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Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects
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An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are
analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum
flux density tensor from the conservation of angular momentum is used as an efficient description of the transport
of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local
ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy
is exactly equal to the ratio of the beam’s topological charge l to the acoustic frequency ω. The axial radiation
torque exerted by the beam on an axisymmetric object centered on the beam’s axis due to the transfer of angular
momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood
as a result of phonon absorption from the beam. Depending on the vortex’s helicity, the torque is parallel or
antiparallel to the beam’s axis.
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I. INTRODUCTION

Vortex beams, characterized by a screw phase dislocation
of the wave field around its propagation axis with a magnitude
null at its core [1], have been generated in both acoustical [2,3]
and quantum (optical [4,5] and electron [6]) fields. The wave
field is known to carry orbital angular momentum (AM)
associated with its phase dependence on the azimuthal angle
φ in the form of exp(ilφ), where the integer l is called the
topological charge or the order of the vortex whose sign defines
the direction of helicity. The orbital AM carried by the optical
vortex is known to be in units of h̄l (h̄ is Planck’s constant) per
photon with an energy h̄ω (ω is the beam’s angular frequency)
[7], being partially analogous to the spin AM value of ±h̄

for circularly polarized light. As the classical counterpart,
the acoustic vortex was studied more recently and identified
to be analogous to the optical vortex within the paraxial
approximation [2,8,9]. By considering the angular momentum
flux density in the form of a tensor, this paper extends the
analogy beyond the paraxial approximation by analyzing the
angular momentum transport of a monochromatic acoustic
vortex in a homogeneous inviscid fluid. The connection of
the paraxial approximation with the description of angular
momentum is also addressed.

When interacting with an object, the vortex field can transfer
AM to the object, and hence exert torques on the object,
as demonstrated by several experiments in both optics [10]
and acoustics [11]. Our emphasis is on angular momentum
associated with axisymmetric wave fields, and it differs from
the situation associated with the average torque on a Rayleigh
disk [12,13]. A superposition of the wave field considered
here approximates the standing wave that has been used to
generate a radiation torque on axisymmetric objects such
as spheres and spheroids [14]. Our approach begins with
the simpler case of the transfer of the angular momentum
from a progressive vortex beam directed along the object’s
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symmetry axis. The absorption of energy by the object is
accompanied by the transfer of angular momentum. Based on
the angular momentum flux density tensor, we shall analyze the
axial torque of a nonparaxial acoustic vortex on axisymmetric
objects immersed in an ideal surrounding fluid. The result
indicates that the torque is proportional to the absorbed power
and the ratio l/ω. Our method of integrating the angular
momentum flux crossing a spherical surface enclosing the
object is partially analogous to a method that has been used
to show that the radiation torque of circularly polarized light
on a sphere is directly proportional to the absorbed optical
power [15].

The transport of momentum in fluids is sometimes pre-
sented using phonon concepts [16]. While the inclusion of
phonon concepts is not central to our presentation, under-
standing acoustic vortices beyond the paraxial approximation
should have potential importance in fundamental investiga-
tions [17] and in applications (such as acoustic alignment [2],
wave computation [18], imaging technique [19], acousto-optic
interaction [20], acoustic tweezers [21], acoustic spanners for
noncontact rotational manipulation [11], etc.). The indicated
analogy between an acoustical vortex and a quantum vortex
may assist in the understanding of acoustical vortices because
of the better explored optical vortex and the concept of twisted
photons [22]. The angular momentum flux of optical vortices is
sometimes introduced to separate angular momentum into spin
and orbital contributions beyond the paraxial approximation
[23]. Even though the analysis in this study concerns scalar
fields in the fluid, acoustical transverse waves in a solid
may be circularly polarized and thus also carry spin angular
momentum [24]. It is plausible that an extension of our
approach to angular momentum may aid the investigation of
circularly polarized acoustic vortices in solids.

II. ANGULAR MOMENTUM FLUX OF NONPARAXIAL
ACOUSTIC VORTEX BEAMS

Assuming the beam propagates along the z axis (refer to
Fig. 1), as characterized by an azimuthal phase dependency,
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FIG. 1. (Color online) A vortex beam propagating along the z

axis exerts an axial torque on the absorbing axisymmetric object (dark
gray). Depending on the vortex’s helicity (curved arrows pointing to
the direction of increasing phase), the torque is parallel or antiparallel
to the beam’s axis (vertical arrows).

the complex velocity potential of a monochromatic vortex may
be expressed generally in cylindrical coordinates as [9]

ψ(r⊥,z,φ; ω,t) = ψ0(r⊥,z) exp{i[kϕ(r⊥,z) + lφ − ωt]}, (1)

where ω is the angular frequency, k = ω/c0 is the wave
number, c0 is the phase speed, and ψ0(r⊥,z) and ϕ(r⊥,z) are the
amplitude and phase dependencies on the axial z and radial r⊥
coordinates, respectively. The amplitude has a null at the core
r⊥ = 0 of the phase singularity. This general vortex beam is
a solution of the wave equation or its paraxial approximation.
Some typical beams (acoustical and optical) are described as
Laguerre-Gaussian modes, helicoidal Bessel beams, r vortex,
etc. [9,25]. For an acoustic vortex in a nonviscous fluid, the
first-order acoustic velocity u, pressure p, and density ρ are
given in terms of velocity potential ψ as u = Re[∇ψ] and
p = c2

0ρ = Re [iωρ0ψ], where Re denotes the real part and
ρ0 is the unperturbed density of the medium, the total density
being ρ0 + ρ.

Prior studies [8,9,26,27] used the angular momentum
density j = r × g, where g = ρ0u + ρu is the density of
linear momentum [28], to discuss the angular momentum
of acoustic vortices. The corresponding density of sound
energy is E = ρ0u

2/2 + p2/2ρ0c
2
0. The analysis in this paper

concerns time averages (denoted by 〈〉), and the first-order
terms in all of these quantities vanish while averaging over an
acoustic time cycle. The momentum density g is related to the
energy flux density S = pu (the Kirchhoff-Poynting vector for
acoustic waves [28]) by 〈S〉 = c2

0〈g〉. Because of the azimuthal
phase dependence, the Poynting vector S and momentum g of
the vortex beam (1) have an azimuthal component, and hence
the vortex carries axial angular momentum. The axial angular
momentum density of the beam is Eq. (19) of Ref. [27]

〈jz〉 = 〈ρ(r × u)z〉 = lf (ψ), f (ψ) ≡ 1
2ωρ0c

−2
0 |ψ |2. (2)

The value is identical to the optical quantities, with ρ0c
−2
0

replaced by the permittivity ε0 and |ψ | by the modulus of the
complex vector potential associated with optical vortices [4,8].
Under the paraxial approximation and the assumption of a
quasiplane wave front, the energy density and axial linear mo-
mentum density approximate to E � ωf (ψ) and gz � kf (ψ).
Hence the beam is analogous to phonons carrying energy,
momentum, and angular momentum, with these quantities

having the ratios 〈jz〉/〈E〉 � l/ω and 〈jz〉/〈gz〉 � l/k [8,9].
However, these local ratios do not hold beyond the paraxial
approximation. The ratio l/ω applies to a superposition of
Bessel beams when evaluating the total amount per unit length
of these physical parameters along the propagating axis [27].

When considering nonparaxial beams, it is natural to use
the acoustic angular momentum flux density tensor M to
describe the transport of angular momentum. In the absence
of dissipation, from the conservation of angular momentum
[13,29,30], ∂t j + ∇ · M = 0, where M = r × 	, with 	 being
the momentum flux density tensor of the sound field [28,31].
For a sound field propagating in a homogeneous inviscid
medium, this gives

M = (p + P )r × I + (ρ0r × u)u, (3)

where 	 = (p + P )I + ρ0uu, P = −ρ0u
2/2 + p2/2ρ0c

2
0 is

the second-order acoustic radiation pressure, and I denotes the
unit tensor [32]. For time-harmonic wave fields, 〈∂t j〉 vanishes
so that in regions free of dissipation 〈M〉 becomes a solenoidal
tensor field: ∇ · 〈M〉 = 0. Introducing the permutation tensor,
the time-averaged components of M are expressed as 〈Mji〉 =
εipqrp(〈P 〉δqj + ρ0〈uquj 〉), where δqj = 0 for q �= j and δqj =
1 for q = j . The component 〈Mji〉 denotes the flux density
of the i component of angular momentum through a surface
oriented in the direction j . The first term of Eq. (3) associated
with radiation pressure P does not contribute to the diagonal
components of M. The second term is related to the first-order
angular momentum density ρ0r × u.

Since the radiation pressure only contributes to off-diagonal
terms, it follows from (3) that the flux density of the axial
angular momentum crossing a plane normal to the propagating
direction becomes

〈Mzz〉 = 〈(ρ0r × u)zuz〉 = lc0h(ψ),

h(ψ) ≡ 1

2
ρ0c

−1
0 Im[ψ∗∂zψ], (4)

where Im denotes imaginary part. Integration of Eq. (4)
over a transverse plane agrees with Eq. (38) of
Ref. [29]. The corresponding axial energy flux den-
sity is 〈Sz〉 = c2

0〈gz〉 = 〈puz〉. Since (ρ0r × u)z = ρ0r⊥uφ =
Re[ρ0∂ψ/∂φ] = Re[ilρ0ψ], such that (ρ0r × u)z/p = l/ω, it
follows that

〈Mzz〉
〈Sz〉 = l

ω
. (5)

This expression states that, for a monochromatic acoustic
vortex with helicoidal phase dislocation exp(ilφ), the local
ratio of the axial flux density of the axial angular momentum to
the energy flux density through transverse planes is equal to the
ratio of the beam’s topological charge to acoustic frequency.
The sign of l indicates the direction of the carried axial AM
being parallel or antiparallel to the beam’s axis. This local
ratio is exact without any approximations or restrictions on the
beam’s profile, and hence holds for any vortex beam with the
phase dislocation exp(ilφ). An analogous relation exists for
an optical vortex for evaluating the total angular momentum
flux crossing the whole transverse plane, where there is an
extra term corresponding to spin angular momentum for the
case of circular polarization [23]. Our expression (5) implies
a corresponding ratio for the total flux crossing the whole
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transverse plane associated with an acoustic beam. This agrees
with Eq. (57) of Ref. [29] giving the total flux of a Bessel beam
superposition.

The angular momentum flux, within the paraxial limit, has
been approximated by multiplying the angular momentum
density with the sound speed [2], rather than from the
angular momentum flux density introduced here. It is then
valuable to examine the connection between the angular
momentum density and the paraxial approximation of angular
momentum flux density. Under the paraxial approximation
∂zψ � ikψ , it follows from Eqs. (2) and (4) that h(ψ) � f (ψ)
and hence 〈Mzz〉 � c0〈jz〉. [Note that together with Eq. (5),
this approximation implies the relation 〈jz〉/〈gz〉 � l/k in
the paraxial approximation.] Hence the quantity c0〈jz〉 does
give the same result as the quantity 〈Mzz〉 for paraxial
beams. However, this is not true for nonparaxial beams.
Take a helicoidal Bessel beam as an example: ψ(r⊥,z,φ) =
ψ0Jl(μr⊥) exp[i(κz + lφ − ωt)], where μ and κ are radial
and axial wave numbers with k =

√
κ2 + μ2. It is a non-

diffracting exact solution of the wave equation in cylindrical
coordinates [25,33,34]. The Bessel beam is equivalent to the
superposition of plane-wave components whose wave vectors
have a titled conic angle β = tan−1(κ/μ) relative to the z axis
[25,33,34]. Substituting the velocity potential of the helicoidal
Bessel beam into Eqs. (2) and (4), it follows that 〈Mzz〉 =
cos β (c0〈jz〉). The extra factor cos β is the axial projection
of the wave components. It implies that the strictly correct
expression for the angular momentum flux density is the tensor
introduced by the conservation of angular momentum, instead
of the product of angular momentum density multiplied by
sound speed. The latter approaches the former only under the
paraxial approximation.

Considering also a sound field in spherical coordinates
(refer to Fig. 1) having the azimuthal phase dependency
exp(ilφ),

ψ(r,θ,φ; ω,t) = ψ0(r,θ ) exp{i[kϕ(r,θ ) + lφ − ωt]}. (6)

Here, the phase singularity and intensity null are at θ = 0 and
π (the z axis). This vortex in spherical coordinates (called
a spherical wave vortex for convenience) could be used to
recast the vortex beam Eq. (1) into spherical coordinates, or
describe its scattered field by an axisymmetric object placed
on the beam’s axis (where the unchanged azimuthal phase
dependence of the scattered field is due to the symmetry of the
object). For scattering of a helicoidal Bessel beam by a sphere,
see, for example [34]. This spherical wave vortex could also be
used to describe the wave modes of the sound fields emitted by
a spherical source, analogous to the distribution of the electro-
magnetic field emitted by multipoles. Again, this vortex carries
axial angular momentum due to the same azimuthal phase
dependency, but with the radially outgoing radiation one may
evaluate the cycle-averaged flux density of the z component
of angular momentum through a radially oriented spherical
surface with a radius r: 〈Mrz〉 = 〈ρ0(r × u)zur〉, which follows
from M in Eq. (3) by recognizing the disappearance of the term
associated with radiation pressure [30]. The corresponding

radial energy flux is 〈Sr〉 = c2
0〈gr〉 = 〈pur〉. Again, it follows

from (ρ0r × u)z/p = l/ω that

〈Mrz〉
〈Sr〉 = l

ω
, (7)

that is, the ratio holds for the radial flux density of axial angular
momentum to the radial energy flux density. Only in the far-
field region kr 	 1, where the vortex approximates to a locally
progressive plane wave such that ur � Re[ikψ], does the wave
have 〈Mrz〉 � c0〈jz〉. Both (5) and (7) apply to a nonparaxial
acoustic vortex with a phase dislocation exp(ilφ). It should also
be noticed that the flux of axial angular momentum depends
not only on the azimuthal component of velocity but also on the
velocity component along the flux direction being evaluated.

III. AXIAL TORQUES ON AXISYMMETRIC OBJECTS

The acoustic vortex exerts an axial torque on an axisymmet-
ric object when accompanied by the absorption of energy by
the object. The acoustic radiation torque on an object immersed
in an ideal fluid could be evaluated as the integral of the
time-averaged flux of the angular momentum density dyadic
of the total field (incident vortex beam + scattered field) over
any spherical surface enclosing the object with its center at the
scatterer’s centroid (refer to Fig. 1) [30]: T = − ∫

S
〈M〉 · dA =

− ∫
S
〈(ρ0r × u) u〉 · dA, where dA = ndA is in the direction of

the radially outward normal n. The axial torque of an acoustic
vortex on an axisymmetric object becomes

Tz = −
∫

S

〈(ρ0r × u)z u〉 · dA = −
∫

S

〈Mrz〉dA. (8)

Likewise, the acoustic power absorbed by the object could be
evaluated as the integral of the acoustic energy flux of the total
field over the (same) spherical surface bounding the object:

Pabs = −
∫

S

〈S〉 · dA = −
∫

S

〈pu〉 · dA = −
∫

S

〈Sr〉dA. (9)

These evaluations using the integrals over a surface enclosing
the object are based on the conservation of angular momen-
tum and energy. In the absence of dissipation in the fluid
surrounding the object, ∇ · 〈M〉 = 0 and ∇ · 〈S〉 = 0 so that
the integrations in Eqs. (8) and (9) may be moved away from
the object. The changes of the mean angular momentum and
energy in a unit time in the region enclosed by the surface are
transferred to or absorbed by the object. The evaluation should
still be a useful approximation provided that the dissipation
associated with thermal-viscous effects in the surrounding
fluid occurs close to the object and the dissipation is included
in the analysis of the scattering [30].

The total field consisting of the incident vortex beam and
the scattered field has the same phase dependency exp(ilφ)
according to the axisymmetry, such that (7) holds for the
integrands in Eqs. (8) and (9), giving

Tz = l

ω
Pabs. (10)

This expression indicates that the radiation torque vanishes
for ordinary acoustic beams (l = 0) for axisymmetric objects.
It also vanishes for an ideal nonabsorptive object in a
nonabsorbing fluid because either the beam does not transfer
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angular momentum or the radiation pressure does not cause a
torque because of the axisymmetry. Otherwise, the axial torque
is proportional to the absorbed power with a factor l/ω. This
can be understood as a result of phonon absorption from the
beam whose ratio of carried angular momentum to energy is
l/ω. The torque is parallel or antiparallel to the beam’s axis,
depending on the direction of carried axial angular momentum
(that is, the vortex’s helicity, namely, the sign of l), as sketched
in Fig. 1.

Though we have emphasized the case of incident waves
having the form of a vortex beam (1) in our evaluation of
the torque (10), notice that the result (10) applies to other
situations in which the total field is described by Eq. (6). For
example, when radiation torques are generated on centered
axisymmetric objects by standing waves having an appropriate
phase dependence [14], (6) should be approximately applica-
ble, provided the rescattering of energy back onto the object
by the surrounding walls can be neglected. In that case, (10)
is also applicable.

IV. DISCUSSIONS AND SUMMARY

In summary, we have indicated the analogy and connec-
tion of acoustic vortices with optical vortices beyond the
paraxial approximation by analyzing the transport of angular
momentum by acoustic vortices and its transfer to axisym-
metric objects. The angular momentum flux density from the
conservation of angular momentum provides a description of
the transport of angular momentum. Only for a limited class
of vortex beams that can be paraxially approximated in the
region of interest (such as near the center of a Bessel beam
having a small cone angle) is the axial angular momentum
flux density approximated as 〈Mzz〉 � c0〈jz〉, where 〈jz〉 is the
angular momentum density from Eq. (2). Furthermore, in the
analysis of the angular momentum carried by a scattered wave,
only in the far field is the radial measure of the axial angular
momentum flux density approximated as 〈Mrz〉 � c0〈jr〉. The
more general relationships useful for the analysis of the flux of
angular momentum and energy are given in Eqs. (5) and (7).

The axial torque (10) is proportional to the power absorbed
by the object and the factor l/ω. Torque is parallel or
antiparallel to the vortex’s axis depending on the vortex’s
helicity. In the case of a helicoidal acoustic Bessel beam with
a sphere placed on the beam’s axis, an expression for the
absorbed power, needed in the evaluation of Eq. (10), has been
derived [34]. That expression, Eq. (18) of Ref. [34], contains
a summation of terms proportional to (1 − |sn|2), where the
partial wave scattering coefficients of the corresponding plane-
wave case are proportional to (sn − 1), where n is the partial
wave index and sn depends on material properties and the
frequency. In the case of an absorbing sphere in a nonviscous
fluid, the expression for Pabs is directly applicable, where
|sn| < 1 as a consequence of the material properties of the
sphere. The series for Pabs also contains factors depending on
l and the conic angle of the beam β [34]. In the case in which the
sphere is in a slightly viscous fluid, the expression (10) should
be approximately applicable provided the |sn| are reduced as
a consequence of dissipation in the fluid close to the sphere.
(For an approximation to the scattering for a solid sphere from
which the sn may be found in that case, see, for example [35].)
While the derivation given here is not directly applicable
in that case, when the oscillating thermal viscous boundary
layers are thin in comparison to the radius of the sphere, it is
anticipated that (10) is approximately true for the case of a
steady torque associated with an unmodulated acoustic wave.
It is noteworthy, however, that for some applications it may
be desirable to modulate the helicity of the beam, which may
be accompanied with a modification [36] of the usual form
of a helicoidal beam transducer [2]. The magnitude of the
modulated torque in that case will depend on the time scale
for diffusion of momentum in the fluid near the sphere in
comparison to the modulation period.
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