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Stiffness and strength of suture joints in nature
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Suture joints are remarkable mechanical structures found throughout nature composed of compliant
interlocking seams connecting stiffer components. This study investigates the underlying mechanisms and
the role of geometry governing the unique mechanical behavior of suture joints. Analytical and numerical
composite models are formulated for two suture geometries characterized by a single repeating wavelength (e.g.,
triangular and rectangular). Stiffness, strength, and local stress distributions are predicted to assess variations
in deformation and failure mechanisms. A unique homogeneous stress field is observed throughout both the
skeletal and interfacial components of the triangular geometry, thus providing advantages in load transmission,
weight, stiffness, strength, energy absorption, and fatigue over the rectangular geometry. The results obtained
have relevance to biomimetic design and optimization, suture growth and fusion, and evolutionary phenotype
diversity.
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Many natural structures have evolved and adapted to
improve their functional performance by making efficient
use of available resources, fabricating hierarchical material
microstructures with innovative geometric designs [1–3]. Bio-
logical suture joints are one elegant example whereby two stiff
skeletal components interlock together via a more compliant
interfacial seam, thereby providing flexibility for accommo-
dating growth, respiration, and/or locomotion [4–7]. This topic
is one of great interest for many fields, including biophysics
(e.g., cranial suture growth [8]), materials physics (e.g., hierar-
chical structure-property relationships [9]), mechanical design
(e.g., geometric mechanisms for achieving strength, stiffness,
and fatigue [10]), biomimetics (e.g., bioinspired flexible armor
[11]), paleontology (e.g., understanding ammonite diversity
through mass extinctions [12]), and evolutionary biology (e.g.,
consequences of phenotypic divergence [13]).

The wavy, mechanically interdigitating structure of a suture
joint can be as simple as a sinusoid [14] or exhibit a
complex multiple wavelength pattern and/or a hierarchical
fractal-like structure of shorter wavelengths superposed onto
longer wavelengths [15–17]. A common measure of the
degree of interdigitation is the “suture complexity index” or
SCI [5,18,19], given in its simplest form as the ratio of the
suture contour length to the shortest suture line length [l/l0,
Fig. 1(a)]. The SCI does not capture suture geometry, as
different geometries can possess the same SCI.

Suture joints have been studied experimentally [4,5] and
through finite element modeling [7,20]. The mechanical
properties show positive correlations with the degree of inter-
digitation (SCI). These intriguing results motivate questions
on the underlying mechanisms and the role of the detailed
geometry governing the unique mechanical behavior of suture
joints. Here, this question is addressed by the formulation of a
scale-independent composite, elastic micromechanical model
of a periodic sawtooth suture geometry. This physical model
includes geometric, compositional, and material parameters
that describe the detailed structure of the suture, which are
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varied over a large range. The mechanical behavior and
properties of two model single wavelength suture geometries
(e.g., triangular and rectangular) are compared by determining
load transmission pathways and predicting stiffness, strength,
local stress distributions, and failure mechanisms.

A schematic of a periodic suture joint with an arbitrary
sawtooth geometry is shown in Fig. 1(a) and is described
by the amplitude A, the wavelength λ, and the thickness of
the interfacial layer g. To describe sawtooth shape, a local
coordinate system x-y is set up at the apex (tip) of one tooth
as shown in Fig. 1(b). The shape profile of the tooth can be
described as a function y = f (x), where f (x) is a single-valued
analytic function.

The mechanical response of a suture joint is determined for
the case of tensile loading within the suture plane and normal to
the suture axis, a prevalent physiologic loading condition [4–7]
[Fig. 1(a)]. Stress is transmitted to the teeth through shearing
of the interfacial layer. Using the free body diagram shown in
Fig. 1(b), force equilibrium yields the relationship between the
normal stress within the tooth, σ (x), and the interfacial shear
and normal stress, τ (x) and τn(x):

τ (x)dx + τn(x)f ′(x)dx

= [σ (x) + dσ ][f (x) + df ] − σ (x)f (x), (1a)

where τn(x) = f ′(x)τ (x). Using the Cauchy-Schwarz inequal-
ity (e.g., Ref. [21]), we can show that a uniform stress
distribution corresponds to the minimum strain energy for a
certain average stress. By taking σ ′(x) = 0 in Eq. (1a), we
obtain

τ = f ′(x)

1 + [f ′(x)]2
σ [f ′(x) �= 0]. (1b)

From Eq. (1b), we can see that if f ′(x) is constant, the stresses
in both phases are uniform. Therefore, f ′(x) = constant is
a necessary condition to achieve uniform stress. The stress
distribution must also satisfy the boundary conditions. When
f ′(x) = 0 (rectangular teeth), σ ′(x) cannot be zero, otherwise,
τ is zero. Furthermore, the traction boundary conditions cannot
be satisfied in the rectangular and general trapezoidal [when
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FIG. 1. (Color online) Schematic of a periodic suture joint with
arbitrarily shaped teeth. (a) Geometric parameters and loading.
(b) Free body diagram of an isolated tooth.

f (0) �= 0] cases, if the stress were uniform (where σ must
be zero at x = 0 and σ = σ0 at x = A). Therefore, the
solution of uniform stress in teeth is satisfied if and only if
the tooth geometry is triangular. By substituting f ′(x) = tan θ

[θ is defined as the tip angle of the triangular tooth, as shown
in Fig. 1(b)] in Eq. (1b), we find that for a triangular suture
joint, the relationship between τ and σ is simply dependent on
the tooth tip angle θ :

τ = σ sin θ cos θ. (2)

The implications of a uniform stress in a triangular sawtooth
geometry are profound, particularly regarding strength and
fatigue, as will be discussed later. We will focus on analyzing
this optimum triangular suture geometry for the remainder
of this Brief Report. For comparison, a rectangular suture
geometry (which has the closed-form solution through the
well-known shear-lag model of fiber-reinforced composites
[22]) is also analyzed.

Composite micromechanical models of representative vol-
ume elements (RVEs) of triangular and rectangular suture
joints were constructed which represent both the skeletal
components and interface adherend region [Fig. 2(a)]. The
RVE of the composite structure includes a top (upper row) and
bottom (lower row) row of skeletal “teeth” which interdigitate
and are perfectly bonded to a thin interfacial layer (zigzag layer
between the teeth). The skeletal and interfacial phases are taken
to exhibit isotropic linear elastic behavior. The shape of the
suture joints is described by two nondimensional parameters:
the skeletal volume fraction fv = (λ − 2g)/λ, and the tooth
apex angle θ . The influence of geometry on the mechanical
behavior of the suture joint is examined by fixing fv and
altering θ , or vice versa. The rectangular geometry is similarly
described where θ [Fig. 2(a)] is related to the rectangular
tooth aspect ratio through α = 2A/(λ − 2g) = 1/tan θ . Also,
the SCI i is related to θ via i = fv/sin θ .

The result of a uniform stress in both the skeletal and
interface phases is a remarkable feature of the triangular-
shaped suture joint and was further supported by numerical
finite element results [Figs. 2(b) and 2(c)]. Such constant stress
structures imply an advantage for strength since the entire
structure is equally participating in bearing the applied load
and all material is fully utilized.

In the rectangular suture, stress is also transmitted to
the teeth through shearing of the interfacial layer. However,
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FIG. 2. (Color online) (a) Representative volume elements
(RVEs) of a triangular suture (left) and a rectangular suture (right)
under tension; (b) contour and line plots of the normal stress
distribution in the skeletal teeth; and (c) the shear stress distribution
in the interfacial layer (taken at an effective tensile strain of 1%, for a
representative case of fv = 0.8, θ = 2.9◦, skeletal Young’s modulus
E1 = 10 GPa, and the adhesive Young’s modulus E0 = 100 MPa).
Note that the triangular RVE and the rectangular RVE neglect bonding
of the tooth tip and top edge, respectively, due to the negligible
influence on suture stiffness and strength.

the interfacial shear is distributed, with higher magnitude
at the tooth ends. This stress transfer is captured by the shear-
lag model [22] and has also been used to study the biological
composite nacre [23,24]. The shear-lag model reveals that the
stress varies within the tooth, reaching a maximum value at
the root of a tooth [Fig. 2(b), right].

The uniform stress distribution in the triangular suture
yields a significant improvement in strength compared to the
rectangular suture. At any applied strain, the maximum normal
stress in the teeth and the maximum shear stress in the interface
of the rectangular suture are approximately twice those in the
triangular suture, as shown in Figs. 2(b) and 2(c).

To quantify the strength of the suture joints, for 2θ <

90◦, two failure modes are assumed: tooth failure at a critical
tensile stress σ

f

1 and interfacial shear failure at a critical shear
stress τ

f

0 . The failure mode will depend on the combination of
constituent strengths σ

f

1 and τ
f

0 , and also the suture geometry
as determined by fv and θ . For a given σ

f

1 and τ
f

0 , failure
maps can be constructed for the triangular and rectangular
geometries as a function of θ (or tooth aspect ratio) as shown
in Fig. 3.

The effective tensile strengths of the triangular and rect-
angular suture joints are defined as σ

f

T and σ
f

R , respectively,
further normalized by the product of skeletal volume fraction
fv and skeletal strength σ

f

1 . Using Eq. (2) together with σ
f

T

and σ
f

R , a nondimensional effective strength of the triangular
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FIG. 3. (Color online) Contours of the normalized strength as
a function of the component material properties and 2θ for (a) the
triangular and (b) the rectangular suture joints.

suture joint is obtained:

σ
f

T

fvσ
f

1

= min

[
1,

sin θ0 cos θ0

sin θ cos θ

]
, (3)

where

θ0 = 1

2
sin−1 2τ

f

0

σ
f

1

, θ0 � π

4
. (4)

θ0 is the angle at which the skeleton and interfacial layer would
simultaneously fail for a given σ

f

1 and τ
f

0 . For other θ , the
failure mode is determined by

σ
f

T

fvσ
f

1

=
{

1, θ � θ0 : tooth failure
sin θ0 cos θ0
sin θ cos θ

, θ > θ0 : interface shear failure.
(5)

For the rectangular suture joint,

σ
f

R

fvσ
f

1

= min

[
0.5,0.5

tan θ0

tan θ

]
, (6)

where

θ0 = tan−1 2τ
f

0

σ
f

1

, θ0 <
π

2
. (7)

The failure mode is determined by

σ
f

R

fvσ
f

1

=
{

0.5, θ � θ0 : tooth failure
0.5 tan θ0

tan θ
, θ > θ0 : interface shear failure.

(8)

Note that Eq. (3) is a precise expression for the strength of
a triangular suture joint, whereas Eq. (6) gives an upper bound
for the rectangular suture joint strength and corresponds to the
highest interface load transmission.

Failure maps obtained using Eqs. (3) and (6) are plotted in
Fig. 3 and reveal the dramatic advantage of the triangular
morphology in providing strength. In Fig. 3(a), taking an
example case with a strength ratio of 2τ

f

0 /σ
f

1 = 0.3, a
triangular suture joint with 2θ = 15◦ exhibits tooth failure,
giving a suture joint strength of σ

f

T = fvσ
f

1 , whereas for
2θ = 60◦ the suture joint will fail by interfacial shear at
σ

f

T = 0.35fvσ
f

1 . In comparison, in Fig. 3(b) the rectangular
geometry with 2τ

f

0 /σ
f

1 = 0.3 exhibits the following scenarios:
at 2θ = 15◦, tooth failure at σ

f

R = 0.5fvσ
f

1 , and at 2θ = 60◦,
interfacial shear failure at σf

R = 0.26fvσ
f

1 . Hence, a transition
in failure mode is observed from tooth failure at a high degree
of interdigitation to interface shear failure at a low degree of
interdigitation. The maximum strength of both suture joints is
achieved in the tooth failure mode. Remarkably, the maximum
strength of the triangular suture joint is twice that of the
rectangular suture joint, quantitatively showing the importance
of geometry in governing mechanical performance.

The micromechanical model is now extended to calculate
the effective stiffness of the suture joint, Ē. The Young’s
modulus of the skeletal phase is taken to be E1 and the Young’s
modulus and the shear modulus of the adhesive layer to be E0

and G0, respectively. From the previous analysis of the stress
distribution in the teeth and the interfacial layer together with
a kinematic analysis of the contribution of the teeth and the
interfacial layer to the imposed deformation, Ēof the triangular
suture joint is derived as a function of the geometric and
material parameters as

Ē

E1

(
fv,θ,

E1

G0
,
E1

E0

)

= f 2
v

(1 − fv)
(

E1
G0

sin2 θ cos2 θ + E1
E0

sin4 θ
) + fv

. (9)

When θ →0, Ē/E1 →fv (i.e., approaching rule of mixtures
scaling).

For the rectangular suture joint with large stiffness ratio
E1 /E0, Ē is derived to be

Ē

E1

(
fv,θ,

E1

G0

)
= f 2

v

E1
G0

(1 − fv) (tan θ )2 + fv

. (10)

Finite element models for stiffness ratios Rs = E1/E0 =
10, 100, and 1000, different fv , and different θ are also
constructed and simulation results are in complete agreement
with Eq. (9) [Figs. 4(a)–4(c)]. Ē/E1 increases monotonically
with fv and decreases with θ as shown in Figs. 4(a) and 4(b),
respectively. For large fv > 80%, the Ē/E1 of the triangular
suture joint approaches 1 (Ē/E1 → 1) and increases more
rapidly with an increase in Rs . Recalling the relationships be-
tween the SCI (i) and θ , i = fv/sin θ , the stiffness is alternately
plotted as a function of i in Fig. 4(c), showing Ē/E1 to increase
with increasing i toward the rule of mixtures scaling.

A final comparison of the stiffness and strength perfor-
mance of the triangular vs. rectangular suture joint geometry
is shown in the stress-strain curves of Fig. 5. Here, the
case of fv = 0.80 is considered with the material properties
of bone and collagen E1 = 10 GPa, E0 = 100 MPa, σ

f

1 =
100 MPa, and τ

f

0 = 20 MPa [23,25,26] taken as an example.
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FIG. 4. (Color online) Comparison of the numerical and analyti-
cal results of the effective stiffness of the triangular suture joint [the
symbols represent the finite element results; the lines represent the
analytical results of Eq. (9)]: (a) influence of fv , (b) influence of θ ,
and (c) influence of i.

As evident in the slope of the stress-strain curves, the stiffness
increases as θ decreases. The triangular geometry provides
higher stiffness compared to the rectangular case with a 20%
advantage for θ > 20◦ and the two coinciding for very small θ .
The triangular suture geometry also provides higher strength
for all cases. In particular, at small θ where the stiffnesses of
the two geometries are nearly equivalent, the triangular suture
joint exhibits twice the strength of the rectangular.

Using Eq. (4), the strength-optimized θ for the triangular
suture joint is θ0 = 11.8◦, while for this rectangular suture,
from Eq. (7), θ0 = 21.8◦ or aspect ratio α = 2.5. These angles
correspond to the shift of failure mode, as also shown in Fig. 5,
from tooth failure to interface shear failure.

In summary, this study quantitatively explores the under-
lying mechanisms and the role of structure and geometry
in governing the mechanical behavior of suture joints. For
the triangular suture joint, a unique homogeneous stress field
was observed throughout the entire composite structure (e.g.,
in both the skeletal and interfacial components). Hence, the
triangular geometry exhibits a significant strength and stiffness
advantage compared to sutures with rectangular geometry.
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FIG. 5. (Color online) Prediction of the stiffness, strength, and
failure modes of the triangular and rectangular suture joints with
fv = 80% (thin red solid lines: triangular suture; blue dotted lines:
rectangular suture. “�” and “�” represent the points of tooth failure
and interface shear failure modes of the triangular suture joint,
respectively; “�” and “�” represent those for the rectangular suture
joint).

The uniform tensile stress indicates that the entire skeleton
is equally bearing the applied load and, hence, the material is
optimally used, providing a weight and a volume advantage to
meet a given strength. The spatial homogeneity of the stress
also has implications on fatigue life where suture joints often
undergo cyclic tensile loading as part of their function. The
transition in failure mechanism (skeletal failure to interfacial
shear), as well as the stiffness and strength of the suture
are found to be nonlinearly tunable by altering the suture
geometric and material parameters which tailor the interface
shape, degree of interdigitation, complexity, and composition.
The failure maps also point to the advantage of increasing
the shear strength of the interfacial layer as a means of
transitioning the failure mode and achieving the upper bound
in suture strength with a triangular geometry. It is clear that
nature varies these geometric parameters of sutures to achieve
spatial variations in mechanical properties within individual
biological structures as needed for necessary functionality
[27]. Such variations also exist between species and are
expected to be closely related to evolutionary and phenotypic
diversity [27]. This work provides a foundation for our ongoing
work in assessing the role and influence of heterogeneities,
spatial gradients, and hierarchically structured interfaces to
further optimize mechanical performance of suture joints. The
equations and design principles formulated can be employed
to guide biomimetic design.
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