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Detection and prediction of the onset of human ventricular fibrillation:
An approach based on complex network theory
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Ventricular fibrillation is a life-threatening cardiac arrhythmia which deserves quick and reliable detection as
well as prediction from human electrocardiogram time series. We constructed networks of human ventricular
time series with the visibility graph approach to study the network subgraph phenomenon and motif ranks. Our
results show that different dominant motifs exist as an effective indicator in distinguishing ventricular fibrillations
from normal sinus rhythms of a subject. We verify the reliability of our findings in a large database with different
time lengths and sampling frequencies, and design an onset predictor of ventricular fibrillations with reliable
verifications.
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Ventricular fibrillation as one of the main causes of sudden
cardiac death deserves quick and reliable detection as well
as prediction from human electrocardiogram time series. The
past decades have witnessed extensive efforts and fruitful
outcomes in developing new measures and approaches based
on time-series analysis to overcome this challenge [1–6].
Recently, the exciting efforts have been devoted to mapping
a time series into a network [7–9], and the topological
analyses based on complex network theory [13–16] have
been applied to help identify human electrocardiogram time
series of patients with risk to sudden cardiac death, arrythmia,
and congestive heart failure [7,10–12]. Note that these works
have tried to classify different categories of time series with
some indicators of global connectivity patterns, such as degree
distributions [7], degree-degree correlation [10], and degree-
mixing assortativity [10–12], of the associated networks, and
the sensitivity to data lengths arouses more investigations on
their reliability analysis [12].

On the other hand, the subgraph characteristics of as-
sociated human electrocardiogram networks deserve more
attention, since it has been widely recognized that the rank
distribution of subgraphs (or motifs) can help classify diverse
networks [17,18]. One evidence in time series analysis comes
from the latest work of Xu et al. that the time series of periodic,
chaotic, and noise data have been classified with the different
ranks of subgraph frequencies in the associated networks [9].

Therefore, this Brief Report does not follow the macro-
scopic network topological indicators in previous analysis
of human electrocardiogram time series [7,10–12]. Here we
apply the visibility graph method [8] to generate associated
networks for the ventricular fibrillation (VF) time series in
an MIT human heartbeat database, the Creighton University
Ventricular Tachyarrhythmia Database (CUDB) [19]. We
observe that the four-node subgraphs constructed from the time
series of VF patients rank significantly different from those of
normal sinus rhythm (NSR) data, and verify this conclusion
with the dependence on different sampling frequencies and
data lengths as well. Besides that, we designed an onset
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predictor of ventricular fibrillations with its effectiveness
finally verified.

We briefly recall the visibility graph approach [8] in
mapping a time series to a network as follows. Every data point
of a time series is mapped to a node in its associated network.
If two data points (ta,ya) and (tc,yc) in the time series at time
ta and tc, respectively, are visible, that is, any other data (tb,yb)
between them (ta < tb < tc) satisfies the following visibility
criterion:

yb < yc + (ya − yc)
tc − tb

tc − ta
, (1)

the corresponding two nodes are connected, yielding an
undirected network. Figure 1 shows an example of the given
time series which is mapped to an associated network with the
visibility algorithm.

We apply the visibility graph method to the NSR and the
ventricular fibrillation data in the CUDB, which has a total of
35 subjects (with the data files named from CU01 to CU35, one
channel per file or subject with each channel 508 s long), and
generate the associated networks. All signals in the database
are sampled at 250 Hz with 12 bit resolution.

After mapping a time series of 10 s to an associated network,
we use subgraph detection software [20] to find subgraphs in
the network. In this Brief Report we only target the four-node
subgraphs in the undirected networks, and all six types of
four-node subgraphs are illustrated in Fig. 2.

We start the work with one subject having the ventricular
fibrillation time series in the CUDB. With the visibility
criterion (1), we first map every 10-s episode (of the NSR
or VF data) of CU01 to generate an associated network, and
thus have 20 NSR networks and 20 VF networks from the
total 508 s data of CU01, each of which has 2500 nodes.
We calculate the percentage of each subgraph of Fig. 2 in
the generated networks by the detection software in [20], and
find the subgraph ranks in the descending order as shown in
Fig. 3. Therefore, for the same one subject (CU01), we clearly
observe that the electrocardiograms in the NSR (healthy)
status and VF status exhibit significantly different subgraph
ranks as CBADFE and ACBDFE, respectively. Especially, the
dominant motif in the NSR networks is motif C while the one
in the VF networks is motif A.
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FIG. 1. An exampled time series and the associated graph derived
from the visibility graph method. Each node in the graph corresponds
to data in the time series. For example, the data point (tb,yb) can
“see” other data points (ta,ya) and (tc,yc), so the corresponding
node b is linked with a and c. The data point (tb,yb) cannot “see”
data point (td ,yd ), so the corresponding nodes b and d are not
linked.

Note that motif A is a chain, while motif C is star structured.
Such a significant difference of the dominant motifs between
the NSR and VF networks comes from the different features
of the NSR and ventricular fibrillation time series. In the
NSR case, the R wave is the most prominent characteristic
waveform with peak values in the electrocardiogram episode,
and that the star-structured motif C prevails in the NSR
networks. On the other hand, such R waves disappear in the
VF data, which exhibits more aperiodic waves. Therefore,
the chain-like motif A replaces motif C to dominate the VF
networks.

We further extend our experiment to all 35 subjects of the
whole CUDB database, and verify the discrimination between
the NSR and VF data with the reference of the dominant
motifs C and A in the associated networks. For simplicity we
only focus on the most common three motifs in the generated
networks. Randomly selecting 200 NSR 10-s episodes and
200 VF 10-s episodes from all 35 subjects in the database, we
find that there are 131 NSR episodes having the most three
common subgraphs ranked as CBA, and 48 NSR ones having
the subgraph rank as CAB. On the other hand, there are 162 VF
data presenting the subgraph rank of ACB, and 31 VF data with
the rank of ABC, as listed in Table I. Therefore, motif C is the
dominant subgraph in 179 of the total 200 NSR networks,
while motif A is the dominant one in 193 of the total 200 VF
networks. All of the NSR and VF networks are generated with
the corresponding data episode of 10 s with 250 Hz sampling
frequency.

Since ventricular fibrillation is a life-threatening cardiac
arrhythmia, it requires both quick and reliable detection to
save the patient’s life. Many detection algorithms have been
evaluated for their reliability by the two measures of sensitivity

FIG. 2. All six types of four-node subgraphs in an undirected
network, which are labeled from A to F.

(a)

(b)

FIG. 3. The averaged percentages of six subgraphs in 20 networks
generated from (a) the NSR episodes and (b) the VF episodes of
CU01.

(SE) and specificity (SP) defined as below, the bigger, the more
reliable:

SE = TP

TP + FN
, SP = TN

TN + FP
, (2)

where TP is the number of true positive decisions (a VF case
being correctly recognized as a VF one), FN is the number of
false negative decisions (a VF case being wrongly recognized
as an NSR one), TN is the number of true negative decisions
(an NSR case being correctly recognized as an NSR one), and

TABLE I. The statistical number of 200 NSR and 200 VF episodes
covering 35 subjects of the CUDB database, whose associated
networks have the specified subgraph ranks of the most common
three motifs in descending order, and each episode is 10 s with 250 Hz
sampling frequency.

Specified Subgraph Ranks of the Most Common Three Motifs

Data Type CBA CAB ACB ABC Else Total Numbers

NSR 131 48 0 0 21 200
VF 0 1 162 31 6 200
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FIG. 4. (Color online) The reliability measures of sensitivity (SE)
and specificity (SP) of 200 NSR and 200 ventricular fibrillation
episodes with different sampling frequencies of 25, 50, 100, 125,
and 250 Hz, respectively. All episodes are the same as those data
in Table I with the same time length of 10 s but different sampling
frequencies.

FP is the number of false positive decisions (an NSR case
being wrongly recognized as a VF one).

We have found that motif C dominates in the associated
networks of NSR time series, while motif A dominates in those
of VF time series. Here we conjecture the dominance of motif
A or motif C as an indicator in distinguishing the VF time
series from the NSR electrocardiogram. With the statistical
data in Table I covering total 35 subjects of the database, we
calculate that the sensitivity and specificity are 96.5% and
89.5% (where TP = 193, TN = 179, FP = 21, FN = 7 for
simplicity), respectively, indicating a very effective indicator
in identifying a ventricular fibrillation patient from a healthy
subject.

We also consider the dependence of the above reliability
results on different sampling frequencies and time lengths. As
shown in Figs. 4 and 5, we clearly observe that the longer

FIG. 5. (Color online) The reliability measures of sensitivity (SE)
and specificity (SP) of 200 NSR and 200 ventricular fibrillation
episodes with different time lengths of 2, 5, 8, and 10 s, respectively.
All episodes are the same as those data in Table I with the same
sampling frequency 250 Hz but different time lengths.

the time length (the higher the sampling frequency), the more
reliable the identification.

Another more challenging problem is to predict the onset of
VF based on the ventricular time series data. We have observed
that the different dominant motifs of C and A work as a reliable
indicator in distinguishing a ventricular fibrillation from the
normal sinus rhythm of a subject. Therefore, when a subject
experiences a transition from the NSR physiological state to
the VF state, we conjecture that the percentage of motif C
decreases while that of motif A increases significantly during
the transition, with which we put a step forward in further
predicting the onset of VF.

To design the onset predictor of VF, we set each data episode
as five successive ECG beats in a time series. Therefore,
after generating an associated network for each beat with the
visibility graph method, we calculate M(i) as the difference
between the percentages of motif C and motif A in the
associated network for each beat i,i = 1, 2, 3, 4, 5, yielding
the mean difference in a 5-beat episode as M = ∑5

i=1
M(i)

5 .
We first target the subject of CU15 in the CUDB database,
having 405 s of NSR data before the onset of VF. We examine
the CU15 data in every 60-s interval and calculate M of each
5-beat episode as shown in Fig. 6. We clearly observe that at
the 5-beat NSR episode 405 s before the VF onset [Fig. 6,
inset (a)], the corresponding M = 37.84%. While the one at
the 5-beat episode 105 s before the VF onset [Fig. 6, inset (b)]
is 3.99%, and that of after the VF onset is −13% [Fig. 6,
inset (c)]. Therefore, we set the alarm threshold as 5% and
design the onset predictor of VF as follows:

if M < 5%, the onset predictor predicts that a VF will
happen.

In the CUDB database there are a total of 40 NSR records
before the onset of VF with 32 subjects involved, and the data

(a)

(b)

(c)

FIG. 6. (Color online) The mean difference M between the
percentages of motif C and motif A in associated networks generated
from the NSR 5-beat episode before the onset of VF in CU15. The
whole data series is 405 s before the VF onset, and every 5-beat
episode is examined in 60-s intervals. Inset (a): The 5-beat NSR
episode is 405 s before the onset of VF; (b) the 5-beat NSR episode
is 105 s before the onset of VF; and (c) the VF episode is 0.4 s after
the onset of VF. The (red) dashed line is the alarm threshold of our
designed onset predictor.
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lengths range from 13 to 496 s. As a comparison, we also
examined all 18 NSR records from the NSRDB database in
[21] to evaluate the reliability of our proposed onset predictor.
With these 58 records, the onset predictor of VF achieves a
sensitivity (SE) of 85% and a specificity (SP) of 88.8%, and
the predictor can predict an imminent VF from 5 to 290 s prior
to a true onset of VF.

To summarize this Brief Report, we have applied the
visibility graph approach to generate associated networks of
human ventricular fibrillation time series with extensive data
of the CUDB database, whose subgraphs rank and dominant
motif are significantly different from those of healthy ones.
Based on this reliable finding, we have further designed
an onset predictor of ventricular fibrillations, and verified
the effectiveness with the CUDB and NSRDB databases.

Therefore, we arrive at the conclusion that different dominant
motifs work as an effective and reliable indicator to distinguish
and predict (the onset of) ventricular fibrillations from normal
sinus rhythms of a subject. We should state that our method
fails to distinguish VF and ventricular tachycardia (VT) at
present, which deserves our efforts in designing new mapping
methods, and the ECG analysis based on complex network
theory is worth more attention in answering the remaining
questions [22].
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