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Understanding key structural properties of large-scale networks is crucial for analyzing and optimizing their
performance and improving their reliability and security. Here, through an analysis of a collection of data
networks across the globe as measured and documented by previous researchers, we show that communications
networks at the Internet protocol (IP) layer possess global negative curvature. We show that negative curvature is
independent of previously studied network properties, and that it has a major impact on core congestion: the load
at the core of a finite negatively curved network with N nodes scales as N2, as compared to N1.5 for a generic
finite flat network.
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I. INTRODUCTION

Large-scale data networks form the infrastructure for
contemporary global communications. Increasingly, a single
network may provide a variety of disparate services, flatter
architectures (i.e., fewer controlling hubs) are used to achieve
robustness against failure, and networks have to be dynami-
cally and automatically reconfigurable to allow services to be
set up quickly. With these trends in mind, it is impractical to
perform detailed case-by-case simulations in order to predict
and understand the behavior of such large-scale networks.
Instead, one has to identify the key structural properties that
affect network performance, reliability, and security. These
structural properties can then be used to construct models that
estimate network behavior in an efficient and scalable manner.

A key observation regarding large-scale communications
and biological and social networks has been the “small-world”
property [1–3]. More recent network models have focused on
power-law degree distributions (PLDD) (for a few examples,
see Refs. [4–6]) as an explanation of or correlated with the
small-world property. Evidence for PLDD has been found
in data networks at the Internet protocol (IP) layer [7], for
the worldwide web [4], and for the virtual network of social
connections [8]. Although these features are interesting and
important, the impact of intrinsic geometrical and topological
features of large-scale networks on performance, reliability,
and security is of much greater importance. Intuitively, it
is known that traffic between nodes tends to go through a
relatively small core of the network, as if the shortest path
between them is curved inward. It has been suggested that this
property may be due to global curvature or hyperbolicity of
the network [9].

In this paper, we consider how global (negative) curvature
may be defined for large-scale networks. We use an extension
of the definition of global negative curvature for infinite
graphs [10]; our extension is slightly different from that
proposed by earlier authors [11–13]. We show that the more
traditional (Gaussian) curvature of a network, which has been
examined earlier [13,14], is distinct from the definition of
global curvature we use [10], and that the latter is of greater
relevance for network analysis. Most importantly, we examine
numerous publicly available networks at the IP layer [15]
and demonstrate the existence of negative curvature in the

sense defined here. With a few exceptions [14,16]—which use
completely different notions of network curvature—the prior
literature on network curvature has been based entirely on the
study of models [11,17,18].

Second, we examine the impact of negative curvature on
the performance of networks by calculating the load at each
node, which is the traffic flowing through each node if one
unit of traffic flows between each pair of nodes in the network
and shortest path routing is used. (This is also called the
betweenness, and is not the actual time-variable demand that is
flowing through the nodes.) We show that negative curvature
implies that the load at the core of the network scales with
the number of nodes N as ∼N2. In contrast, the load in a
generic flat network scales as ∼N1.5, which grows less rapidly
as N is increased, although, as discussed in Sec. III A, it is
possible to construct flat networks with ∼N2 scaling of core
load. [In this paper, we define the core as the set of m (greater
than zero) nodes with the highest traffic. The precise value
of m is not very important; although the results shown in
Fig. 5 are for m = 1, we have verified that the conclusions
are unaltered with m = 10.] Thus core congestion is worse
in hyperbolic networks, and geodesic routing achieved with
greedy algorithms on hyperbolic networks [17] is actually
problematic. Furthermore, we argue that departure from
shortest path routing in large negatively curved networks is
liable to result in an unattractively large increase in the average
network load. Finally, we provide a “taxonomy” of networks,
establishing through examples how their various intrinsic
features and properties are related and placing the different
common models appropriately in this chart. In particular,
we distinguish PLDD and negative curvature as distinct but
possibly overlapping features of real networks, and that PLDD
is neither required for nor implied by negative curvature. Based
on the N2 scaling of load observed in real networks and
inherent in negative curvature, we assert that hyperbolicity is a
more relevant companion feature to the small-world property
of large-scale networks and that it leads to core congestion.

The rest of this paper is organized as follows. In Sec. II, we
briefly review the definition of local curvature for networks
and contrast it with the Gromov concept of curvature formally
defined for infinite graphs [10]. We then introduce our
extension of this notion of curvature to finite graphs and
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establish that measured networks at the IP layer [15] are
hyperbolic. We also present results for three network models
and for a few families of graphs. In Sec. III, we show that the
load—or betweenness—at the core of a hyperbolic graph with
shortest path routing scales as ∼N2, with N being the number
of nodes in the graph. In Sec. IV, we provide a taxonomy of
networks and their models.

II. NEGATIVE CURVATURE OF NETWORKS

A. Gaussian curvature

The most natural way to define the curvature of a finite
graph involves embedding it in a two-dimensional smooth
orientable surface and using the Gaussian curvature. The genus
g of the graph is the smallest number of handles that such a
surface would need to have to allow an embedding of the graph
without edges crossing. That such an embedding is always
possible is assured by Ref. [19], which also shows that g need
not be more than �(N − 3)(N − 4)/12� for a graph with N

vertices. Further, this embedding can be strengthened so that
each vertex is surrounded by polygonal faces (see Ref. [20],
Chap. 3). Having completed such a strong embedding, it is
now possible to extend the notion of vertex curvature defined
for planar graphs (see Ref. [21]) to any finite graph:

kG(v) = 1 − d(v)

2
+

∑

f :v∈f

1

|f | , (1)

where v is any vertex, d(v) is its degree, and |f | counts the
number of sides of the polygonal face f for all the faces
that meet at the vertex v. The (combinatorial) Gauss-Bonnet
theorem [21] then gives the sum of all vertex curvatures in
terms of χ (G), the Euler characteristic of the graph:

∑

v∈G

kG(v) = χ (G) = 2 − 2g. (2)

The combinatorial curvature above is best understood by
assigning a unit length to each edge of the graph and treating
the polygonal faces as if they were regular. Simple geometry
then shows that the right-hand side of Eq. (1) is equal to the
deficit angle at the node v (divided by 2π ). The generalization
to the case in which the edge lengths are different but
non-negative is known as the discrete curvature of the graph
(see, for example, [22]). It is well-defined when the graph
is triangulated, i.e., when all faces on the minimal embedding
are broken into triangles, and the edge lengths wij around each
triangular face satisfy the triangle inequality.

The combinatorial and discrete curvatures are defined
locally, and are natural extension of the Gaussian curvature to
graphs. In Ref. [13], the curvature defined through embedding
at the small scale is of this kind, calculated from the deficit
angle. Reference [14] constructs a curvature at every node that
is qualitatively like the local combinatorial curvature. Despite
the appeal of an extended Gaussian curvature, we now provide
a simple example showing that it is of limited usefulness for
networks if one is interested in the flow of traffic on them.

Consider a square lattice graph, and then add edges along
the diagonals of each primitive square. To embed this graph
on a surface requires one to pull out one handle (thereby
increasing the genus) for each edge crossing. Before the

diagonals are added, if periodic boundary conditions are
used, the average Gaussian curvature of the graph is zero.
After the diagonals are added, the average Gaussian curvature
is negative from the combinatorial Gauss-Bonnet theorem.
(Similarly, one can add edges connecting each node to its
six next-nearest neighbors on a triangular lattice graph to
change the curvature defined in Ref. [14], although since their
definition is normalized to lie between 0 and 1 there is no
sign change.) But despite this change in curvature, the flow of
traffic along geodesics (i.e., the shortest paths) is unchanged
at a coarse-grained level, and therefore maximal congestion
is essentially unaffected. In the next (sub)section, we shall
consider an alternative definition of curvature that we show is
more appropriate for distinguishing traffic flows on different
networks.

B. Large-scale curvature

As an alternative to the combinatorial curvature, negative
curvature of an (infinite) geodesic metric space is defined by
Gromov [10] in terms of the “δ-thin triangle condition.” The
definition can be applied to graphs if a metric is provided. For
any three nodes (ijk), the geodesics gij , gjk , and gki of lengths
dij , djk , and dki are constructed. A fourth node m is chosen,
and the shortest distance between m and all the nodes on gij is
defined as d(m; ij ). The distance D(m; ijk) is defined as the
maximum of d(m; ij ), d(m; jk), and d(m; ki). For any triangle
� = (ijk), we define

δ� = min
m

D(m; ijk). (3)

Then if

δ = max
�

δ� < ∞, (4)

the graph is said to have negative curvature, i.e., to be
δ-hyperbolic. Slightly different definitions of δ� are possible,
using the “slim triangle condition” (see, for example, Ref. [23])
or other constructions [13], but they are equivalent. One can
show that various other properties that are linked to negatively
curved spaces all follow from the thin triangle condition
[24,25], which is why it is significant in geometry.

We note that in the example at the end of the previous
subsection, Eq. (4) is not satisfied for the square lattice with
or without extra diagonals, and therefore the curvature does
not become negative when the diagonals are added. This
suggests that we might have more success associating traffic
on networks with negative curvature as defined by Eq. (4) than
with the combinatorial curvature.

For a finite graph, δ in Eq. (4) is trivially finite. Recognizing
this, an extension of the criterion for negative curvature in
Eq. (4) was proposed in Refs. [11–13]. Using a slightly
different definition of δ�, they showed that the ratio of δ�

to the perimeter of the triangle � is bounded above by
3/2 if the sides of the triangle curve inward. Therefore, the
strict inequality was used as the criterion for the triangle to
be in a region of negative curvature. While this provides a
quantitative definition of negative curvature for finite graphs,
the requirement that every triangle should be in a negatively
curved region may be unduly restrictive for traffic flow on
networks. Furthermore, in the limit of an infinitely large graph
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TABLE I. Parameters of all the networks studied from the Rocketfuel database [15]. The column δmax shows the maximum δ� that was
found through the random sampling described in Sec. II C.

Network ID Name No. nodes No. edges Diameter Avg. geodesic δmax

1221 Telstra (Aust.) 2998 3806 12 5.53 2
1239 Sprintlink (US) 8341 14025 13 5.18 2
1755 EBONE (US) 605 1035 13 6.00 2
2914 Verio (US) 7102 12291 13 6.04 3
3257 Tiscali (EU) 855 1173 14 5.30 2
3356 Level 3 (US) 3447 9390 11 5.07 2
3967 Exodus (US) 895 2070 13 5.94 3
4755 VSNL (India) 121 228 6 3.20 1
6461 Abovenet (US) 2720 3824 12 5.72 2
7018 AT&T 10152 14319 12 6.95 3

with infinitely large triangles, it is possible for the inequality
to be satisfied and yet for Eq. (4) to be violated.

Therefore, in this paper we approach the problem in a
slightly different manner and introduce the concept of the
“curvature plot” of a network: for every triangle � = (ijk)
we calculate δ� and l�, where l� = min[d(ij ),d(jk),d(ki)].
If there are n geodesics between the vertices i and j, the
probability of choosing any one is 1/n. (This is consistent
with the manner in which traffic is distributed when there are
multiple geodesics between nodes, e.g., in Ref. [26].) This
procedure yields Pl(δ), the probability distribution for δ at
fixed l. If δa(l) is the average δ� for all triangles with a given
l, we say that the network is negatively curved in the large
if and only if δa(l) appears to approach a limiting value as
l is increased. Since we use the average of the distribution
instead of the maximum as in Eq. (4), a statistical sampling
of triangles with the vertices i,j,k chosen independently and
randomly from all the nodes in the graph is robust. For a tree
graph, it is easy to see that δ� is zero for every triangle, and
the graph is hyperbolic. Although one would expect that a flat
space would have δa(l) increasing linearly with l, all that we
require here is that it should diverge with l [27].

A few comments are in order here. First, because the
average value of δ� for all triangles with a given l� is used
instead of the maximum, it is possible in principle for an
infinitely large graph to satisfy the condition given above and
yet fail the test of Eq. (4). However, we believe that if this
were to happen, occasional fat triangles would be unlikely to
affect the flow of traffic and congestion significantly, and so
the condition above is appropriate for our purpose. Second, the
condition above is qualitative, and a sufficiently large range
of l is required for it to yield conclusive results. Finally,
the approach in this paper and in Refs. [11–13] analyzes
the curvature of a graph without reference to any underlying
manifold in which the graph could be embedded, and it can
therefore be used even when an embedding is difficult to
achieve. This is in contrast to Ref. [16], where the nodes
of the graph are embedded in a d-dimensional hyperbolic
space, similar to the strategy of Refs. [17,18], where negative
curvature is assumed and a model constructed with a few extra
simple assumptions is shown to share features such as PLDD
with real networks. (Note that, as we will see in Sec. IV,
PLDD’s are neither necessary nor sufficient for hyperbolicity,
so tying the two together is misleading.)

C. Numerical results

In the previous subsection, we have introduced the curva-
ture plot and how it relates to graphs with negative curvature
in the large. In this section, we present numerical results
for the curvature plots for a variety of graphs: models that
are known to be Euclidean or hyperbolic (triangular and
square lattices and hyperbolic grids), two random network
models (the Watts-Strogatz and Erdos-Renyi models), and real
communications networks at the IP layer from the Rocketfuel
database [15] that are cataloged in Table I. As mentioned in
the Introduction, real networks have not been studied in much
of the prior work on network curvature.

Figure 1 is a curvature plot for all these graphs. Triangles
were randomly sampled to construct the curvature plot for
each graph: for each triangle, all the vertices were chosen
independently and randomly, with all nodes in the graph being
equally likely. If two or three vertices of a triangle were
coincident, the triangle was rejected and a new triangle was
chosen. A total of 32 × 105 triangles were sampled for each
graph to construct its curvature plot. (There was no significant
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FIG. 1. (Color) The average δ as a function of l, δa(l), for the
10 IP-layer networks from the Rocketfuel database. Also shown are
δa(l) for the Watts-Strogatz (WS) and Erdos-Renyi (ER) models, for
a triangular and square lattice, and for the hyperbolic grid X(3,7).
The parameters used for the first ten and last six curves are given in
Tables I and II, respectively.
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TABLE II. Parameters for all the models in Fig. 1. For the first three, the results are the averages of 80 random graphs. For the last three,
open boundary conditions are used. Only the largest component of each graph of 2000 nodes was used for the Erdos-Renyi model, so that the
number of nodes was less than 2000 and was different for each graph. The column δmax shows the maximum δ� that was found through the
random sampling described in Sec. II C.

Model Parameters No. nodes No. edges Diameter Avg. geodesic δmax

Erdos-Renyi p = 4/N 1960 7987 12.0 5.61 4
Watts-Strogatz p = 0.2 1225 5880 9.89 5.69 4
Triangular lattice 127 612 12 5.95 4
Square lattice 64 224 14 5.33 3
Hyperbolic grid p = 3, q = 7 232 798 8 5.82 2

change if this was increased tenfold.) For the three random
network models, the average of 80 independent random graphs
was taken. The probability of any edge being connected was
4/N for the Erdos-Renyi model, so that the average degree of
the nodes was 4. For the Watts-Strogatz model, an extra 20%
edges were added randomly to a square lattice with periodic
boundary conditions.

As is seen from Fig. 1, even the plots for the Euclidean
lattice graphs show some rounding near the top due to finite-
size effects. Finite-size effects should be visible for triangles
whose linear dimensions are comparable to those of the graph
from which they are drawn. Accordingly, the parameters of the
models in Fig. 1 are chosen so that all the graphs shown in the
figure have a comparable average geodesic length (except
the Rocketfuel network 4755 in Table I). Table II lists the
parameters of all the models shown in Fig. 1.

Figure 1 shows a clear separation between the curvature
plots for the Euclidean lattices and the hyperbolic grid X(3,7).
[The hyperbolic grid X(p,q) is a tessellation of the Poincaré
disk using identical p-gons, with q of the p-gons meeting
at each node and (p − 2)(q − 2) > 4; projected onto the unit
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FIG. 2. (Color online) Scaling collapse of the curvature plot for
Erdos-Renyi graphs with p = 4/N and various values of N. Only the
giant component was retained in the analysis; the N values shown in
the figure are the average number of nodes in the giant component
when the graph has 500,1000,2000, . . . nodes. To achieve the scaling
collapse, each successive curvature plot was shifted down by 0.22
and to the left by 0.5 relative to its predecessor.

disk, the p-gons become progressively smaller as one moves
further from the center.] The curves for the Euclidean lattices
rise linearly with some rounding near the top due to finite-size
effects, while the curve for the hyperbolic grid saturates
rapidly. The figure also shows the curvature plots for the
Rocketfuel networks We see that they are all clustered around
the curve for the hyperbolic grid. Finally, the figure shows
the curvature plot for the Erdos-Renyi and Watts-Strogatz
models. Although these do not rise as far as the Euclidean
lattices before leveling off, they are separated from the cluster
of hyperbolic curves. A detailed numerical and analytical
proof that Erdos-Renyi graphs (with fixed average degree)
are not δ-hyperbolic has been recently obtained [28], and
therefore we group the Erdos-Renyi curvature plot with those
for the Euclidean lattices. Since the Watts-Strogatz model is an
interpolation between a Euclidean lattice at short length scales
and an Erdos-Renyi model at long length scales, we conclude
that it too is not δ-hyperbolic.

As further evidence of this, Fig. 2 shows a scaled curvature
plot for Erdos-Renyi random graphs [1] for various N with p =
4/N, the same value of p used in Table II and Fig. 1. Curvature
plots for various system sizes collapse onto a single curve when
they are shifted downward and to the left linearly with ln N.

This demonstrates that the leveling off of the curvature plot is
a finite-size effect, and is pushed out to infinity as ∼ ln N. The
∼ ln N dependence is expected, since the characteristic length
scales in these graphs grow logarithmically with N. Figure 3
shows similar plots for the square lattice with open boundary
conditions and the triangular lattice, also with the parameters
given in Table II and Fig. 1. The curvature plot is shifted
downward and to the left by an amount proportional to the
diameter of each graph to achieve the same scaling collapse.
Finally, Fig. 4 shows curvature plots for hyperbolic grids with
p = 3, q = 7, and various N. In this case, no rescaling is
performed, and the plateaus for all the system sizes are seen to
coincide, confirming that this model is δ-hyperbolic. A scaling
collapse for the Watts-Strogatz model is not provided, for the
same reason as given in the previous paragraph.

III. TRAFFIC IN HYPERBOLIC NETWORKS

A. Core congestion

We now turn to the performance implications of δ-
hyperbolicity. As discussed in the Introduction, we consider
traffic flowing on finite graphs with unit demand between each
pair of nodes. The traffic between any pair of nodes travels
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FIG. 3. (Color online) Scaling collapse of the curvature plot for
a square lattice with open boundary conditions (first panel) and a
triangular lattice (second panel) for various values of N. The square
lattice graphs have side 8,12,16, . . . , and each successive curvature
plot is shifted down by 1.25 and to the left by 4.8 relative to its
predecessor. The triangular lattices are built outward to a distance
6,8,10, . . . from a central node, and each successive curvature plot is
shifted down by 0.85 and to the left by 2.9 relative to its predecessor.

along the geodesic connecting them (evenly distributed over
all geodesics in the case of ties). For the models, we construct
graphs with the number of nodes N varying and study how
the traffic through the core scales with N. For the Rocketfuel
networks, the range of N provided by the ten different networks
in the database is used to study the same question.

Although the core has been defined in terms of the traffic
that flows through it, for all the graphs we have examined we
have verified that the core is close to the geometric center,
defined as the node whose average (geodesic) distance to all
the other nodes in the graph is the smallest. For the Euclidean
lattices and hyperbolic grid, symmetry requires that the core
should be centered at the geometric center.

Physically, we expect that the core load Lc(N ) should scale
as

Lc(N ) ∼ N2 (5)

for the hyperbolic graphs and Lc(N ) ∼ N1.5 for the Euclidean
graphs. This is because all traffic from the ∼N nodes on the
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FIG. 4. (Color online) Curvature plots for hyperbolic grids with
p = 3 and q = 7. The graphs are built outward to a distance 5,6,7, . . .

from a central node. The curvature plots saturate at the same height
without any rescaling.

left of a Euclidean lattice to the ∼N nodes on the right flows
through the center across a line of length ∼√

N, whereas for
a hyperbolic graph the same traffic is pulled inward and flows
within an O(1) distance of the center. Mathematically, Eq. (5)
can be obtained analytically for the continuum Poincaré disk
truncated to a radius r < 1, converted to a graph by introducing
a uniform distribution of nodes with each node connected to its
neighbors. (This model is applicable to a hyperbolic network
if the spacing between nodes is small compared to its radius of
curvature.) In contrast, for a Euclidean disk with area N one
can verify that Lc(N ) ∼ N1.5.

It is well recognized that shortest path routing re-
sults in some highly congested nodes, and the connec-
tion between topology and congestion has been made in
Refs. [11–13,29,30], but the precise form of the scaling for
hyperbolic networks that we report in this paper has hitherto
gone unnoticed. After the initial report of our work [31],
a mathematical justification was proposed for the ∼N2 and
∼N1.5 scaling reported herein [32].

For tree graphs, which are trivially δ-hyperbolic, it is easy
to see that the traffic flowing through a node that divides a
graph with N nodes into two equal regions is ∼N2. However,
hyperbolic graphs can be quite far from being trees; indeed,
all the nodes in a hyperbolic grid X(p,q) have the same
degree q. For the Rocketfuel networks, the ratio of the number
of undirected edges to nodes ranges from 1.27 to 2.72; for
comparison, the ratio for a tree and a square lattice is 1.0 and
2.0, respectively. Therefore, we investigate whether the results
of the previous paragraph are true for the graphs we have
studied in Sec. II.

Figure 5 shows Lc(N ) versus N for all the networks in the
Rocketfuel database, demonstrating ∼N2 scaling. The figure
also shows results for the two random network models, which
do not show ∼N2 scaling. Similar results are obtained by
taking the average load at the top ten nodes.

Thus hyperbolicity can significantly impact the perfor-
mance of communications networks. Although the com-
munications networks we have studied have a PLDD and

066108-5



ONUTTOM NARAYAN AND IRAJ SANIEE PHYSICAL REVIEW E 84, 066108 (2011)

 8

 10

 12

 14

 16

 3  4  5  6  7  8  9  10

ln
 L

c(
N

)

ln(N)

Rocketfuel
X3,7

E-R

HYPERBOLIC
Triangular

W-S

EUCLIDEAN

FIG. 5. (Color online) Plot of the maximum load Lc(N ) for each
network in the Rocketfuel database as a function of the number
of nodes N in the network. Also shown are the maximum load
for the hyperbolic grid X(3,7), the Watts-Strogatz model, and a
triangular lattice for various N. The lines have slopes of 2.0 and 1.5,
corresponding to the hyperbolic and Euclidean cases, respectively.

satisfy the small-world property, in Sec. IV we will see that
δ-hyperbolicity is distinct from these.

Although hyperbolicity is sufficient to cause ∼N2 scaling
of the core load in (finite) networks, it is not necessary. It
is easy to construct graphs in which narrow bridges connect
large islands, with the size of each island increasing uniformly
as N is increased. Clearly, a finite fraction of the total traffic
passes through each bridge, even though each island—and
therefore the graph—can have zero curvature. It remains an
open question whether there is a broader category that includes
δ-hyperbolic graphs, these “island-bridge” graphs, and perhaps
other graphs as well, and it is both necessary and sufficient that
a graph should belong to this category in order that its core
load should scale as ∼N2.

B. Other traffic patterns

The Lc(N ) ∼ O(N2) scaling obtained in the previous sub-
section is equivalent to the observation that a fixed percentage
of all the network load is routed through the network core.
Given the severity of this observation, one might ask if the
scaling is specific to shortest path routing and would not
occur if congestion avoidance algorithms are used. Indeed,
various algorithms [33–38] have been proposed to alleviate the
congestion that arises with shortest path routing. As a special
case of such techniques, one can use shortest path routing but
with different weights for the edges of the graph. For example,
the inverse of the bandwidth or other engineered choices
can be used for edge weights to achieve a balanced load,
capacity optimization, or other traffic engineering purposes.
In fact, scenarios in which edge weights are not all 1 are
more the norm than the exception (see, for example, [39] and
ensuing publications on Internet traffic engineering), and so
this question is very relevant.

However, even in such cases, a trade-off has to be made
between the level of load reduction from O(N2) and the
length of new paths used, as measured by the number of nodes
traversed. This is a consequence of a property of δ-hyperbolic

spaces according to which a deviation d from a geodesic path
results in an increased path length that is exponential in d. More
precisely [40], a path between a pair of nodes, whose distance
from the geodesic path between the same nodes is d, has a
length at least 2(d−1)/δ. In order to distribute the O(N2) paths
through the core through a region of size Nα (to significantly
reduce core congestion), the radius of the region has to be
∼ ln N , and therefore one would expect d to be ∼ ln N. This
will increase the average path length from ∼ ln N to ∼Nβ

with β > 0, destroying the small-world property. With N2

traffic streams and uniform demand, the average load at a node
increases from ∼N ln N to ∼N1+β. If β is small, congestion
avoidance may be useful when N is not very large, but it
becomes unattractive in the large-N limit.

In sum, link-metric engineering, even if successful in
reducing the worst loads, is not a panacea, since—even apart
from the caveat of [41]—one cannot significantly eliminate
the O(N2) core congestion without losing the much prized
small-world property of these networks.

In the discussion above, we defined the load by assuming
one unit of traffic between all node pairs. Thus the load at any
node is a geometric property of the graph, being equal to the
number of geodesics passing through it, i.e., its betweenness.
The actual traffic patterns in a communications network may be
different; in particular, if loads are only nonzero between nodes
and their close neighbors, the Lc(N ) ∼ N2 scaling may be
modified. However, we are not aware of any publicly available
and detailed measurements of node-pair traffic for any realistic
network, and therefore an analysis using actual traffic patterns
is difficult. Furthermore, since network traffic is expected to
evolve rapidly, the conclusions from actual traffic patterns may
be even less robust than the results we have obtained here.

IV. TAXONOMY OF NETWORKS

In this section, we summarize the connections between the
various network models and the features associated with each
model and the IP layer networks we have studied. The results
are shown in Fig. 6.

The placement of the two random network models follows
from the previous sections in this paper: they are small-world
networks, but not δ-hyperbolic. Both Euclidean and hyperbolic
grids lie outside the PLDD region (since all nodes have the
same degree), but only the hyperbolic grids are small-world
and δ-hyperbolic. Bethe lattices and power-law trees are both
small-world graphs and (being trees) are trivially hyperbolic,
but only power-law trees have a PLDD. This justifies the
location of all these points in Fig. 6.

Chains refer to minimal spanning trees of Euclidean lattices.
For example, for a square lattice, all edges on the x axis or
parallel to the y axis are connected. (An even simpler example
is a line chain.) Being trees, they are δ-hyperbolic, but they
clearly do not have a PLDD. The number of nodes n(r) within
a distance r of a node is proportional to r2 for large r, and
therefore these graphs do not have the small-world property
either.

The “hairy” graphs require further explanation. They are
constructed by taking a graph and adding leaf nodes (of degree
1) connected to each node in the original graph. The number
of leaf nodes connected to each node in the original graph is an
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FIG. 6. Taxonomy of key characteristics of networks and their
overlaps in a schematic diagram. “Hairy,” as used in this figure, refers
to the simple mechanism of making a grid power-law by adding to
each node a set of singly connected nodes (hairs) whose number
is drawn from any desired power-law distribution. PLDD refers to
power-law degree distributions.

independent random variable drawn from a distribution with
a power-law tail. By construction, the resultant hairy graph
has a degree distribution with a power-law tail. On the other
hand, geodesics are essentially unaffected by the addition of
the hairs, except that an extra edge has to be added at the
beginning (end) of the geodesic when it begins (ends) at a leaf
node. Therefore, geodesic triangles are δ-thin if and only if
they were that way in the original graph. One can also verify
that the small-world property of a graph is unaffected by the
addition of hairs: if there are n(r) nodes within a distance
r of a node in the original graph, the corresponding number
for the hairy version is the sum of n(r) random variables.
In particular, the hairy Euclidean grid has a PLDD, but it is

not small-world and not δ-hyperbolic because the Euclidean
grid is neither. Similarly, the hairy Watts-Strogatz model has a
PLDD and is small-world but not δ-hyperbolic like the original
Watts-Strogatz model.

Since all the regions in Fig. 6 have been populated,
they must all have nonzero size. The three circles are
overlapping but distinct; networks that are δ-hyperbolic but
not small-world are also known as “elementary” δ-hyperbolic
networks. We conclude that δ-hyperbolicity is a nontrivial
feature that is distinct from both small-world property and
power-law degree distributions. Based on the O(N2) scaling of
Sec. III, this property entails features that are important within
the networking context. The networks we have studied from
the Rocketfuel database appear to be δ-hyperbolic and small-
world and also have a (limited) power-law degree distribution.

V. CONCLUSION

In this paper, we have examined the curvature of networks
and extended the Gromov [10] criterion for negative curvature
of infinite graphs to finite graphs. We have shown that
the maximum traffic congestion in networks with negative
curvature scales with the number of nodes N as ∼N2, in
contrast to the ∼N1.5 scaling for planar graphs. We have
verified that physical networks at the IP layer are negatively
curved (δ-hyperbolic) and show ∼N2 scaling of the core load.
We have established a taxonomy of networks that shows that
δ-hyperbolicity is distinct from other properties of networks
that have been examined in the past. Even though carefully
traffic-engineered link metrics may alleviate core congestion
and remove points of maximum vulnerability, both in terms of
security and reliability, this is achieved at the expense of very
long paths (and consequently higher costs) and an effective
loss of the prized small-world property that has simplified
routing considerably.
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