced as time increases. It
is also worth noticing that low resolution in price changes
(as is the case of USDM) is also undervaluing W (x,t) when
x/vt � 1.

Let us mention that the relative collapse shown in Fig. 3
indicates that, for high-frequency data, the tail of the crossing
probability W (x,t) is, when properly scaled, independent of
the time horizon. Moreover, the fact that this collapse is shared
by all markets herein considered strongly suggests that W (x,t)
is market independent as shown in Fig. 2 for the time horizon
of 15 min.

B. Scaling across different target levels

Another interesting and alternative way of observing
extreme-time events is to look for the the survival probability
(SP), that is, for the probability S(x,t) of not having reached
level x before time t :

S(x,t) =
{

Prob[X(t′) < x, 0 < t′ < t] if x > 0

Prob[X(t ′) > x, 0 < t ′ < t] if x < 0.
(6)

Note that the SP is related to the FPT probability by the
simple relation S(x,t) = 1 − W (x,t). Figure 4 shows how the
SP decays with time for several target levels measured in
30-minute standard deviation units v0. As shown in Fig. 4,
some degree of collapsing is still possible as long as we use
the dimensionless time

τ = (v0/x)2t. (7)

The collapse holds for not very small levels. The smallest level,
x = 0.01v0, is affected by the presence of finite tick size and
by the price autocorrelation [9,10]. Additionally, the lack of
data affects the largest levels or the data markets with a shorter
period of time. See the case of EURUSD data, which is due to
holding a too short time period (26 days).

The SP decays as t−1/2 except for the EURUSD case. This
hyperbolic behavior with time also holds for the Wiener model
[see Eq. (5)], although the latter systematically and drastically
underestimates large time horizons. In fact, the hyperbolic
decay behavior is the one predicted by the Sparre-Andersen
theorem, which holds for any symmetric Markov process
including Lévy flights [2,33–35]. The theorem poses now
the question about how important are correlations in our
data. Transaction to transaction has been then shuffled in
two different ways. A first choice randomizes the ordering
of return changes while keeping the intertransaction times
as they appear in original data. A second choice consists
in randomizing the ordering of intertransaction times while
keeping the original structure of consecutive price return
changes.

Figure 5 shows the resulting FPT distributions after apply-
ing the proposed shufflings in returns and in the intertransac-
tion times. It shows that these two different manipulations lead
to two different effects. The randomization in the ordering of
price returns clearly affects the FPT statistics when threshold
distance is varied. In this case, the tail of the W (x,t)
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FIG. 4. (Color online) Log-log representation of the survival probabilities as a function of a scaled time τ = (v0/x)2t and for several target
values x measured in units of the 30-minute standard deviation v0. The insets show the same results with time measured in seconds and in a
semi-log scale. Solid line represents the Wiener case when x = v0.

distribution drastically diminishes to almost the exponential
form while the S(x,t) curve keeps the same hyperbolic decay
when time horizon changes.

On the other hand, shuffling the intertransaction times has
little effect to most of the markets and keeps the extreme

statistical curves almost identical. These results are similar
to other time horizons and target returns studied above. The
conclusion that price returns ordering is more relevant than the
intertransaction time ordering in the extreme times analysis is
consistent with a previous work by two of us [21].
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C. Measuring the dispersion of each collapse

We will now give a quantitative measure for the quality
of each collapse by means of a dispersion relation among the
different curves. Taking FPT data of a given market at different
time horizons (see Fig. 3) we define the following dispersion
measure:

�x = 1

L

N∑
i=1

�xi

√√√√ 1

M

M∑
j=1

[W (xi,tj ) − μxi
]2, (8)

where M = 7 is the number of different time horizons
considered, μxi

is the quantity

μxi
= 1

M

M∑
j=1

W (xi,tj ), (9)

�xi is the bin width, N is number of bins, and L = N�xi is
the largest target value x considered.

We can also perform a similar evaluation using the SP data
shown in Fig. 4 with a dispersion �t defined accordingly:

�t = 1

T

M∑
j=1

�tj

√√√√ 1

N

N∑
i=1

[W (xi,tj ) − μtj ]2, (10)

where N = 7 is the number of different target values consid-
ered, μtj is the quantity

μtj = 1

N

M∑
i=1

W (xi,tj ), (11)

�tj is the bin width, M is number of bins, and T = M�tj
is the largest time horizon t considered. The two measures of
dispersion are summarized in Table I.

We can also evaluate the dispersion for the collapse of the
several markets shown in Fig. 2 (right). In this case, and using
an equivalent dispersion measure as that of Eq. (8), we have
�+

mkt = 7.12 × 10−4 (x > 0) and �−
mkt = 7.99 × 10−4 (x <

0). We see that

�mkt � �x � �t, (12)

which clearly proves that the best collapse is between different
markets and the worst is between time horizons of the SP, as
otherwise expected from the visual perception of Figs. 2–4.

TABLE I. Dispersion of collapsed FPT and SP curves shown in
Figs. 3 and 4 using the form described by Eq. (8).

�x in Fig. 3 �t in Fig. 4

(+) (–) (+) (–)

EURUSD 0.0012 0.0012 0.1150 0.0858
USDM 0.0023 0.0020 0.1299 0.1772
SP500 0.0019 0.0020 0.1181 0.1778
DJI 0.0018 0.0018 0.1042 0.1829
IBEX 0.0011 0.0014 0.1831 0.1396
DAX 0.0007 0.0010 0.0871 0.1542

D. Phenomenological expressions

We finish by presenting two phenomenological expressions
for the FPT probability aimed to reproduce empirical ob-
servations. A first mathematical expression is provided by
the Weibull distribution, which has been typically a good
candidate for adjusting extreme events in a large variety of
data sources [18,29]. We propose the following modified
distribution:

Wwei(x,t) = e−(x/
√

bt)β , (13)

where the modification to the Weibull’s standard form consists
in the ad-hoc addition of a square root term, which gives the
time dependence of the distribution, a term added to reproduce
the observed decay in empirical data (see Fig. 4). In Fig. 6 we
check this adjustment together with the following modified
(again with a square root term) Student distribution:

Wstu(x,t) = (1 + x/
√

at)−α. (14)

In the context of nonextensive statistical mechanics, this
function receives the name of q-exponential distribution. It
has been suggested by Ludescher, Tsallis, and Bunde [26]
to fit interoccurrence times between losses. However, in
our case, the q-exponential distribution aims to describe
threshold-return dependence, while Ref. [26] considers the
same distribution as a function of interoccurrence times. The
two approaches are indeed related but not in an apparent way.

The IBEX and DJI results for positive returns are shown in
Fig. 6. We then use the same parameters values to plot both the
FPT and the SP curves (inset) being fairly consistent. Table II
shows the fitting parameters for all data sets considered. Note
that all Weibull exponents are close to β = 1 (the mean
exponent of all markets is β̄ = 1.04), which corresponds to
the Laplace distribution. Also, all power-law exponents of the
Student distribution are rather similar: a little above α = 3 (the
mean exponent is ᾱ = 3.32), which is very close to the decay
exponent for the market unrestricted probability (not the FPT
probability) proposed by Plerou and Stanley [30].

Finally, Fig. 6 clearly shows, as otherwise expected, that the
Student distribution better describes the tails of the empirical
curves than it does the Weibull distribution, while the situation
is reversed for smaller returns, where Weibull performs better
than Student, the crossover being approximately at |x| ∼ 5vt .
Therefore, models proposed in future to explain FPT statistics
should follow this very schematic for small (Weibull) and large
(Student) target levels. As to the unrestricted return distribution

TABLE II. Parameters of the Weibull Eq. (13) and Student
Eq. (14) distributions simultaneously fitting FPT probability and SP
for x > 0.

Wwei(x,t) Wstu(x,t)

β b × 10−4s−1 α a × 10−4s−1

EURUSD 0.93 ± 0.01 2.87 ± 0.18 3.49 ± 0.03 24.9 ± 1.1
USDM 0.98 ± 0.01 1.18 ± 0.05 3.28 ± 0.01 9.4 ± 0.6
SP500 1.01 ± 0.02 1.31 ± 0.05 3.49 ± 0.01 12.2 ± 0.9
DJI 1.03 ± 0.01 1.10 ± 0.05 3.21 ± 0.02 8.7 ± 0.8
IBEX 1.10 ± 0.01 1.08 ± 0.01 3.15 ± 0.02 8.4 ± 0.6
DAX 1.21 ± 0.01 1.05 ± 0.02 3.32 ± 0.02 9.7 ± 0.7
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FIG. 6. (Color online) FTP probability and SP fits of DJI and
IBEX using Weibull Eq. (13) and Student Eq. (14) functions in terms
of scaled return and scaled time (insets).

case, it has not been possible to fit a single distribution for the
whole curve.

III. CONCLUSIONS

To conclude, even though it is a rather unexplored context,
financial markets provide an ideal frame for the study of
first crossing events of non-Gaussian correlated dynamics
essentially because large data sets are available. We have
worked on transaction-to-transaction data of six different
futures markets and have studied the form of the empirical FPT
probabilities. We have obtained different scaling strategies that
allow us to collapse these otherwise scattered probabilities into
a single curve.

As a function of the target return x, the FPT probability
W (x,t) depends not only on the time horizon t but also on the
market selected. This triple dependence yields different scaling
strategies. The first and most effective scaling corresponds
to the FPT collapse, at a given time window and varying
threshold distance, across the six different markets surveyed
(Fig. 2). This is done by normalizing target returns with
their own volatility, calculated as mentioned before. It is
then possible to see that, as likewise expected, Gaussian
diffusion models underestimate the probabilities of large

returns. However, and quite unexpectedly, they overestimate
empirical FPT probabilities for small target returns. We believe
that this should have substantial practical implications in risk
management and control.

Probably the most accepted way of measuring the risk of a
certain asset is by the notion of Value at Risk (VaR) [10,12].
VaR gives the worst return one can obtain at the end of time
horizon t and for a given confidence level. This measure of
the risk exposure of, for instance, an open position ignores
the instanteneous risk since it neglets the fact that investors
may not be able to assume all the paths leading to the same
return. An alternative measure would be to take survival
(and first-passage) events instead of taking ending returns
thresholds. Montero and Masoliver [36] have compared within
the Continuous Time Rando Walk framework the two measures
and shown that VaR underestimates risk with respect to its
equivalent survival probability measure. See also Ludescher,
Tsallis, and Bunde [26] for an interesting discussion.

A second scaling attempt is made by selecting a single
market and looking at the dependence of W (x,t) on the target
return for different time horizons. A fairly good collapse of
probabilities is observed when returns are again scaled by
the standard deviation corresponding to each time horizon.
This second scaling allows us to observe how the previously
mentioned overvaluation and undervaluation changes with
time (see inset of Fig. 3) but has essentially the same behavior
in the tail.

The third and last scaling strategy is addressed to the
survival probability. In this case, we set the target return
x at some value and observe the time evolution of the SP.
Collapsing curves are then obtained by a time scaling provided
by diffusion theory [cf. Eq. (7)], even though diffusion
behavior is not sustained by empirical data. Looking at Fig. 4,
we see that the SP collapse works properly, showing the
diffusive hyperbolic decay t−1/2, only if target returns are
neither very small nor very large compared to their standard
deviation. A little thought shows that this is the expected
behavior since, as is well known, markets are approximately
Gaussian away from the tails [10,31] and the center of the
distribution [31,32].

The Sparre Andersen theorem [33,34] claims that
Markovian processes including the Lévy flights have a SP
with the hyperbolic decay t−1/2. We have performed the
exercise of shuffling our transaction-to-transaction data in two
different ways with the aim of breaking memory in our market
data. Figure 5 shows that shuffling in price changes ordering
have a much more important effect than intertransaction time
ordering. The return suffling drastically diminishes the tail
decay of the FPT statistics (cf. Fig. 5). The hyperbolic decay
t−1/2 of the SP is preserved after the two shuffling methods.

Based on the scaling strategies obtained, we study modified
versions of the Weibull and Student distributions for a
phenomenological description of the empirical observations.
We have seen that for large returns FPT probabilities are
better adjusted by a Student distribution, while probabilities
corresponding to intermediate and small returns are better
described by a Weibull (almost Laplacian) distribution. This
should come as no surprise, since the Student distribution
possesses fat tails while that of Weibull does not. Moreover,
for the markets herein considered, tail exponents of the
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Student distribution are tightly packed around their mean
value ᾱ = 3.32, which is very near to the tail exponent
α = 3 obtained by Plerou and Stanley [30] for the unrestricted
probability of several unrelated markets. This seems to indicate
a kind of universal behavior of markets not distinguishing
among restricted probabilities (i.e., FPT distributions) and
unrestricted ones.

Let us finally remark two additional universality aspects
that may be shared by all financial markets. First, note that
under the assumption that data is adjusted by a Weibull
or a Student distribution, or by a mixture of them, our
scaling strategies suggest the possibility of obtaining the whole
first-passage time probability by only estimating the volatility
with no need of any other additional data. Whether or not

this can be extended to any market should be extensively
checked on empirical data and this is beyond the bounds
of the present work. Second, and following this somewhat
speculative reasoning, we also note that the neat collapse of
the FPT probabilities for different markets (see Fig. 2) is
a substantial indication that extreme events statistics are, in
high-frequency data, market independent. This guess, which
sustains a truly universal property, should also be checked on
wider markets and wider periods of time.
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[21] M. Montero, J. Perelló, J. Masoliver, F. Lillo, S. Micciché, and
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