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Modeling asset price processes based on mean-field framework
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We propose a model of the dynamics of financial assets based on the mean-field framework. This framework
allows us to construct a model which includes the interaction among the financial assets reflecting the market
structure. Our study is on the cutting edge in the sense of a microscopic approach to modeling the financial
market. To demonstrate the effectiveness of our model concretely, we provide a case study, which is the pricing
problem of the European call option with short-time memory noise.
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I. INTRODUCTION

Numerous attempts have been made to describe the dy-
namics of prices of financial assets (stocks, bonds, foreign
exchanges, and so on). Even if we discuss studies based only
on stochastic processes, the history of these studies is not
short: the first model based on stochastic processes to describe
financial assets was introduced by Bachelier in 1900 [1]. In
1973 Black-Scholes model [2], one of the most famous model
which employs geometric Brownian motions for describing the
dynamics, was proposed. The Black-Scholes model has had
an enormous impact on both academic studies and practical
businesses, for example, implied volatilities are still calculated
from Black-Scholes model in some practical business. The
reasons for still employing the Black-Scholes model in a
large number of scientific as well as business worlds are its
simplicity and elegant mathematical properties.

After the 1980s, models taking into account more real-
istic features of markets have been studied extensively and
intensively. One of the most notable market features is a
long-time correlation in absolute values of price fluctuations
and associated power-law tails in distributions of either price
fluctuations [3] or assets and debts [4]. There exist some
models proposed to describe the former feature from the
viewpoint of econometrics [5,6]. Another famous feature of
real markets is the volatility smile, a significant issue in
mathematical finance. This is a phenomenon where an a
implied volatility calculated from real market data is well fitted
to a U-shape function, while the Black-Scholes model implies
a flat-shape function. To explain the smile a lot of models
have been designed [7,8]. These models are categorized as
stochastic volatility models.

As mentioned above, econometrics and mathematical fi-
nance have designed models which are well fitted to real
financial data; hence they have paid a little attention to
including a structure of financial markets into models. Their
most focused purposes are applications of models to issues
such as the risk management or the pricing of derivative secu-
rities. Hence from their viewpoint, the better models are what
describe real market features which they want more precisely.
Whether the models include the structure of the markets or not
is not a significant issue for them. However, for the purpose
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of understanding the financial markets, we are not able to
avoid considering the model including the structure. Thus
research whose primary purpose is considering the structure
is required, and we argue that an approach from physics
meets such a requirement. From a physics perspective, the
structure should be of more concern than the applications.
The market is regarded as a many-body complex interacting
system. Theoretical statistical physics provides powerful tools
to approach complex systems which are difficult to deal
with numerically. For example, the mean-field framework
is considered to describe the essence of phase transitions in
spin systems under an assumption of reducing degrees of
freedom in many-body systems. We expect that the mean-field
framework grasps the essence of many-body interaction effects
from financial markets. We are assured that the approach
from physics is suitable for this purpose since it satisfies both
motivation and method.

Our study provides a model of the dynamics of financial
assets within the mean-field framework. One of the advantages
of our model includes the market structure (also called
interactions among financial assets), and this suits the purpose
which we explained above. Almost all previous studies about
describing the dynamics of financial assets from a physics
perspective [9–14] take macroscopic approaches without
considering the interactions, except for some studies (e.g.,
the studies are based on random matrix theory [15,16]). Thus
our study is on the cutting edge in the sense that we take
a microscopic approach by considering interactions among
assets to emphasize the structure of financial markets.

The organization of the present paper is as follows. We
introduce our model in Sec. II, where keywords are log return,
the market structure (interactions among financial assets), and
mean-field concept. We begin to build our model from the
concept of log return. The structure we consider is trading
volume changes due to asset price deviation from expected
asset return rates. While the many-body model including the
structure is difficult to treat, the mean-field concept allows
us to reduce the degrees of freedom to obtain a solvable
model. Section III provides a case study, a pricing problem
of the European call option under the influence of short-time
memory noise to discuss the effectiveness of our model. A
European call option is a financial instrument which is a right
to buy some underlying asset from the drawer of the option
for the strike price at maturity [17,18]. We first mention that
the time correlation of the noise does not affect the price
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of the option and we are not able to understand this issue
intuitively. We extend the short-time memory noise model
to the mean-field model discussed in Sec. II. Although there
are a lot of methods to calculate the price of a European
call option, we employ the risk neutral method [19,20].
In this method the price is calculated from computing the
expectation under the corresponding risk neutral process of
underlying asset. Due to the mean-field framework we are able
to provide semianalytical solutions of this pricing problem.
Time evolution equations of the order parameters and the
Fokker-Planck equation play a central role for the pricing.

The main results of this case study are the following: (i)
in the one-body problem, the time correlation effect vanishes,
(ii) within the context of the mean-field model derived from
the N -body model, the time correlation effect begins to appear,
and (iii) the effect so obtained can be understood intuitively.

II. MODEL BASED ON MEAN-FIELD FRAMEWORK

A. Review of Black-Scholes model

Since our model is built from the log return and is then
regarded as an extended Black-Scholes model, we briefly
discuss the Black-Scholes model. The Black-Scholes model
is constructed by a risky asset S and a risk-free asset B and is
described by the following stochastic processes:

S(t) = S(0)eR(t), (1)

dR(t) = μdt + σdW (t), R(0) = 0, (2)

dB(t) = rB(t)dt, (3)

where μ and σ are constants, W is a Wiener process, and R is
called a log return of the risky asset.

The main reason we deal with the Black-Scholes model is
the simplicity of the model. Since our main purpose is to clarify
the effects of interactions among many assets, each asset price
model should be as simple as possible. A stochastic process
characterized in terms of only mean value and variance is one
of the simplest methods; hence choosing the Black-Scholes
model as the base model satisfies this requirement.

Another reason is the clear concept regarding where we
should include the market structure in the model, as is clarified
below. Let us consider the meaning of the parameters μ and σ :
μ represents the expected return rate, which means the average
of predictions about the return rate of risky assets by market
players, and σ is the variance of R, which represents how
the predictions of market players deviate from the expected
return. If we assume that every market player has the same
information, predictions about the return rate of market players
does not differ as much. Hence we should not set the market
structure in the expected return rate. Therefore we assume that
the market structure should be included in the second term of
Eq. (2).

B. N-body interaction model

From the discussion in Sec. II A, we propose a general
N -body interaction model in the following form:

Si(t) = Si(0)eRi (t) i = 1, · · · ,N, (4)

dRi(t) = μidt + σi(t,{Si}1<i<N )dηi(t), Ri(0) = 0, (5)

dB(t) = rB(t)dt, (6)

where N is a number of assets in the market, ηi(t) are certain
stochastic processes, and they no longer need to be Wiener
processes. The functions σi are the terms that include the
interaction among the assets to reflect the market structure.
The variable ηi(t) allows the noise-oriented effects (e.g., time
correlation effect) to be included in the model.

We specify the functions σi and suppose the following
equations:

μi = μ, (7)

σi(t,{Si}1<i<N ) =
√√√√σM +

N∑
k=1

JikV [zk(t)], (8)

zk(t) = Rk(t) − μt, (9)

where μ,σM and Jik are parameters that are assumed to take
non-negative constant values, and μ is regarded as the common
expected return rate among the all assets in the market. In this
case σi is characterized by two terms, a common term of the
all assets σM and an inherent term of asset i representing the
interaction. Jik represents the intensity of interaction between
asset i and k. The function zk(t), the key factor of the inherent
term, is a deviation of the return rate of asset k from the
common expected return at time t . The non-negative function
V is a trading volume function which represents the volatility
change effect due to the trading volume change.

We need to show why we assume that zk(t) becomes the
argument of V . As mentioned in Sec. II A, μt is regarded as the
average expected return of the predictions of market players at
time t . Hence if zk(t) is a positive (or negative, respectively)
large value, the asset k is regarded as an overestimated
(or underestimated, respectively) asset by a lot of market
players. For the overestimated (or underestimated) assets,
market players will take the short (or long) positions and then
the trading volumes of the assets are expected to increase.
Therefore V is a function of zk(t).

Another issue we need to explain is why the trading volumes
change effect is responsible for occurrence of interaction. The
costs for making a deal with asset k will be funded by buying
or selling some other assets. Thus the trading volumes of the
associated assets are expected to increase. Hence this effect
brings about a change in σi through the interaction Jik .

We do not give the specific form of the function V in this
section; V should be determined from investigations regarding
the trading volume changes (e.g., [21,22]).

C. Mean-field interaction model

We have supposed several issues in the previous section;
however, the evaluation is still difficult. We tackle this problem
within the mean-field framework and we reduce the N -body
problem to a one-body problem. To apply the mean-field
framework we assume the following:

Jik = ε

N
, (10)

V (x) = x2, (11)

where ε is a constant which represents the intensity of the
interaction, i.e., all interactions among the assets are the same
and the order of Jik arises from the proper scaling with a
number N of the assets in the large N limit. The dynamics of
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zi(t) is written by

dzi(t) =
√√√√σM +

N∑
k=1

ε

N
z2
k(t) dηi(t). (12)

We also assume that ηi(t) are independent and identically
distributed random variables, and then zi(t) follows the same
dynamics. Hence the value of

∑N
k=1 Jikz

2
k(t) in the limit N →

∞ is represented by the following form:1

lim
N→∞

N∑
k=1

ε

N
z2
k(t) = εE[z2(t)], (13)

where E denotes the expectation of a random variable and z(t)
is called the representative process of zi(t) and is defined by

dz(t) =
√

σM + εE[z2(t)] dη(t). (14)

Here z(t) is defined self-consistently, and z(t) includes many
body interaction effects.

From this discussion we define the mean-field interaction
model as follows:

S(t) = S(0)eRi (t), (15)

dR(t) = μidt + σ (t)dη(t), R(0) = 0, (16)

dB(t) = rB(t)dt, (17)

where

σ (t) =
√

σM + εE[z2(t)], (18)

z(t) = R(t) − μt, (19)

and η(t) is a certain stochastic process. The key points of the
mean-field interaction model are as follows:

(1) Assuming the interactions are same with the order 1
N

,
and

(2) A reduced one-body problem including many-body
interactions as mentioned above.

1The validity of this method is given by Dawson and Gärtner [23].

III. CASE STUDY: PRICING PROBLEM OF EUROPEAN
CALL OPTION

To show the effectiveness of our model, we provide a case
study—a pricing problem of the European call option which
starts from a simple extension of the Black-Scholes model
with a short-time memory noise.

A. A paradox in short-time memory noise Black-Scholes model

We consider a simple extension of the Black-Scholes model
using a short-time memory noise. We define a short-time
memory noise as given by the following stochastic differential
equation:

dη(t) = −aη(t)dt + dW (t), (20)

where a is a positive constant. This is the well-known Ornstein-
Uhlenbeck process. The Ornstein-Uhlenbeck process has the
transient states and a stationary state attained in the limit t →
∞. We write probability density of η(t) as p(t,ηt ), and then
the time evolution equation of p(t,ηt ) is well known to be
given by the corresponding Fokker-Planck equation. To avoid
the transient states, we set p(0,η0) to the stationary probability
density:

p(0,η0) =
√

a

π
e−aη2

0 . (21)

If such an initial condition is given, we call dη(t) the stationary
noise. We call dη(t) the nonstationary noise if the initial
condition is given as

p(0,η0) = δ(η0 − ηinit), (22)

where ηinit is a constant value. We consider both the stationary
case and the nonstationary case.

We now discuss the time correlation of our noise. For
a precise discussion, we treat dη(t) more carefully. Since
dη(t) is a limit of η(t + �t) − η(t) (�t ↘ 0), let us consider
the time correlation of the noise up to (�t)2 order (see
Appendix):

E[(η(t + �t) − η(t))(η(u + �t) − η(u))] ≈
{− 1

2ae−a(t−u)(�t)2 + a2
{
E[η2(0)] − 1

2a

}
e−a(t+u)(�t)2 (t �= u)

�t − 1
2a(�t)2 + a2

{
E[η2(0)] − 1

2a

}
e−2at (�t)2 (t = u).

(23)

Notice the coefficients of (�t)2, and we understand the noise
exhibits the short-time memory and its time correlation length
depends on the parameter a. We mention the time correlation
intensity also depends on a. If a � 1, then e−a(t−u) � 1
and e−a(t+u) � 1; thus the intensity increases with a. If
a has a large value, then e−a(t−u) � 0 and e−a(t+u) � 0,
and hence the time correlation vanishes. At first the time
correlation intensity increases with increasing a, and after a

exceeds a certain level the time correlation intensity starts
decreasing.

Let us consider the case of replacing dW (t) in the Black-
Scholes risky asset process Eq. (2) with dη(t):

dR(t) = μdt + σdη(t) = (μ − aση(t))dt + σdW (t). (24)

Since the drift part of the risky asset does not affect
the pricing of derivative securities under the arbitrage
theory, the time correlation parameter a does not affect
the price of the European call option. However, prices of
derivative securities are regarded as the risk premium, and
the time correlation gives information which reduces a risk
due to uncertainties. Hence we are not able to understand this
result intuitively.

B. Mean-field interaction model with short-time memory noise
and the corresponding risk neutral process

To resolve the paradox in Sec. III A we extend the risky
asset (24) to a many-body system and apply the mean-field

066105-3



MASASHI IEDA AND MASATOSHI SHIINO PHYSICAL REVIEW E 84, 066105 (2011)

framework discussed in Sec. II. The corresponding mean-field
interaction model is defined by the following form:

S(t) = S(0)eR(t), (25)

dR(t) = μdt + σ (t)dη(t) (26)

= (μ − aσ (t)η(t))dt + σ (t)dW (t), (27)

dB(t) = rB(t)dt, (28)

where

dη(t) = −aη(t)dt + dW (t), (29)

σ (t) =
√

σM + εE[z2(t)], (30)

z(t) = R(t) − μt. (31)

As previously mentioned in the Introduction section, our
option pricing method is an evaluation of certain expectations
under the corresponding risk neutral process. We donate by
S̃(t) the corresponding risk neutral process of Eqs. (25) and
(28) and then the equation for S̃(t) is given by2

dS̃(t)

S̃(t)
= rdt + σ (t)dW̃ (t). (32)

C. Time evolution equations of the order parameters

Before we tackle the calculation of expectations, we have
to solve the problem about E[z2(t)] in σ (t). Since E[z2(t)]
is an order parameter of z(t), a method using the time
evolution equations of the order parameters is convenient for
the purpose of dealing with E[z2(t)]. From Eqs. (26) and (31),
the stochastic process of z(t) reads

dz(t) = σ (t)dη(t)

=
√

σM + εE[z2(t)][−aη(t)dt + dW (t)]. (33)

Hence the time evolution of E[z2(t)] is calculated from the
following ordinary differential equations:

d

dt
{E[z2(t)]} = −2a

√
σM + εE[z2(t)]E[η(t)z(t)]

+{σM + εE[z2(t)]}, (34)

d

dt
{E[η(t)z(t)]} = −aE[η(t)z(t)] − a

√
σM + εE[z2(t)]

×
{
E[η2(0)] − 1

2a

}
e−2at . (35)

From Eqs. (26) and (31), initial conditions for the above
equations read

E[z2(0)] = 0, E[η(0)z(0)] = 0. (36)

Basically, we have to resort to a numerical method to calculate
E[z2(t)]; however, in the case of a = 0 or the case where the
noise is stationary we obtain the analytical solution ofE[z2(t)]:

E[z2(t)] = σM

ε
(eεt − 1). (37)

2W̃ (t) means an another Wiener process which differs from W (t).

D. Fokker-Planck equation

To calculate the expectations under the risk neutral process
p̃(t ′,s̃t ′ |t,s̃t ), the conditional probability density of S̃ is a
powerful tool. p̃(t ′,s̃t ′ |t,s̃t ) is a solution of the corresponding
Fokker-Planck equation of Eq. (32), which reads

∂

∂t ′
p̃(t ′,s̃t ′ |t,s̃t ) = − ∂

∂s̃t ′
[rs̃t ′ p̃(t ′,s̃t ′ |t,s̃t )]

+ 1

2

∂2

∂s̃2
t ′

[
s̃2
t ′σ

2(t)p̃(t ′,s̃t ′ |t,s̃t )
]
. (38)

Fortunately, we are able to obtain a semianalytical solution of
Eq. (38) in the following form:

p̃(t ′,s̃t ′ |t,s̃t ) = 1

s̃t ′
√

2πJ (t,t ′)
e
− 1

2J (t,t ′ ) (ln
s̃
t ′
s̃t

−r(t ′−t)+ 1
2 J (t,t ′))2

,

(39)

where

J (t,t ′) =
∫ t ′

t

σ 2(u)du. (40)

E. Pricing of the European call option

We now tackle the pricing problem of the European
call option. Let us consider a European call option whose
underlying asset is S, maturity is T , and the strike price is K .
We write its price at time t as C(t,S(t)) and then C(t,S(t)) has
to satisfy the termination condition

C(T ,S(T )) = (S(T ) − K)+, (41)

where the function (x)+ represents x when x � 0 and 0
when x < 0. According to the risk neutral method, C(t,s)
is represented by the following expectation:

C(t,s) = e−r(T −t)Ẽ[(S̃(T ) − K)+|t,s]. (42)

We already obtained the conditional probability density
p̃(T ,s̃t ′ |t,s̃t ′), so then C(t,s) reads

C(t,s) = e−r(T −t)
∫ ∞

−∞
(s̃T − K)+p̃(T ,s̃T |t,s)ds̃T . (43)

From Eq. (39) we obtain C(t,s) in the following semianalytical
form:

C(t,s) = sN (d+) − Ke−r(T −t)N (d−), (44)

where

d+ = 1√
J (t,T )

[
ln

s

K
+ r(T − t) + 1

2
J (t,T )

]
, (45)

d− = 1√
J (t,T )

[
ln

s

K
+ r(T − t) − 1

2
J (t,T )

]
, (46)

and

N (x) = 1

2π

∫ x

−∞
e− y2

2 dy. (47)

To show the validity of the present model, let us consider a
case of ε = 0. Since σ (t) = σ at this time, J (t,T ) = σM (T − t)
and hence C(t,s) coincides with the Black-Scholes formula.

To discuss the effects of the interactions, we illustrate
C(0,s) with focusing on the parameter ε as in Fig. 1.
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FIG. 1. (Color online) C(0,s), the price of European call option at
time t = 0 as a function of underlying asset price s for T = 1/4 year,
r = 8%/year, σM = 0.09, and K = 40. The illustration demonstrates
the effect of ε. Circle mark represents the Black-Scholes case. The
orange line, green dotted line, red dashed line, and blue chain line
represent C(0,s) with ε = 0.0, ε = 5.0, ε = 10.0, and ε = 15.0,
respectively.

We can see that the option price behaves in the same manner
as ε qualitatively. Since prices of financial derivatives are
regarded as risk premiums and ε is the coefficient of an active
deal effect, this result shows that the price changes reflect
propagations of risk from other assets.

We next discuss the effect of time correlation. We illustrate
C(0,s) with focusing on the parameter a as is shown in Fig. 2.

FIG. 2. (Color online) C(0,s), the price of the European call
option at time t = 0 as a function of underlying asset price s for
T = 1/4 year, r = 8%/year, σM = 0.09, and K = 40. In this case
we employ the nonstationary noise with ηinit = 0. The illustration
demonstrates the effect of a. In (a), The circle mark represents
Black-Scholes case. The blue line, red dotted line, green dashed
line, and orange chain line represent C(0,s) with a = 0.0, a = 1.0,
a = 3.0, and a = 5.0, respectively. In (b), the circle mark represents
the Black-Scholes case. The blue line, orange dotted line, purple
dashed line, red chain line, and green sparse line represent C(0,s) with
a = 0.0, a = 5.0, a = 15.0, a = 30.0, and a = 100.0, respectively.

We observe that once the price C(0,s) decreases with
increasing a and after a exceeds a certain level, C(0,s)
goes back to the value when a = 0 with increasing a. As
previously mentioned, prices of options are regarded as risk
premiums; hence this result shows that the time correlation
effect reduces the risk. This is quite natural and we comprehend
the mechanism which underlies the obtained result by the
following steps: (i) a is the parameter which represents the
time correlation intensity, (ii) hence a is a part of information
that we know about the market, and (iii) since increasing a

corresponds to increasing amount of information, it implies
reducing the risk. We are also able to understand the increasing
C(0,s) after a exceeds a certain level in terms of the behavior
of a. As we discussed in Sec. III A, at first the time correlation
intensity increases with increasing a and after a exceeds a
certain level, the time correlation intensity start decreasing.
This corresponds to the behavior of C(0,s) with changing
a, and a represents amount of our information; hence the
behavior of C(0,s) with changing a is explained by the amount
of information.

The most important result in this section is observation of
the risk reduction effect through the parameter a when we
include the market structure in the model. Since we are able to
understand this intuitively, the paradox in Sec. III A is resolved.

IV. SUMMARY

We have studied a model of the dynamics of financial
assets based on the mean-field framework and the effectiveness
of the model. On the basis of the concept of log return,
we have constructed the N -body model for the purpose of
including the market structure. Thus our model is regarded
as an extended Black-Scholes model. We extended it to
the N -body model for the purpose of building a model
which includes the market structure. The market structure is
represented by the interactions among the financial assets, and
we call the outcome of the interaction the active deal effect.
Although the N -body model is difficult to treat, we are able to
make it solvable by employing the mean-field framework. We
emphasize two significant features of our model:

(1) The model includes the mean-field-type interactions
among the assets as the active deal effect.

(2) The model takes the form of a reduced one-body model
including many-body interactions.

The effectiveness of our model has been demonstrated by
the case study, which is the pricing problem of the European
call option. We first have considered a simple extension of
the Black-Scholes model which takes the short-time memory
noise into account. It leads a paradox where the short-time
memory effect does not bring about a change in the price
of the European call option. To resolve the paradox we have
extended the model, using the short-time memory noise, to
the corresponding mean-field model. We have obtained a
semianalytical expression of the price of the European call
option by taking advantage of use of the time evolution
equations of the order parameters and the Fokker-Planck
equation. The obtained results show that the price evaluated
from the mean-field model undergoes the influence of the
short-time memory effect, and this means that the paradox is
resolved. This result is significant in the sense that the model
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successfully grasps the effect which disappears in the system
without interactions.

We compare our study with previous ones. Our study is
on the cutting edge in the sense of a microscopic approach
to modeling the financial market; hence this study has few
correlations with previous studies. However, the Fokker-
Planck equation approach developed in physics [24–27] allows
us to obtain the semianalytical solution of the European call
option. Since our N -body model belongs to a type of stochastic
volatility model, the mean-field model is considered as an

approximation model of the stochastic volatility model. This
aspect implies that the models developed further from our
model allow us to understand the stochastic volatility model
more completely.

APPENDIX: EVALUATION OF THE TIME CORRELATION
OF THE NOISE Eq. (20)

Let us evaluate the time correlation of the noise Eq. (20).
Suppose t � u, then we have

E[η(t)η(u)] = E

[(
η(0)e−at +

∫ t

0
e−a(t−v)dW (v)

) (
η0e

−au +
∫ u

0
e−a(u−v)dW (v)

)]

= E[η0η0]e−a(t+u) − E [η0] e−atE

[∫ u

0
e−a(u−v)dW (v)

]
− E

[∫ t

0
e−a(t−v)dW (v)

]
E[η0]e−au

+E

[∫ t

0
e−a(t−v)dW (v)

∫ t

0
e−a(t−v)dW (v)

]

= E[η2(0)]e−a(t+u) + E

[
e−at

(∫ u

0
eavdW (v) +

∫ t

u

eaudW (v)

)
+ e−av

∫ u

0
eavdW (v)

]

= E[η2(0)]e−a(t+u) + e−a(t+u)

{
E

[( ∫ u

0
eavdW (v)

)2]
+ E

[∫ u

0
eavdW (v)

]
E

[∫ t

u

eavdW (v)

] }
.

Applying the Ito isometry, we obtain

E[η(t)η(u)] = E[η2(0)]e−a(t+u) + e−a(t+u)E

[∫ u

0

(
eav

)2
dv

]

= E[η2(0)]e−a(t+u) + 1

2a
e−a(t+u)(e2au − 1)

= 1

2a
e−a(t−u) +

(
E[η2(0)] − 1

2a

)
e−a(t+u).

We require the different treatments whether t > u or t = u. We first evaluate in the case of t > u:

E [(η(t + �t) − η(t))(η(u + �t) − η(u))] = E [η(t + �t)η(u + �t)] − E [η(t + �t)η(u)] − E [η(t)η(u + �t)] + E [η(t)η(u)]

= 1

2a
e−a(t+�t−u−�t) +

(
E

[
η2(0)

] − 1

2a

)
e−a(t+�t+u+�t) + 1

2a
e−a(t+�t−u)

+
(
E[η2(0)] − 1

2a

)
e−a(t+�t+u) + 1

2a
e−a(t−u−�t) +

(
E[η2(0)] − 1

2a

)
e−a(t+u+�t)

+ 1

2a
e−a(t−u) +

(
E[η2(0)] − 1

2a

)
e−a(t+u).

Thus we have

E [(η(t + �t) − η(t))(η(u+�t) − η(u))] = 1

2a
e−a(t−u)[2 − e−a�t − ea�t ] +

(
E[η2(0)] − 1

2a

)
e−a(t+u)[e−(2a�t) − 2e−a�t + 1].

Expanding this up to (�t)2 order, we obtain

E[(η(t + �t) − η(t))(η(u + �t) − η(u))] = 1

2a
e−a(t−u)

[
2 −

(
1 − a�t + 1

2
a2(�t)2

)
−

(
1 + a�t + 1

2
a2(�t)2

)]

+
(
E[η2(0)] − 1

2a

)
e−a(t+u)

[
(1 − 2a�t + 2a2(�t)2)

− 2

(
1 − a�t + 1

2
a2(�t)2

)
+ 1

]

= −1

2
ae−a(t−u)(�t)2 + a2

(
E[η2(0)] − 1

2a

)
e−a(t+u)(�t)2.
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We next consider the case of t = u:

E[(η(t + �t) − η(t))(η(t + �t) − η(t))] = E[η(t + �t)η(t + �t)] − 2E[η(t + �t)η(t)] + E[η(t)η(t)]

= 1

2a
e−a(t+�t−t−�t) +

(
E[η2(0)] − 1

2a

)
e−a(t+�t+t+�t)

− 2

{
1

2a
e−a(t+�t−t) +

(
E[η2(0)] − 1

2a

)
e−a(t+�t+t)

}

+ 1

2a
e−a(t1t) +

(
E[η2(0)] − 1

2a

)
e−a(t+t)

= 1

a
[1 − e−a�t ] +

(
E[η2(0)] − 1

2a

)
e−2at [e−2a�t − 2e−a�t + 1].

Expanding this up to (�t)2 order, we obtain

E[(η(t + �t) − η(t))(η(t + �t) − η(t))] = 1

a

[
1 −

(
1 − a�t + 1

2
a2(�t)2

)]
+

(
E[η2(0)] − 1

2a

)
e−2at

×
[

(1 − 2a�t + 2a2(�t)2) − 2

(
1 − a�t + 1

2
a2(�t)2

)
+ 1

]

= �t − 1

2
a(�t)2 + a2

(
E[η2(0)] − 1

2a

)
e−2at (�t)2.
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[13] J. Masoliver and J. Perellò, Quantum Finance 6, 423 (2006).
[14] L. Borland, Prog. Theor. Phys. Suppl. no. 162 155

(2006).

[15] M. Potters, J.-P. Bouchaud, and L. Laloux, Acta Phys. Pol. B 36,
2767 (2005).

[16] D. Wang, B. Podobnik, D. Horvatic, and H. E. Stanley, Phys.
Rev. E 83, 046121 (2011).

[17] J. C. Hull, Options, Futures, and Other Derivatives (Prentice
Hall, New York, 2008).

[18] S. E. Shreve, Stochastic Calculus for Finance II (Springer-
Verlag, New York, 2004).

[19] J. M. Harrison and D. M. Krep, J. Econ. Theory 20, 381 (1979).
[20] T. Björk, Arbitrage Theory in Continuous Time, 2nd ed (Oxford

University Press, New York, 2004).
[21] B. Podobnik and H. E. Stanley, Phys. Rev. Lett. 100, 084102

(2008).
[22] B. Podobnik, D. Horvatic, A. M. Petersen, and H. E. Stanley,

Proc. Nat. Acad. Sci. USA 106, 22079 (2009).
[23] D. A. Dawson and J. Gartner, Mem. Am. Math. Soc. 78(398)

(1989).
[24] H. Risken, The Fokker-Planck Equation (Springer-Verlag,

Berlin, 1984).
[25] M. Shiino, Phys. Rev. A 36, 2393 (1987).
[26] T. D. Frank, Int. J. Mod. Phys. B 21, 1099 (2007).
[27] K. Okumura, A. Ichiki, and M. Shiino, Europhys. Lett. 92, 50009

(2010).

066105-7

http://dx.doi.org/10.1086/260062
http://dx.doi.org/10.1103/PhysRevE.60.6519
http://dx.doi.org/10.1073/pnas.1011942107
http://dx.doi.org/10.1073/pnas.1011942107
http://dx.doi.org/10.2307/1912773
http://dx.doi.org/10.1016/0304-4076(86)90063-1
http://dx.doi.org/10.1093/rfs/6.2.327
http://dx.doi.org/10.1016/S0378-4371(98)00020-X
http://dx.doi.org/10.1007/s100510070131
http://dx.doi.org/10.1007/s100510070131
http://dx.doi.org/10.1016/j.physa.2004.06.120
http://dx.doi.org/10.1103/PhysRevE.73.026117
http://dx.doi.org/10.1103/PhysRevE.73.026117
http://dx.doi.org/10.1080/14697680600727547
http://dx.doi.org/10.1143/PTPS.162.155
http://dx.doi.org/10.1143/PTPS.162.155
http://dx.doi.org/10.1103/PhysRevE.83.046121
http://dx.doi.org/10.1103/PhysRevE.83.046121
http://dx.doi.org/10.1016/0022-0531(79)90043-7
http://dx.doi.org/10.1103/PhysRevLett.100.084102
http://dx.doi.org/10.1103/PhysRevLett.100.084102
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1103/PhysRevA.36.2393
http://dx.doi.org/10.1142/S0217979207036904
http://dx.doi.org/10.1209/0295-5075/92/50009
http://dx.doi.org/10.1209/0295-5075/92/50009

