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Effect of the nature of randomness on quenching dynamics of the Ising model on complex networks
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Randomness is known to affect the dynamical behavior of many systems to a large extent. In this paper
we investigate how the nature of randomness affects the dynamics in a zero-temperature quench of the Ising
model on two types of random networks. In both networks, which are embedded in a one-dimensional space, the
first-neighbor connections exist and the average degree is 4 per node. In random model A the second-neighbor
connections are rewired with a probability p, while in random model B additional connections between neighbors
at a Euclidean distance l (l > 1) are introduced with a probability P (l) ∝ l−α . We find that for both models, the
dynamics leads to freezing such that the system gets locked in a disordered state. The point at which the disorder
of the nonequilibrium steady state is maximum is located. The behavior of dynamical quantities such as residual
energy, order parameter, and persistence are discussed and compared. Overall, the behavior of physical quantities
are similar, although subtle differences are observed due to the difference in the nature of randomness.
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I. INTRODUCTION

The dynamics of Ising models is a much studied phe-
nomenon and has emerged as a rich field of present-day
research. An important dynamical feature commonly studied
is the quenching phenomenon below the critical temperature.
In a quenching process, the system has a disordered initial
configuration corresponding to a high temperature and its
temperature is suddenly dropped. This results in quite a
few interesting phenomena such as domain growth [1,2] and
persistence [3–6].

In one dimension, a zero-temperature quench of the
Ising model starting with a completely random configuration
(which corresponds to a very high temperature) and evolving
according to the usual Glauber dynamics always leads the
system to the equilibrium configuration (all spins up or all
spins down). The average domain size D increases in time t as
D(t) ∼ t1/z, where z is the dynamical exponent associated with
growth. As the system coarsens, the magnetization also grows
in time as m(t) ∼ t1/2z. In two or higher dimensions, however,
the system does not always reach equilibrium [6], although
these scaling relations still hold. In a zero-temperature quench,
another important dynamical behavior commonly studied is
persistence, which is the probability that a spin does not flip
until time t . In regular lattices, in one or higher dimensions,
the persistence probability P (t) at time t is usually seen to
follow a power-law decay given by P (t) ∝ t−θ , where θ is
called the persistence exponent and is unrelated to any other
known static or dynamic exponents.

The dynamical behavior of Ising models may change
drastically when randomness is introduced in the system. Ran-
domness can occur in many ways and its effect on dynamics
can depend on its precise nature. For example, randomness in
the Ising model can be incorporated by introducing dilution in
the site or bond occupancy in regular lattices and consequently
the percolation transition plays an important role [7,8]. Scaling
behavior is completely different from power laws here. One
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can also consider the interactions to be randomly distributed,
either all ferromagnetic type or mixed type (e.g., as in a
spin glass) [9]; the system goes to a frozen state following
a zero-temperature quenching in both cases. Another way to
introduce randomness is to consider a random field in which
case the scaling behavior is also completely different from
power laws [10].

Here we consider Ising models on random graphs or
networks where the nearest-neighbor connections exist. In
addition, the spins have random long-range interactions that
are quenched in nature. In general, here the dynamics, instead
of leading the system toward its equilibrium state, makes it
freeze into a metastable state such that the dynamical quantities
attain saturation values different from their equilibrium val-
ues. Moreover, rather than showing a conventional power-law
decay or growth, the dynamical quantities exhibit completely
different behavior in time.

A point to be noted here is that when long-range links
are introduced, the domains are no longer well defined as
interacting neighbors could be well separated in space. This
results in freezing of Ising spins on random graphs as well as on
small-world networks [11,12]. The phase-ordering dynamics
of the Ising model on a Watts-Strogatz network [13], after
a quench to zero temperature, produces dynamically frozen
configurations, disordered at large length scales [12,14]. Even
on small-world networks, the dynamics can depend on the
nature of the randomness; it was observed that while in a sparse
network there is freezing, in a densely connected network
freezing disappears in the thermodynamic limit [15].

In this paper we investigate the dynamical behavior of
an Ising system on two different networks following a zero-
temperature quench. In these two networks, both of which
are sparsely connected, the nature of randomness is subtly
different and we study whether this difference has any effect
on the dynamics. Both these networks are embedded in a
one-dimensional lattice and the nearest-neighbor connections
always exist and the nodes have degree 4 on average. They
differ as in one of the networks the random long-range
interactions have a spatial dependence.

It is also quite well known that many dynamical social
phenomena can be appropriately mapped to the dynamics of
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spin systems. At the same time, social systems have been
shown to behave like complex networks (having small-world
and/or scale-free features, etc.). So the present study may
be particularly interesting in the context of studying social
phenomena described by Ising-type models.

In Sec. II we describe the two different networks, which we
call random model A (RMA) and random model B (RMB).
In Sec. III we give a list of the quantities calculated. In
Secs. IV and V we discuss the detailed dynamical behavior
of Ising spin systems on random model A and random model
B, respectively. A comparison of the results of the quenching
dynamics between the two models is discussed in Sec. VI.
A qualitative analysis of the quenching dynamics is also
presented. We summarize in Sec. VII.

II. DESCRIPTION OF THE NETWORK MODELS

The two network models under consideration were intro-
duced in Ref. [16]. Random model A is in fact very similar to
the Watts-Strogatz (WS) network [13]. Here a spin is initially
connected to its four-nearest neighbors and then only the
second-nearest-neighbor links are rewired with probability p

(Fig. 1). In the RMB each spin is connected to its two-nearest
neighbors and then two extra bonds (on average) are attached
randomly to each spin. The extra bonds are attached to spins
located at a distance l > 1 with probability P (l) ∝ l−α (Fig. 1).
We keep the first neighbors intact in both cases to ensure that
the networks are connected. The average degree per node is 4
in both networks. The dynamical evolution is considered on
the static networks after the process of rewiring or the addition
of links is completed.

l−α

l−α

pP

l−α

RANDOM MODEL    B

RANDOM MODEL     A

REGULAR      NETWORK

FIG. 1. (Color online) Schematic diagram for different network
models. The average degree is 2K = 4 in each network. In the regular
network both the first- and second-nearest neighbors are present.
In random model A only second-nearest neighbors are rewired
with probability p. In random model B first-nearest neighbors are
always linked, while other nodes are linked with probability l−α with
l � 2.

The general form of the Hamiltonian in a one-dimensional
Ising spin system for RMA and RMB can be written as

H = −
∑

i<j

JijSiSj , (1)

where Si = ±1 and Jij = J when sites i and j are connected
and zero otherwise. (We set J = 1 in this paper.) The ground
state (minimum-energy state at zero temperature) of the Ising
spin system in both RMA and RMB is a state with all spins up
or all spins down.

Random model A is a variant of the WS model with
identical static properties. It is regular for p = 0, random for
p = 1, and for any p > 0, the nature of RMA is small-world-
like [13,16]. Euclidean models of RMB type have been studied
in a few earlier works [16–18]. While it is more or less agreed
that for α � 1 the network is random and for α > 2 it behaves
as a regular network, the nature of the network for intermediate
values of α is not very well understood. According to the earlier
studies [16–18], it may either have a small-world characteristic
or behave like a finite-dimensional lattice. In the present work
we assume that RMB has random nature for α < 1 and for
1 < α < 2 it is small-world-like (at least for the system sizes
considered here) following the results of Ref. [16], which are
based on an exact numerical evaluation of the shortest distance
and clustering coefficients. This is also because the Euclidean
model considered in Ref. [16] is exactly identical to RMB with
average degree 4, while the average degree of the Euclidean
models considered in the earlier studies is not necessarily equal
to 4.

In the case of RMA, the network is regular and random for
only two extreme values p = 0 and 1, respectively, whereas
for RMB the random and the regular behavior of the network
are observed over an extended region. The regular network
corresponding to these two models is the one-dimensional
Ising spin system with nearest-neighbor and next-nearest-
neighbor interactions. We have studied the zero-temperature
quenching dynamics for this model also and the results for the
dynamics are identical to that of the nearest-neighbor Ising
spin model. So it will be interesting to note how the dynamics
is affected by the introduction of randomness in the Ising spin
system and also how the difference in the nature of randomness
of RMA and RMB shows up in the dynamics.

In the simulations, single-spin-flip Glauber dynamics is
used in both cases and the spins are oriented randomly in the
initial state. We have taken one-dimensional lattices of size
L with 100 � L � 1500 to study the dynamics. The results
are averaged over (a) different initial configurations and (b)
different network configurations. For each system size the
number of networks considered is 50 and for each network the
number of initial configuration is also 50. Periodic boundary
conditions have been used.

III. QUANTITIES CALCULATED

We have estimated the following quantities in the present
work.

(i) Magnetization m(t). For a Ising spin system with regular
connections and having only the ferromagnetic interaction,
the order parameter is usually the magnetization m = | ∑i Si |

L
,

where L is the size of the system. Magnetization can be
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considered as the order parameter, even when the connections
are random. We have calculated the growth of magnetization
with time and also the variation of the saturation value of
the magnetization msat with p and α for RMA and RMB,
respectively.

(ii) Persistence probability P (t). As already mentioned, this
is the probability that a spin does not flip until time t .

(iii) Energy E(t). In these networks, the domain-wall
measurement is not very significant as domains are ill defined.
The presence of domain walls in regular lattices causes an
energy cost [14]. So instead of the number of domain walls,
the appropriate measure for disorder is the residual energy
per spin ε = E − E0 = E + 4, where E0 = −4 is the known
ground-state energy per spin and E is the energy of the
dynamically evolving state. In fact, the magnetization is not a
good measure of the disorder either since even when the energy
is close to the ground state, magnetization may be very close
to zero (this is also true for the models without randomness).
So a residual energy measurement is the best way to find out
whether the system has reached the equilibrium ground state
or it is stuck in a higher-energy nonequilibrium steady state.
We measure the decay of residual energy ε with time and the
variation of its saturation value εsat with p and α for RMA and
RMB, respectively.

(iv) Freezing probability. The probability with which any
configuration freezes, i.e., does not reach the ground state (the
state with magnetization m = 1 or the state with zero residual
energy), is defined as the freezing probability.

(v) Saturation time. It is the time taken by the system
to reach the steady state. It has been observed in some
earlier studies [19] that it also shows a scaling behavior
with the system size with the dynamical exponent z. This
in fact provides an alternative method to estimate z when
straightforward methods fail.
Both magntization and energy are regarded as dimensionless
quantities (ε and E scaled by J ) in this paper.

IV. DETAILED RESULTS OF QUENCHING
DYNAMICS ON RMA

The results of a zero-temperature quench for the Ising
model on RMA are presented in this section. Starting from
an initial random configuration following a quench to zero
temperature, the system cannot reach the ground state for
all initial configurations for any p �= 0. The magnetization,
energy, persistence all attain a saturation value in time. The
saturation values of all the quantities show nonmonotonic
behavior as a function of p.

Figure 2 shows the decay of residual energy per spin and the
growth of magnetization with time for different values of the
rewiring probability. It should be noted that the dynamic quan-
tities do not show any obvious power-law behavior beyond a
few time steps. For small p, there is apparently a power-law
behavior for a larger range of time, which we believe is the
effect of the p = 0 point where such a scaling definitely
exists.

The saturation value of the residual energy per spin εsat

increases with the rewiring probability p (for small p), reaches
a maximum for an intermediate value of p (p < 1), and then
decreases again. This implies that the disorder of the spin
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FIG. 2. (Color online) Decay of the residual energy per spin
and the growth of magnetization with time for RMA for different
probabilities.

system is maximum for a nontrivial value of p = pmaxdis,
which can be termed the point of maximum disorder. The
saturation value of magnetization, in contrast, decreases for
small p, takes its minimum value for another intermediate
value of p (p < 1), and then increases again (Fig. 3).

The value of pmaxdis increases with the system size L for
small L and then appears to saturate for larger system sizes.
The value of the residual energy at pmaxdis also increases with
the system size (Fig. 4). This establishes the existence of the
point of maximum disorder at an intermediate value of p (p �
0.62) even in the thermodynamic limit.

Magnetization reaches a minimum at a value of p that is less
than pmaxdis. This implies that there exists a region where both
magnetization and energy increase as p increases. This is also
apparent from Fig. 3. The physical phenomenon responsible
for this intriguing feature is conjectured and discussed in detail
in Sec. VI B.

The saturation time decreases very fast with the rewiring
probability p for small p and remains almost constant as p

increases (Fig. 5). It is known that for p = 0 the saturation
time varies as L2; here it appears that for any p > 0, there is
no noticeable size dependence.
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FIG. 3. (Color online) Saturation values of the residual energy
per spin εsat and the magnetization msat plotted with the probability
of rewiring p for RMA.
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FIG. 4. (Color online) Rewiring probability at the point of
maximum disorder plotted with the system size. The inset shows
the increase of the residual energy at the point of maximum disorder
with the increment of the system size.

For RMA the freezing probability is almost unity for small
p. However, when the disorder is increased beyond p � 0.5,
the freezing probability shows a rapid decrease (Fig. 5, inset).
In one dimension, we checked that the freezing probability is
zero for the regular network (p = 0), but here we find that
even for very small values of p, the freezing probability is
unity. So there is a discontinuity in the freezing probability at
p = 0. This also supports the fact that any finite p can make the
dynamics different from a conventional coarsening process.

An interesting observation may be made about the behavior
of the saturation value of the residual energy in the region
p < 0.5. If one allows p to decrease from 0.5 to 0, the
saturation value of the residual energy also decreases, although
the freezing probability is unity in the entire region. This
implies that in this range of the parameter, although the system
does not reach the real ground state in any realization of the
network (or initial configuration), such that ε �= 0 in each case,
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FIG. 5. (Color online) Time of saturation with the probability of
rewiring plotted for two different sizes for RMA. The inset shows the
variation of the freezing probability with the probability of rewiring
for RMA.
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FIG. 6. (Color online) Decay of P (t) − Psat with time t along with
the stretched exponential function found to fit its form. The bottom
left inset shows the variation of the saturation value of persistence
Psat with p. The inset on the top right shows the variation of b and c

with p.

the system has a tendency to approach the actual ground state
monotonically with p for p < 0.5 (Fig. 3).

The persistence probability follows a stretched exponential
behavior with time for any nonzero p, fitting quite well the
form

P (t) − Psat � a exp(−btc), (2)

where Psat is the saturation value of the persistence. It does
not depend on the system size, but changes with the rewiring
probability p; also there exists an intermediate value of p

where the value of Psat is maximum. The values of b and c

vary nonmonotonically with p (Fig. 6).

V. DETAILED RESULTS OF QUENCHING
DYNAMICS ON RMB

In this section we present the results of the zero-temperature
quenching dynamics of the Ising model on RMB. Here also
the system does not reach the ground state for all initial
configurations for any finite value of α. The magnetization,
energy, and persistence all attain a saturation value in time
as in RMA. Figure 7 shows the decay of residual energy per
spin and the growth of magnetization with time for different

 0.1

 0.2

 0.3

 0.5

 1

 2

101 102 103 104

ε(
t
)

t

α=0.5,L=1000
α=1.0,L=1000
α=1.2,L=1000
α=3.0,L=1000

0.1

0.2

0.3
0.4

0.7

1

101 102 103 104

m
(
t
)

t

α=0.5,L=1000
α=1.0,L=1000
α=1.2,L=1000
α=3.0,L=1000

FIG. 7. (Color online) Decay of the residual energy per spin
and the growth of magnetization with time for RMB for different
probabilities.
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FIG. 8. (Color online) Saturation values of the residual energy
per spin εsat and the magnetization msat plotted with α for RMB.

values of α. It should be noted that the dynamical quantities
do not show any obvious power-law behavior for RMB
either.

The saturation values of all the quantities show nonmono-
tonic behavior as a function of α. The saturation value of
residual energy per spin εsat increases with α for small α,
reaches a maximum for a finite value of α, and then decreases
again. This implies that for RMB also, the disorder of the spin
system is maximum for a finite value of α, which is the point
of maximum disorder here. In contrast, the saturation value of
the magnetization decreases for small α, takes its minimum
value for another finite value of α, and then slowly increases
(Fig. 8).

The value of α = αmaxdis, at which the maximum disorder
occurs, decreases with system size L for small L and then
saturates for larger system sizes. The value of the residual
energy at αmaxdis also increases with the system size (Fig. 9).
This establishes the existence of the point of maximum
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FIG. 9. (Color online) Value of α at the point of maximum
disorder plotted with the system size. The inset shows the increase of
residual energy at the point of maximum disorder with the increment
of the system size.
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FIG. 10. (Color online) Time of saturation with the value of α

plotted for two different sizes for RMB. The inset shows the variation
of the freezing probability with α for RMB.

disorder, for RMB, at a finite value of α (α � 1.2) even in
the thermodynamic limit. Similar to RMA, there is a region
beyond α = 1.2 where the energy and the magnetization both
decrease, until the magnetization starts growing again. As
already mentioned, this issue is addressed in Sec. IV B.

The saturation time for RMB in the random network in
the region 0 � α < 1 shows fluctuations that are too large
to let one conclude whether it is a constant in this region or
varies with α. Beyond α = 1 and up to α = 3.0, it is almost
independent of α. For α > 3 the saturation time increases with
α. There is no remarkable finite-size effect in the saturation
time for RMB for any finite value of α. The saturation time
varies as L2 for a regular lattice corresponding to α → ∞,
where it appears that for any finite α, however large, there is
no remarkable size dependence.

The freezing probability is small for α = 0 (� 0.2) and
increases rapidly with α for small α. The freezing probability
becomes almost unity beyond α � 1.2 and remains the same
for large α. It seems that for any finite α > 1.2 the freezing
probability remains unity and it will be zero only at α → ∞
(Fig. 10); as in one dimension, the freezing probability is zero

for the regular network. So for RMB there is a discontinuity
of the freezing probability at α = ∞ that corresponds to the
p = 0 point of RMA.

Beyond α � 1.2, the energy decreases with α though the
freezing probability remains unity. This implies that although
the system definitely reaches a frozen state, it approaches
the real ground state monotonically as α → ∞ (Fig. 8). The
preceding results indicate that even though for α > 2 the
network behaves as a regular one, dynamically the network
is regular only at its extreme value α → ∞.

We find that the persistence probability follows roughly a
stretched exponential form with time [given by Eq. (2)] for
any finite α. The saturation value of the persistence Psat does
not depend on the system size, but changes with α; also there
exists an intermediate value of α where the value of Psat is
maximum. For RMB also b and c vary nonmonotonically with
α (Fig. 11).
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VI. DISCUSSION OF THE RESULTS

A. Comparison of the results for RMA and RMB

In Secs. IV and V the results of a quench at zero temperature
for the Ising model on RMA and RMB have been presented
separately. In this section we compare the results to understand
how the difference in the nature of randomness affects the
dynamics of the Ising spin system.

The gross features of the results are similar: In both models
we have a freezing effect that makes the system get stuck in
a higher-energy state compared to the static equilibrium state
in which all spins are parallel. No power-law scaling behavior
with time is observed in the dynamic quantities in either model.
There exists a point in the parameter space where the deviation
from the static ground state is maximum. The behavior of the
saturation times and freezing probability as functions of the
disorder parameters are also quite similar qualitatively.

The saturation values of magnetization and persistence
attain minimum and maximum values, respectively, at an
intermediate value of the relevant parameters in both models.
The decay of the persistence probability also follows the same
functional form in the entire parameter space. The saturation
values of the persistence has no size dependence for either
model. This indicates that as a whole, the dynamics is not
affected much due to the change in the nature of randomness
of the Ising spin system.

Let us consider the parameter values at which RMA and
RMB are equivalent as a network: RMA and RMB behave as
random networks at p = 1 and α = 0, respectively. So one
can expect that the saturation values of the residual energy per
spin, magnetization, and the numerical value of the saturation
time would be same at these values. However, the numerical
values of these quantities are quite different. For RMA, at
p = 1 the saturation value of the residual energy per spin
εsat � 0.415, whereas for RMB at α = 0, εsat � 0.224 for
L = 1000. Similarly, we found numerically that for RMA
the value of saturation magnetization msat � 0.735 for RMA
and msat � 0.855 for RMB for the same system size. This is

because even though the networks are both random here, the
connections have a subtle difference. For RMA the number of
second-nearest neighbor is exactly zero at p = 1 and all the
other long-range-neighbor connections are equally probable.
In contrast, for RMB second-nearest neighbors can still be
present in the network and the probability is the same for this
and any other longer-range connection. This difference in the
nature of randomness affects the dynamics of the Ising spin
system sufficiently to make the saturation values different. This
means that the systems are locked at different nonequilibrium
steady states. For RMB it is closer to the actual ground state
as it is more short ranged in comparison.

The other values at which the two networks are equivalent
are p = 0 and α > 2, where regular network behavior is found
as far as the network properties are concerned. Interestingly,
the behavior of RMB even when α is finite and greater than
2 is not quite like the dynamics of a regular one-dimensional
lattice with nearest- and next-nearest-neighbor links only. In
fact, the point at which the magnetization becomes minimum
is well inside the region α > 2 and not within the small-world
region as in RMA. Actually, there is an extended region of
regular and random network behavior for RMB and as a result
a few more interesting points are possible to observe here.
Only at the extreme point α = ∞ can the one-dimensional
Ising exponents z = 2.0 and θ = 0.375 be recovered as the
frozen states continue to exist even for finite values of α > 2
for RMB. For the model of the regular network with nearest
and next-nearest neighbors, we have checked that there is no
freezing at all. So discontinuities of the freezing probabilities
occur at p = 0 and α = ∞ on RMA and RMA, respectively.

Though the nature of randomness is different for RMA
and RMB, for both models there exists a point of maximum
disorder where the saturation value of the residual energy per
spin attains a maximum value. For RMB maximum disorder
of the Ising spin system occurs near the static phase transition
point (small world to random phase), whereas for RMA the
point of maximum disorder is well within the small-world
region.

We try to explain this by considering the deviation from the
point p = 1 (for RMA) and α = 0 (for RMB). Two processes
occur simultaneously here: (a) The number of connections with
farther neighbors decreases and (b) clustering becomes more
probable. As a result of these two processes, freezing occurs.
For RMA the effect is smaller as there is less clustering [16].
For RMB, however, the effect is greater and spans the entire
parameter space α > 1 and therefore the point of maximum
disorder of the Ising spin system is very close to the random–
small-world phase transition point α = 1.

The question may arise whether this difference prevails
when the models are made even more similar. In RMB the
probability p3(α) that l � 3 can be expressed as a function
of α,

p3(α) =
∑l=L/2

l=3 l−α

∑l=L/2
l=2 l−α

. (3)

A further correspondence between the two networks can be
established by imposing p = p3(α), which makes the number
of second-neighbor links in RMA and RMB also the same (but
the rest of the extra links are connected differently).
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Using Eq. (3), we can obtain the value of p corresponding
to a given value of α and vice versa. However, it is immediately
seen that the two networks are not equivalent even after making
them similar up to the second-neighbor connections. For
example, for α = 2.0 the corresponding value of p = 0.612
in this scheme. However, we have already seen that while the
point of maximum disorder occurs close to this value of p in
RMA, the point of maximum disorder for RMB is considerably
far from α = 2.0. So the nature of randomness continues to
affect the dynamics at least quantitatively.

B. Analysis of some general features of the quenching
phenomena on networks

We find several interesting features in the quenching
phenomena of Ising spin systems on both networks and in
this section we attempt to provide an understanding of the
same. It is intriguing that the results indicate that the minimum
amount of randomness can make the system freeze. For a small
amount of randomness the interactions are still dominantly
nearest-neighbor type and domains in the conventional sense
should grow, which will be of both plus and minus signs.
The system will freeze as there will be some stable domain
walls due to the few long-range interactions present. As the
system attains saturation the domains will be small in number
and large in size, irrespective of their signs. As a result, the
magnetization attains a small value while the residual energy
is still small.

This effect continues for some time until something more
interesting happens. Take, for example, the case of quenching
on RMA. There is a distinct region 0.4 < p < 0.6 where the
energy and magnetization grow simultaneously, an apparently
counterintuitive result. Similar behavior can be noted for the
quenching on RMB in a certain region in its parameter space. A
problem in analyzing the situation for different p (or α) values
is that the final frozen states are not, in principle, related in
any way. This is because the energy landscapes change as p is
changed and the initial configurations that undergo evolution
are completely uncorrelated. In fact, in such a situation,
even if the energy landscape is the same, with a number of
local minima, different initial configurations will end up in
different final nonequilibrium steady states. Nevertheless, one
can attempt to explain this counterintuitive result by assuming
that the final states are not largely different when p is changed
slightly in the following way. This assumption and explanation
are supported by the actual final states obtained for small
system sizes.

Let us consider as an example RMA and take two values
of p, p2 > p1, for which the magnetization and residual
energy of the final state corresponding to p2 are both larger
than those for p1. Now this can be possible due to the
fragmentation of a larger domain into several domains such
that the magnetization increases. This can be demonstrated
with a simple example: Let us imagine a situation where
one has only two domains of size N+ (of up spins) and
N− (of down spins) for p1 with magnetization equal to
m1 = |(N+ − N−)|/L and assume that for p2 the domain with
N+ up spins remains the same while the domain with N− down
spins gets fragmented into three domains of size N−

1,N
+

1 and
N−

2 in the final state. For p2, therefore, the magnetization is

 0  10  20  30  40  50  60

Sites

p=0.4

p=0.55

p=0.7

p=0.8

FIG. 12. (Color online) Snapshots of the final spin configurations
for different values of the disorder parameter p for quenching on
RMA. The + and • indicate up and down spins, respectively. The
domains in the conventional sense are clearly visible.

m2 = |(N+ + 2N+
1 − N−)|/L, which is larger than m1. Here

in this hypothetical case we have assumed that N+ > N−
and p2 is very close to p1. One can also assume that the
energy increases for p2 as the system is still sufficiently
short ranged and the new domain walls cause an extra energy
compared to the state obtained for p1. Of course this is an
oversimplified picture where we have assumed that the final
states for p1 and p2 are identical except for the fragmentation
of one domain. However, we find that the final configurations
obtained for small systems for different values of p as shown in
Fig. 12 are consistent with our conjecture. These snapshots are
representative of the real situation in the sense that they give a
typical picture and are not just rare cases; we have obtained a
similar picture from almost all such configurations generated
for small systems.

As p increases further the domains do not fragment
into even smaller pieces as the increasing number of long-
range interactions again helps in the growth of so-called
domains of one particular sign only such that the magneti-
zation grows and the energy decreases. However, domains
of both signs still survive, although the sizes are no longer
comparable. It can therefore be expected that the region
for which both magnetization and energy increase as a
function of p or α would continue until the short-range
interactions are dominating; our results are consistent with this
expectation.

VII. CONCLUSION

In this paper we addressed the question of how the
quenching dynamics of Ising spins depend on the nature of
randomness of the underlying network by considering two
networks in which the randomness is realized differently.
The networks are the same up to the first-neighbor links and
have the same average degree per node. While the qualitative
features are the same, there are intricate differences occurring
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in the behavior of the saturation values of the dynamical
quantities.

Overall, we found some interesting features. The saturation
values of the dynamical quantities do not have monotonic
behavior as a function of the disorder parameters. In particular,
we found that increasing randomness does not necessarily
make the system get locked in a higher-energy state. The
dynamics takes the system to a steady state very quickly and
the saturation times are not dependent on the system size.
No scaling behavior is obtained from the studies either with
time or with system size for any of the dynamic quantities.
The most surprising result is perhaps the existence of a
region in the parameter space where both the residual energy
and the magnetization increase, which can be explained
phenomenologically.

The zero temperature quench of Ising spins on the
Euclidean model shows some surprising behavior in both
the random and regular regions. We find that decreasing
randomness makes the system end up in a higher-energy state
in the random region, while in the regular region the familiar
behavior of the Ising dynamics with short-range interactions is
not obtained; in fact, the probability of freezing is unity here,
indicating that in none of the realizations could the system end
up in the static ground state. The saturation time also does not
show scaling with time.

As already mentioned, the present study is relevant for
dynamical social phenomena on complex networks. For
example, the evolution of binary opinions on a complex
network (where the initial states are randomly +1 and −1)
is analogous to the dynamical study reported in the present
paper. Of course, in the case of the opinion dynamics, the
interactions could be more complex compared to the the simple
Ising model. Our result indicates that the qualitative features
of the results will not be much different for different complex
networks.

Dynamic frustration [20] is responsible for freezing in many
Ising systems where there is no frustration in the conventional
sense. One interesting observation is that the nature of dynamic
frustration in regular lattices of dimension greater than one and
that in systems with random interaction (but no frustration) are,
in general, quite different as in the latter one does not encounter
the familiar scaling laws.
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