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Ultrawide phononic band gap for combined in-plane and out-of-plane waves
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We consider two-dimensional phononic crystals formed from silicon and voids, and present optimized unit-cell
designs for (1) out-of-plane, (2) in-plane, and (3) combined out-of-plane and in-plane elastic wave propagation.
To feasibly search through an excessively large design space (∼1040 possible realizations) we develop a
specialized genetic algorithm and utilize it in conjunction with the reduced Bloch mode expansion method
for fast band-structure calculations. Focusing on high-symmetry plain-strain square lattices, we report unit-cell
designs exhibiting record values of normalized band-gap size for all three categories. For the case of combined
polarizations, we reveal a design with a normalized band-gap size exceeding 60%.
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Phononic crystals (PnCs) are periodic materials that exhibit
distinct frequency characteristics, such as the possibility of the
formation of band gaps. Within a band gap, wave propagation
is effectively prohibited. This inherent dynamical phenomenon
can be utilized in a broad range of technologies at different
length scales. Applications of PnCs include elastic or acoustic
waveguiding [1] and focusing [2], vibration minimization
[3], sound collimation [4], frequency sensing [5,6], acoustic
cloaking [7], acoustic rectification [8], optomechanical waves
coupling in photonic devices [9], thermal conductivity lower-
ing in semiconductors [10–13], among others [14].

In general, it is most advantageous to have the frequency
range of a band gap maximized while pulling its midpoint as
low as possible in order to keep the unit-cell size to a minimum.
Selecting the topological distribution of the material phases
inside the unit cell provides a powerful means toward reaching
this target, and this has been the focus of numerous research
studies not only on PnCs but also photonic crystals (PtCs).

The exploration for optimal unit-cell designs was initiated
by Cox and Dobson in 1999 [15] (in the context of PtCs).
The articles by Burger et al. [16] and Jensen and Sigmund
[17] provide reviews of subsequent studies concerned with
band-gap widening in PtCs. In the area of PnCs, the problem
has been treated in a variety of settings and by using several
techniques. For example, unit cells have been optimized in
one dimension [18,19] and in two dimensions (2D) [20–25]
by using gradient-based [20–23] as well as non-gradient-based
[19,24,25] techniques. Interest in band-gap size maximization
has also been treated outside the scope of the unit-cell dis-
persion problem [21,26]. In all these optimization studies the
focus has been primarily on PnCs based on an infinite thickness
model and a material composition consisting of two or more
solid (or solid and fluid) phases, with the exception of a few
investigations that considered thin-plate single-phase models
[22,23]. Recognizing the practical significance of solid-and-air
PnCs with relatively large cross-sectional thicknesses, some
studies considered the configuration of a 2D solid matrix with
periodic cylindrical voids—modeled under 2D plain-strain
conditions [27] or as a three-dimensional continuum with free-
surface boundary conditions [28]—and investigated the depen-
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dence of band-gap size upon the void radius. For combined
out-of-plane and in-plane waves in 2D infinite-thickness PnCs
formed from silicon and a square lattice of circular voids, it
has been shown that the band-gap size normalized with respect
to the midgap frequency cannot exceed 40% [27]. In this
Rapid Communication we utilize a specialized optimization
algorithm in pursuit of the best unit-cell solid-void distribution
for the 2D plain-strain problem considering high-symmetry
square lattices. We cover the cases of (1) out-of-plane,
(2) in-plane, and (3) combined out-of-plane and in-plane
elastic wave propagation.

The governing continuum equation of motion for a hetero-
geneous medium is

∇ · C : 1
2 [∇u + (∇u)T] = ρü, (1)

where C is the elasticity tensor, ρ is the density, u is
the displacement vector, x = {x,y,z} is the position vector,
∇ is the gradient operator, “:” is the double contraction
operation, and (·)T is the transpose operation. We assume
the wave propagation to be confined to the x-y plane only,
that is, ∂u/∂z = 0. As such, we have two independent sets
of equations, one for out-of-plane motion and the other for
in-plane motion. To obtain the band structure for a given
PnC unit-cell design we assume a Bloch solution to the
governing equations in the form u(x,k; t) = ũ(x,k)ei(k·x−ωt),
where ũ is the Bloch displacement vector, k is the wave vector,
ω is the frequency, and t is the time. Due to lattice symmetry
the analysis is restricted to the first Brillouin zone. We consider
square lattices and furthermore impose C4v symmetry at the
unit-cell level. Subsequently design representation is needed in
only a portion of the unit cell and the band-structure calculation
is limited to the corresponding irreducible Brillouin zone
(IBZ). Furthermore, we model only the solid portion of the
unit cell. The void portion is not modeled since we permit
only contiguous distribution of solid material. In this manner
the PnCs considered exhibit geometric periodicity (with free
internal in-plane surfaces) and not material periodicity. In
practice, the voids will be either in vacuum or filled with
air. Our model presents an adequate representation of both
cases because the elastic waves propagating in the solid will
have the dominating effect [28]. In fact, this also suggests that
the results we show are practically independent of the choice
of the solid material. We numerically solve the emerging
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eigenvalue problem using the finite-element (FE) method
utilizing four-node bilinear quadrilateral elements. In addition,
the reduced Bloch mode expansion (RBME) method [29] is
applied to the FE model to substantially speed up the band-
structure calculations throughout the optimization process.
In the RBME implementation we use a two-point expansion
scheme. The final reported results, however, are based on full
(nonreduced) calculations.

Unit-cell optimization. We represent a square unit cell Y
by n × n pixels forming a binary matrix G. This matrix is
then reduced to a vector, g, following the underlying unit-cell
symmetry. Each of the pixels can be assigned to either a
no-material (void) or a material (silicon), i.e., gs ∈ {0,1}.
Throughout all the intermediate steps of the optimization
process, we treat the void pixels as a highly compliant medium
as this enables us to conveniently manipulate the unit-cell
designs. Once the optimization is complete, we assess the
final designs by modeling only the silicon portion of the unit
cell as described above.

The objective function is formulated in terms of the size
of a particular band-gap width normalized with respect to its
midpoint frequency:

f (g) = max
{
minnk

j=1

[
ω2

i+1(kj ,g)
] − maxnk

j=1

[
ω2

i (kj ,g)
]
,0

}
{
minnk

j=1

[
ω2

i+1(kj ,g)
] + maxnk

j=1

[
ω2

i (kj ,g)
]}

/2
,

(2)

where minnk

j=1[ω2
i (kj ,g)] and maxnk

j=1[ω2
i (kj ,g)] denote the

minimum and maximum, respectively, of the ith frequency
ωi over the entire discrete wave-vector set, kj ,j = 1, . . . ,nk ,
tracing the border of the IBZ. The band gap exists only
when the minimum of the (i + 1)th branch is greater than
the maximum of the ith branch; otherwise no band gap exists.

We employ a genetic algorithm (GA) to maximize f (g).
A GA is a nature-inspired optimization technique that mimics
biological evolution. It generally starts with a pool of candidate
solutions (i.e., designs) according to a certain objective
(fitness) function, then applies a group of operators, namely,
selection, crossover, and mutation, in order to evolve to more fit
designs (i.e., with higher objective function values). Compared
to gradient-based methods, GAs are less likely to get trapped
into local minima, especially for problems with vast search
spaces, hyperdimensions, and a large number of variables [30],
as is the case in our unit-cell optimization problem.

In our GA the initial population of unit-cell designs is set
up to be random to avoid any initial bias that might negatively
affect the search. Since it is unlikely to have a band gap at the
onset, we define the fitness function, Fl , of the unit-cell design
as follows:

Fo = Ho + φ1fo(g), (3a)

Fi = Hi + φ1fi(g), (3b)

Fc = Ho + φ1fo(g) + φ2Hi + φ3fc(g), (3c)

where the subscript l is equal to o, i or c to denote the wave
type (i.e., either out-of-plane, in-plane, or combined), φ1−3

are constants equal to 104,108,1015, respectively, introduced
to set priorities during the evolution process, and Hl is a step

function defined as

Hl =
{

0 if fl(g) > 0 (band gap exists),

A if fl(g) = 0 (no band gap).
(4)

In Eq. (3c) fc denotes the objective function modified to
represent the normalized band-gap size for the combined
waves case. In Eq. (4) A represents a measure of the “area”
in frequency-wavenumber space between the two consecutive
dispersion branches of interest:

A =
nk∑

j=1

{[
ω2

i+1(kj ,g)
] − [

ω2
i (kj ,g)

]}
. (5)

The only condition enforced in the initial population is that
adjacent pixels of the same material type appear in pairs in
each row. Throughout the evolution, tournament selection and
single-point crossover are the two types of operations applied
on any given pair of “parent” unit-cell designs. Following
the unit-cell symmetry constraint, the “offspring” mutates
according to a specific probability using the following rule:
Select random pixel x; if

∑1
r=−1 gx+r > 1, set each of the

three pixels to one, otherwise, to zero. The GA terminates
when no further improvement in the objective function value
is noted for a prescribed number of generations. At the end of
the search, the final unit-cell topology passes through a simple
one-point flip local search for fine tuning and smoothening.

Lead-follow algorithm. The combined out-of-plane and
in-plane optimization problem poses a challenge in setting
up the objective function because it is based on two sets of
independent equations. Here we adopt a unique strategy, which
we refer to as a lead-follow algorithm, whereby the search
for a combined band gap is tackled in a two-stage fashion
during the evolution process. The algorithm starts with a set of
random designs and searches for a band gap for out-of-plane
waves (the leader) between two prescribed branches guided
by Eq. (5) for indication of design quality. Once the GA opens
a gap, it shifts its focus to the in-plane waves (the follower),
but now the branch numbers encompassing the band gap are
not prescribed—they are determined by the same frequency
range that spans the band gap of the leader wave type. The
objective function for the follower wave type is also guided
by the “area” as given by Eq. (5). This lead-follow process
continues until a combined band gap is found, at which point
the objective function effectively switches to being the actual
value of the normalized combined band gap. This process is
automated through the generalized fitness function given in
Eq. (3). We note that, in principle, the identity of the leader
and the follower may be reversed.

Results. In applying the specialized GA we considered the
following properties for isotropic silicon (λ and μ denote
Lame’s coefficients): ρs = 2330 kg/m3, λs = 85.502 GPa,
μs = 72.835 GPa, and we used a resolution of n = 32. At this
resolution, the total number of possible material distributions
within the unit-cell domain is 8.7 × 1040. This highlights the
tremendously large search space that the GA needs to navigate
through. At the end of each complete GA run, we doubled
the resolution of the emerged topology to become 64 × 64
pixels, and then smoothened the topology (while keeping it
pixelated) by following a few simple rules. For the third
case (i.e., combined waves) a splines-based solid material
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FIG. 1. (Color online) Optimized unit-cell design and band
structure for out-of-plane waves: (a) First band gap, (b) second band
gap; in-plane waves: (c) second band gap; combined out-of-plane
and in-plane waves, lowest band gap: (d) pixels, and (e) splines. The
minimum feature size, d, and minimum radius of curvature, r, are
identified in (e). All band gaps are shaded in gray.

distribution has been subsequently generated to represent
a manufacturable design. Figure 1 presents the unit-cell
topologies and band structures of the optimized unit cells for
the three cases, and Table I lists the objective values obtained.
In our results we identify a band-gap number by the number
of the optical branch that borders it from the top.

TABLE I. Normalized band-gap (BG) size for the optimized unit
cells.

Wave type Out-of-plane In-plane Combined

BG number 1st 2nd 2nd Lowest
Representation Pixels Pixels Pixels Pixels Splines
Norm. BG size 1.2270 1.1132 0.7696 0.6259 0.6021

The optimized unit-cell topologies for out-of-plane waves
[Figs. 1(a) and 1(b)] show contiguous solid media approaching
the limiting case of isolated square or circular inclusions.
This limiting case represents the optimal conditions for sonic
crystals which admits only pressure waves [31]. For the
presented case, the thin connections shown are needed to
support the propagation of the shear elastic waves. The
optimized topology for the in-plane waves problem [Fig. 1(c)],
on the other hand, shows a mostly solid material with delicately
shaped voids. This is consistent with the understanding in the
literature that solid material with isolated voids represents the
optimal conditions for band-gap opening for in-plane waves
[31]. We note that no band gap appeared below the first optical
branch due to the difficulty in preventing this branch from
crossing through the acoustic branches. The optimal design for
the combined case [Fig. 1(d)] appears to be a blend (although
nonintuitive in shape) among the out-of-plane and in-plane
design traits. We also note that for this design the band gap
for in-plane waves is of size fi = 1.0979, which is higher
than the value we obtained in Fig. 1(c). This suggests that
the lead-follow algorithm has utility for also single-wave type
optimization. Upon appropriate size scaling to the frequency
range of interest, all designs are amenable to fabrication by
splines-based smoothening with minimal loss in objective
value [as demonstrated in Fig. 1(e)].

When compared to corresponding solid-void PnC unit-cell
configurations reported in the literature, each of the designs
shown in Fig. 1 represent a record value of normalized
band-gap size in its category. While the focus in this Rapid
Communication has been on phononic crystals, our search
methodology is also applicable to the parallel problem of 2D
PtCs optimization, where transverse-electric and transverse-
magnetic waves may be considered separately [32] or in
combination [33].

Acknowledgment. This research was supported by the
National Science Foundation under Grant No. 0927322
(E. A. Misawa) and Grant No. 1131802 (B. M. Kramer).

[1] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and
V. Laude, Appl. Phys. Lett. 84, 4400 (2004).

[2] S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and
P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).

[3] M. I. Hussein, G. M. Hulbert, and R. A. Scott, J. Sound Vib.
307, 865 (2007).

[4] J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez,
L. Martin-Moreno, and F. J. Garcia-Vidal, Nat. Phys. 3, 851
(2007).

[5] I. El-Kady, R. H. Olsson III, and J. G. Fleming, Appl. Phys. Lett.
92, 233504 (2008).

[6] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, Appl.
Phys. Lett. 94, 051906 (2009).

[7] D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 063015
(2008).

[8] X. F. Li, X. Ni, L. A. Feng, M. H. Lu, C.
He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301
(2011).

065701-3

http://dx.doi.org/10.1063/1.1757642
http://dx.doi.org/10.1103/PhysRevLett.93.024301
http://dx.doi.org/10.1016/j.jsv.2007.07.021
http://dx.doi.org/10.1016/j.jsv.2007.07.021
http://dx.doi.org/10.1038/nphys774
http://dx.doi.org/10.1038/nphys774
http://dx.doi.org/10.1063/1.2938863
http://dx.doi.org/10.1063/1.2938863
http://dx.doi.org/10.1063/1.3078284
http://dx.doi.org/10.1063/1.3078284
http://dx.doi.org/10.1088/1367-2630/10/6/063015
http://dx.doi.org/10.1088/1367-2630/10/6/063015
http://dx.doi.org/10.1103/PhysRevLett.106.084301
http://dx.doi.org/10.1103/PhysRevLett.106.084301


RAPID COMMUNICATIONS

OSAMA R. BILAL AND MAHMOUD I. HUSSEIN PHYSICAL REVIEW E 84, 065701(R) (2011)

[9] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O.
Painter, Nature (London) 462, 78 (2009).

[10] A. N. Cleland, D. R. Schmidt, and C. S. Yung, Phys. Rev. B 64,
172301 (2001).

[11] E. S. Landry, M. I. Hussein, and A. J. H. McGaughey, Phys.
Rev. B 77, 184302 (2008).

[12] J. K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath,
Nat. Nanotechnol. 5, 718 (2010).

[13] P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson III,
E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and
I. El-Kady, Nano Lett. 11, 107 (2011).

[14] R. H. Olsson III and I. El-Kady, Meas. Sci. Technol. 20, 012002
(2009).

[15] S. J. Cox and D. C. Dobson, SIAM J. Appl. Math. 59, 2108
(1999).

[16] M. Burger, S. J. Osher, and E. Yablonovitch, IEICE Trans.
Electron. E87C, 258 (2004).

[17] J. S. Jensen and O. Sigmund, Lasers Photon. Rev. 5, 308 (2011).
[18] M. I. Hussein, G. M. Hulbert, and R. A. Scott, in Proceedings

of the American Society for Composites, Seventeenth Technical
Conference, West Lafayette, Indiana, edited by C. T. Sun and
H. Kim (CRC, Boca Raton, FL, 2002), pp. CD-ROM 1–9.

[19] M. I. Hussein, K. Hamza, G. M. Hulbert, R. A. Scott, and
K. Saitou, Struct. Multidiscip. Optim. 31, 60 (2006).

[20] O. Sigmund, in Proceedings of the 2nd World Congress on
Structural and Multidisciplinary Optimization, Dalian, China
(Liaoning Electronic Press, Liaoning, China, 2001).

[21] O. Sigmund and J. S. Jensen, Philos. Trans. R. Soc. Lond. A
361, 1001 (2003).

[22] A. R. Diaz, A. G. Haddow, and L. Ma, Struct. Multidiscip.
Optim. 29, 418 (2005).

[23] S. Halkjaer, O. Sigmund, and J. S. Jensen, Struct. Multidiscip.
Optim. 32, 263 (2006).

[24] G. A. Gazonas, D. S. Weile, R. Wildman, and A. Mohan, Int. J.
Solids Struct. 43, 5851 (2006).

[25] M. I. Hussein, K. Hamza, G. M. Hulbert, and K. Saitou, Wave
Random Media 17, 491 (2007).

[26] C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, Struct.
Multidiscip. Optim. 34, 111 (2007).

[27] M. Maldovan and E. L. Thomas, Appl. Phys. Lett. 88, 251907
(2006).

[28] C. M. Reinke, M. F. Su, R. H. Olsson III, and I. El-Kady, Appl.
Phys. Lett. 98, 061912 (2011).

[29] M. I. Hussein, Proc. R. Soc. London A 465, 2825
(2009).

[30] D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning (Addison-Wesley, Boston, MA, 1989),
pp. 66–72.

[31] M. S. Kushwaha, Int. J. Mod. Phys. B 10, 977 (1996).
[32] O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100, 153904

(2008).
[33] H. Men, N. C Nguyen, R. M. Freund, K. M. Lim,

P. A. Parrilo, and J. Peraire, Phys. Rev. E 83, 046703
(2011).

065701-4

http://dx.doi.org/10.1038/nature08524
http://dx.doi.org/10.1103/PhysRevB.64.172301
http://dx.doi.org/10.1103/PhysRevB.64.172301
http://dx.doi.org/10.1103/PhysRevB.77.184302
http://dx.doi.org/10.1103/PhysRevB.77.184302
http://dx.doi.org/10.1038/nnano.2010.149
http://dx.doi.org/10.1021/nl102918q
http://dx.doi.org/10.1088/0957-0233/20/1/012002
http://dx.doi.org/10.1088/0957-0233/20/1/012002
http://dx.doi.org/10.1137/S0036139998338455
http://dx.doi.org/10.1137/S0036139998338455
http://dx.doi.org/10.1002/lpor.201000014
http://dx.doi.org/10.1007/s00158-005-0555-8
http://dx.doi.org/ ignorespaces 10.1098/rsta.2003.1177
http://dx.doi.org/ ignorespaces 10.1098/rsta.2003.1177
http://dx.doi.org/10.1007/s00158-004-0497-6
http://dx.doi.org/10.1007/s00158-004-0497-6
http://dx.doi.org/10.1007/s00158-006-0037-7
http://dx.doi.org/10.1007/s00158-006-0037-7
http://dx.doi.org/10.1016/j.ijsolstr.2005.12.002
http://dx.doi.org/10.1016/j.ijsolstr.2005.12.002
http://dx.doi.org/10.1080/17455030701501869
http://dx.doi.org/10.1080/17455030701501869
http://dx.doi.org/10.1007/s00158-006-0076-0
http://dx.doi.org/10.1007/s00158-006-0076-0
http://dx.doi.org/10.1063/1.2216885
http://dx.doi.org/10.1063/1.2216885
http://dx.doi.org/10.1063/1.3543848
http://dx.doi.org/10.1063/1.3543848
http://dx.doi.org/10.1098/rspa.2008.0471
http://dx.doi.org/10.1098/rspa.2008.0471
http://dx.doi.org/10.1142/S0217979296000398
http://dx.doi.org/10.1103/PhysRevLett.100.153904
http://dx.doi.org/10.1103/PhysRevLett.100.153904
http://dx.doi.org/10.1103/PhysRevE.83.046703
http://dx.doi.org/10.1103/PhysRevE.83.046703

