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Emerging properties of financial time series in the ‘“Game of Life”
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We explore the spatial complexity of Conway’s “Game of Life,” a prototypical cellular automaton by means of
a geometrical procedure generating a two-dimensional random walk from a bidimensional lattice with periodical
boundaries. The one-dimensional projection of this process is analyzed and it turns out that some of its statistical
properties resemble the so-called stylized facts observed in financial time series. The scope and meaning of
this result are discussed from the viewpoint of complex systems. In particular, we stress how the supposed
peculiarities of financial time series are, often, overrated in their importance.
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I. INTRODUCTION

Advances in physics (especially computational statistical
physics), applied mathematics (information and stochastic
theories), and computer science have allowed us to success-
fully attack and study the problem of many interacting units.
The affected disciplines range from pure physics to biology,
sociology, and economics. The common tools used to study
such problems are collectively known as complex-system
science. Due to important implications and the accessibility
of data, economic systems such as the economy of a country
or stock markets are one of the main research subjects. Current
research focuses on topics such as the study of the distribu-
tional properties of the price fluctuations in stock markets,
network analysis of economical systems, financial crashes, and
wealth distributions [1-3]. In all these mentioned phenomena,
the presence of power-law distributions is ubiquitous and is
often recognized as a sign of complexity. Those distribu-
tions, together with a full set of common peculiar statistical
properties, are omnipresent in market data. They are known
as “stylized facts” and include absence of price-increment
correlations, long-range correlation of their absolute values,
volatility clustering, aggregational Gaussianity, etc. [4,5].

In order to study and create models of financial markets
under a microscopic point of view, new techniques named
microscopic simulation (MS) [6] are being intensively applied.
They consist in studying a system by individually following
each agent and its interactions with other agents, simulating
the overall evolution. This line of conduct generated various
models able to reproduce “stylized facts” [7,8].

In a closely related way, a great amount of work was
devoted to constructing artificial stock markets by means of
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cellular automata (CA) models [9-11]. Cellular automata are
space-time-like discrete deterministic dynamical systems, the
behavior of which is defined completely in terms of local
interactions. CA were introduced by von Neumann as a tool
to understand the biological mechanisms of self-reproduction
[12]. Because of their intrinsic mathematical interest and
their success in modeling complex phenomena in physical,
chemical, economical, and biological systems, design of
parallel computing architectures, traffic models, programming
environments, etc. [13], they are now much studied.

Cellular automata became very popular at the beginning
of the 1970’s thanks to an article written by Gardner [14]
about the cellular automaton called the “Game of Life” (GOL),
or just “Life.” This automaton was proposed by Conway at
the end of 1960’s and since then has displayed a very rich
and interesting behavior; very soon, it became the favorite
game of the community of computer fans in those times.
In practice, by their simplicity, CA are probably the most
simple type of abstract complex systems [15-21]. “Life” is a
class IV (shows complex behavior), two-state, bidimensional,
totalitarian cellular automaton [22-24]. In discrete time, the
updating rules determining “Life” evolution are applied on a
Moore neighborhood as follows: (a) a dead cell surrounded by
exactly three living cells is born again, and (b) a live cell will
die if either it has less than two or more than three living
neighbors. These simple rules produce a very rich behav-
ior, generating self-organized structures and also producing
important and interesting emergent properties (formation of
self-replicating structures, universal computation, etc.) [23].
Currently, 40 years after its birth, “Life” is still a very actively
researched CA; it is being studied in an interdisciplinary
way by physicists, mathematicians, and computer scientists,
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etc. [25-30]. Reference [23] is a good source of classical
and state-of-the-art research about “Life.” References [31-36]
provide further information.

In 1989, Bak suggested that, in analogy to his sand pile
mechanism, “Life” can reach a self-organized critical state
with a uniform distribution of living cells [37,38]. However,
subsequent studies showed that “Life” is not really able to
reach a critical self-organized state, pointing instead to a
subcritical state [39-42].

The purpose of this paper is twofold. First, we believe
“Life” can be a laboratory in which we can try to understand
some of the underlying statistical mechanisms behind stylized
facts. Second, we would like to highlight how, sometimes,
researchers’ focus is pointed on statistical properties too
common to justify all the emphasis put among them. The
paper is organized as follows. In Sec. II, we present a mapping
procedure from “Life” to a one-dimensional time series [43]
showing statistical properties very similar to those of financial
time series. Section II1 is devoted to detailed statistical analyses
of the “Life” time series, and Sec. IV contains the final
discussion.

II. GENERATING A RANDOM WALK BY THE “GAME OF
LIFE”: DATA SAMPLE

“Life” evolves on an N x N two-dimensional lattice with
periodic boundary conditions. We set up a Cartesian coordinate
system XY centered in the middle point of the rectangular
lattice, as shown in the left panel of Fig. 1. We want to describe
“Life” time evolution using the simplest but yet comprehensive
summary statistics. For this reason, we select the position of the
center of mass considering the alive sites as particles of unitary
mass. Given the symmetries present in the model, we can safely
analyze the distance of the center of mass from the origin.
Furthermore, we are justified in this choice recalling that,
in many cases, high-dimensional deterministic dynamics is
more conveniently described by lower-dimensional stochastic
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processes, as already noticed by the fathers of statistical
physics in the second half of the 19th century [3,44].
More specifically, to obtain the one-dimensional observable
analyzed in this paper [45], we construct the vector R . (i)
for each time step i,7 = 1,2,3, ..., as follows:

Rem () = (Xem. (), Yem ()

1 N N
5 2 2 Cold),

x=1 y=1

where C,,(i) denotes the state (1 or 0) of the cell in the
coordinates (x,y) at time step i. The subscript c.m. stands
for center of mass; indeed, R. , (7) is the center of mass of the
living particles at step i (with unitary mass). Figure 1 (right
panel) shows 10 000 time steps evolution of the vector R 1, (7).
Our observable r; will be the length of R. (i), i.e., the
distance of c.m. from the origin: r; := /Xcm.(1)? + Yo ()%
i=1,23,...,M.

In order to analyze this time series, we construct the
returns or logarithmic differences S; for each realization of
the experiment:

S,' = logr(i+1)—10gr(i), i = 1,2,3,...,M. (1)

We employed a lattice of size N x N = 3000 x 3000 and
the simulation has been initialized configuring randomly the
20%, 40%, 60%, or the 80% of cells as alive. This means
that we have randomly chosen as alive exactly 1800 000,
3600000, 5400000, or 7200000 of the 9000 000 total cells.
For each one of these densities, we generated 20 random walks
of 20 000 steps. Considering certain characteristics such as the
finite size of the lattice, or a particular initial configuration,
generated fluctuations tend to die out (completely dead lattice)
or become periodic after an unknown number of time steps.
To overcome this problem, we consider only the first 5000
returns of each one of the 80 original samples. The final four
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FIG. 1. (Color online) Left panel: coordinate system used to define the vector R, (i) (the depicted CA state is only for illustration
purposes). Right panel: an example of the R, ,, (i) evolution (10 000 steps).
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FIG. 2. (a) Time evolution of R, (i) for a typical realization of
our simulation. (b) Corresponding log-returns series.

time series are obtained by concatenating the similar series,
eliminating the 19 boundary returns.

III. NUMERICAL RESULTS

Figure 2(a) shows 10 000 time steps of our observable 7;
as a function of time, whereas Fig. 2(b) shows the plot of the
corresponding log returns. Both figures were obtained from
one of the studied time series. Already, a visual inspection of
the return time series displays an intermittent behavior typical
of volatility clustering in finance.

A. Return distribution

The empirical densities of standardized returns S; are
reported in Fig. 3. Left and right tails are shown in Fig. 4.
The same figure displays the power-law exponents obtained
by a fit using an optimal cutoff parameter together with the
Hill estimator as explained in Ref. [46]. Fit parameters are
shown in Table I and they are consistent with a power-law
behavior.

TABLE 1. Fit parameters from cumulative distribution function
tails, for right and left tails for each of our four standardized return
samples. The second column reports estimated power-law exponents,
the third column Anderson-Darling (AD) statistics, the fourth column
number of observations fitted in the tail, and the last column the
chosen cutoff value (see Ref. [46]). Only the values in italics are
larger than the critical value at the 5% significance level.
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FIG. 3. (Color online) Returns distributions for the four full
samples. Ng denotates the number of entries.

B. Aggregation properties

Although its formation mechanism is not well understood,
it is well known that financial return distributions converge
to the normal distribution extremely slowly when the time
scale increases [5,47]. This statistical property is called
aggregational Gaussianity (or normality), and we want to show
its presence in the data.

The analysis is performed summing the simple log returns
of Eq. (1), i.e., considering the following definition:

Sl»A = logr(i+A)—10gr(i), i= 1,2,3,...,M—A (2)
where A stands for the time scale used to aggregate the data.
Here, we underline that the plots in Fig. 5 are obtained using
overlapping time windows, a method that is not reliable, but
can be used for illustrative purposes. One can see that, as
the time scale increases, the empirical probability density
functions of all four samples converge to a normal probability
density slowly. Tables II and III contain the estimated excess
kurtosis and skewness of empirical return distributions for
every sample and for different time scales A.

TABLE II. Return kurtosis for our four samples and increasing
time scales A used in Fig. 5.

Sample o AD Statistic N, Cutoff
20% positive tail 2.79 0.84 441 4.20
40% positive tail 3.17 1.38 233 5.80
60% positive tail 3.58 0.39 216 5.70
80% positive tail 2.38 0.58 235 5.50
20% negative tail 3.02 0.49 379 4.50
40% negative tail 2.68 1.75 446 4.30
60% negative tail 3.20 0.94 222 5.50
80% negative tail 2.29 0.29 378 4.20

A kul‘z() kur40 kllr6() kurgo
1 36.1 41.0 31.9 141.7
10 15.4 18.9 10.6 63.7
100 4.5 52 3.4 18.5
1000 1.3 1.6 1.1 33
10000 0.97 1.3 0.87 0.57
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FIG. 4. (Color online) (a)—(d) report the right tail distributions of standardized returns. (e), (f) report the distributions for left tails. Fit
exponents are also shown in each figure part. Note: Straight line segments are not fits and are only used for comparison purposes.

From the inspection of Tables II and I, it turns out that both
skewness and excess kurtosis of return distributions vanish
slowly as the time scale A increases. These empirical results
are compatible with the convergence of return distributions
to the normal distribution. This analysis is not sufficient to
infer that our data samples satisfy the property of aggrega-
tional Gaussianity, but the moment behavior is definitely in
agreement with the phenomenon.

C. Autocorrelation properties

The upper and lower panels of Fig. 6 show the estimate
for the autocorrelation functions (ACF) of returns and of

TABLE III. Return skewness for our four samples and increasing
time scales A.

A skewsq skewyo 6.0pt1,0.0ptskewq skewsgg
1 0.08 0.015 —0.02 —0.29
10 —-0.32 —0.55 —0.03 —1.15
100 —0.06 —0.12 —0.01 —1.09
1000 0.11 0.05 0.08 —0.202
10000 —0.001 0.005 —0.09 —0.203

absolute returns, respectively. It can be seen that the ACF
for returns shows no memory, immediately decaying to the
level of noise; indeed, Fig. 6 looks similar to the ACF of
daily financial returns. On the other hand, the ACF of absolute
returns decays slowly, showing long-range memory. Both
these results are in agreement with the stylized facts found
in financial data. Figure 7 displays the average squared ACFs
over the 20 realizations of each initial coverage. Power-law fits
have been performed on the estimated squared returns ACFE.
Fit parameters can be found in Table IV. From this table, it is
possible to see that fits are excellent for samples 20%, 40%,
and 80%, and good for the 60% sample (see Fig. 8). Based on

TABLEIV. Power-law fit exponent parameters for each one of the
average squared returns ACF for 20%, 40%, 60%, and 80% samples.

Sample AD statistic B Remaining Obs.
20% 0.536 2.13 297
40% 0.351 2.46 123
60% 1.408 2.02 126
80% 0.299 2.16 135
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FIG. 5. (Color online) Aggregation of the empirical return dis-
tributions. When the time lag increases, the empirical probability
densities converge to a normal density. The dashed line is a normal
density.

the above considerations, we can safely conclude that returns
are not correlated, whereas squared, or equivalently, absolute
returns ACFs decay very slowly, following a power law. All
of this is in agreement with financial stylized facts.

D. Leverage effect

Empirical studies of volatility for financial data have shown
that volatility estimates and returns are negatively correlated

c(s)

i u\‘u\‘u\‘\\\“

FIG. 6. Upper panel: return ACF (linear scale). Lower Panel:
absolute return ACF (logarithmic scale). Both estimates are based on
15 realizations of our experiment.
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FIG. 7. (Color online) Absolute returns ACF for all the four
samples.

for positive time lag [5,48]. Following Ref. [48], we investigate
this effect by estimating the leverage correlation function as

(82(i + 7)SG))
var[S(i)]?

The estimates for our four samples are shown in Fig. 9. Weak
negative correlations are observed for 20% to 60% initial
coverage and no correlations for the 80% sample. The same
figure shows that the leverage correlation function can be fitted
by an exponential function. We found no correlation between
past volatility and future price changes and a weak but clear
negative correlation with an exponential time decay between

L(t) = 3)
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FIG. 8. (Color online) Squared returns ACF for our four samples
in alog-log plot. Power-law fit exponents are displayed. Straight lines
are used to guide the eye. Fit parameters can be found in Table IV.
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FIG. 9. (Color online) Leverage effect. It is not there for the sample with initial density of 80% living cells.

future volatility and past returns changes:
—Ce ™"
L(t) = '
®=1,

Fitted parameters for the exponent a for each one of our four
samples are shown in Table V. Therefore, from the analysis
of this section, we can conclude that at least three data sets
generated with the lowest initial coverage of living states
display a weak leverage effect.

E. Volatility analysis

Volatility v(¢) is calculated [49] by averaging the absolute
returns over a time window T = nA t as follows:

t+n 1

Z NG €

TABLE V. Exponential fit leverage exponent a for each one of
the overall 20%, 40%, 60%, and 80% samples.

v(t) =

Sample a

20% —0.487 £0.048
40% 1.098 £0.164
60% —0.958 +0.109
80% No leverage effect

Here, we have set up At = 1 time lag and a window of 50
time steps. Figure 10 displays the volatility for the first 3000
time steps of our observable for one of our generated random
walks. Volatility distributions for the four samples are shown
in Fig. 11. The data were analyzed in order to fit a suitable
distribution based on the full sample values of the volatility.
A three-parameter log-normal distribution closely describes

Time window 50 time steps

0 L L L L
0 2000 4000 6000 8000

FIG. 10. (Color online) Volatility for a typical generated random
walk with a time window of 50 time steps.
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TABLE VI. Fit parameter and KS values for the log-normal fits.

Sample A uw o KS statistic
20% 0.08711 —1.1167 0.8712 0.01362
40% 0.08308 —1.2306 0.9496 0.01446
60% 0.03108 —0.9190 0.7666 0.02615
80% 0.03361 —1.3572 0.9918 0.04072

the behavior of the set of volatility values. The cumulative
distribution function (CDF) is

Inv—A)—pu

o

F(v)=d>< ) for v > A, (@)
where ® denotes the Laplace integral (or the CDF of a standard
normal random variable) and u, o, and A denote the location,
scale, and threshold parameters, respectively. In performing
the fit, the values of the parameters were found using the
maximum likelihood estimates. The results are shown in
Table VI for 20%, 40%, 60%, and 80% return samples,
together with values of the Kolmogorov-Smirnov (KS) statistic
measuring the maximum distance between the empirical and
the fitted cumulative distribution functions. In general, the fits
appear to be fairly good; from Fig. 12, it can be seen that
the empirical distribution function (EDF) (solid) and the fitted
cumulative distribution function (CDF) (dashed) overlap. It
is necessary to remark that no statistical goodness-of-fit test
can be carried out given that, by construction, the values of
the volatility are not independent as required by the tests. In
this case, the KS statistic is presented as a descriptive measure
to assess the fit quality. In this context, the three-parameter
log-normal distribution was used as a model to describe the
general behavior of the data.

IV. DISCUSSION

Since GOL is a class IV cellular automaton and exhibits the
property of criticality, it is not a big surprise to detect power-
law distributions emerging from different observables, such as
spatial and temporal duration of ““activity avalanches,” density
of living cells and its fluctuations, etc. [33,37,38,50]. In this
paper, we chose the summary statistics |R¢m, (7)| physically

Ne | v 20%
15000 |- x 40% --ooooee
: ° 60% e -
10000 .
5000 -
i ol

-t
o |
L

A
10 1 \';

FIG. 11. (Color online) Volatility frequency histogram for all the
samples.
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FIG. 12. (Color online) Complementary cumulative probability
distribution function (1-CDF) for the four samples. Solid lines:
volatility empirical probability distribution function. Dashed lines:
fitted curve. Both lines almost overlap for all fits. We plot and
fit the empirical complementary cumulative distribution for easier
comparison.

suited to study spatial complexity. In doing so, we assumed
a priori that somehow the process of mapping the cell distribu-
tion from each GOL’s microstate (3000 x 3000 dichotomous
state variables) onto the “center of mass” (a single continuous
variable) would conserve the complexity properties of GOL.
This assumption turns out to be correct, and we obtain the
expected and ubiquitous power-law distribution of |R . (7)|
variations as well as other unexpected statistical emergent
properties. Once more, these facts display the high complexity
of GOL and its importance for complexity sciences.

To rephrase, in a very simple way, we have shown how
“Life’s” dynamics is able to generate time series displaying
most of the statistical properties called stylized facts, usually
connected with financial market data and recognized as signs
of their complexity. By means of a very simple geometrical
mapping, and using a two-dimensional cellular automaton,
we generated synthetic data having increments with fat-tailed
distributions, clustered volatility, no autocorrelations, long
memory in the autocorrelation of absolute returns, aggrega-
tional Gaussianity, and leverage effect.

We believe the use of our scheme can be of help in under-
standing the underlying mechanisms governing the formation
of the stylized facts. Of course, “Life” is not the direct expla-
nation for the emergence of these statistical properties, but,
given its simplicity, we are confident it can help to build some
convincing analogies in order to shed new light on this difficult
and important problem. Moreover, we think researchers in both
complex systems and quantitative finance should be aware of
how they can be easily fooled by all these phenomena. Are
power laws really distinct signs of “anomalies”? Is volatility
clustering a pregnant concept? Is leverage correlation so
peculiar for a time series without independent increments? Do
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we need to think about all these facts as pillars of our models or
isitmore likely they are just “natural” results of nonstationarity
and nonlinear dependencies? At this stage, we do not further
speculate on the reported findings that are far from giving an
explanation and an interpretation of the phenomena. However,
this manuscript can be seen as an example of how misleading
the direct study of these phenomena can be; phenomena that
are complex not because necessarily connected with something
complicated, but because we do not yet have any consistent
tool to address them.
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