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Velocity-jump processes are discrete random-walk models that have many applications including the study
of biological and ecological collective motion. In particular, velocity-jump models are often used to represent
a type of persistent motion, known as a run and tumble, that is exhibited by some isolated bacteria cells. All
previous velocity-jump processes are noninteracting, which means that crowding effects and agent-to-agent
interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity-jump models are
only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology,
such as wound healing, cancer invasion, and development, often involve tissues that are densely packed with cells
where cell-to-cell contact and crowding effects can be important. To describe these kinds of high-cell-density
problems using a velocity-jump process we introduce three different classes of crowding interactions into a
one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of
the interacting velocity-jump processes. We show that the resulting systems of hyperbolic partial differential

equations predict the mean behavior of the stochastic simulations very well.
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I. INTRODUCTION

Discrete random-walk models are well suited to studying
collective cell migration [1-3]. These models provide us with
detailed spatiotemporal snapshots and sequences of images
that are easy to compare with experimental time-lapse data [4].
There are two key classes of lattice-based random-walk models
that have been used to represent collective cell migration.

Position-jump processes are a class of random-walk model
in which the location of each agent undergoes a series of
discrete jumps [1,2,4,5]. Typically, a position-jump model
involves simulating a population of agents on a regular lattice,
with lattice spacing A. During each discrete time interval of
duration t, all agents are given the opportunity to change
position with probability P € [0,1]. Changes in position are
usually represented by nearest-neighbor transitions and the
choice of target site can be unbiased (undirected) or biased
(directed). Traditional position-jump models are noninteract-
ing [2,6], which means that each motility event is independent
of the state of the system. For example, an agent could step to a
target site that is already occupied so that multiple agents reside
at the same location. A population-level description of a nonin-
teracting position-jump model can be derived by constructing
a discrete conservation statement and then considering the
limit in which A — 0 and T — 0 simultaneously [1]. For a
noninteracting unbiased position-jump processes, this leads to
the linear diffusion equation

ac _ DV?C, (1)
ot
where C(x,t) is the density of agents, D = (P/2d)
lima ,0(A2/7) is the diffusivity, and d is the physical
dimension of the lattice.

Collective cell migration often involves situations with high
cell densities and many cell-to-cell contacts [4,7-10]. Under
these conditions crowding effects are often observed and have
led to the development of interacting position-jump models
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to account for crowding [11]. These interacting position-jump
models, also known as exclusion processes [12], allow each
lattice site to be occupied by at most a single agent. In these
interacting models the lattice spacing A is thought of as being
equivalent to the cell diameter [13]. An interacting position-
jump model is represented in the same way as a noninteracting
position-jump model, except that individual movements now
depend on the state of the system. For example, a motility
event involving an agent attempting to step to an occupied
target site would be aborted. These aborted motility events are
thought to represent crowding effects in the system [13-15].
Interacting position-jump models have been used to represent
many cell biology processes including cancer cell migration
[15,16], wound healing [17,18], and embryonic development
[4]. Extensions of the basic interacting position-jump model
to deal with applications involving populations composed of
distinct interacting subpopulations have also been described
[11,19].

A population-level description of an interacting position-
jump model can be derived from a discrete conservation
statement in the limit that A — 0 and 7 — 0 simultaneously.
For unbiased transitions this process also leads to Eq. (1).
The fact that noninteracting and interacting position-jump
processes are governed by the same macroscopic description
is counterintuitive, as we might expect that the differences
in the random-walk model would be reflected in differences
in the macroscopic model. However, simulation [11] and
analysis [20] show that both unbiased interacting and unbiased
noninteracting position-jump processes are in fact described
by the linear diffusion equation.

Velocity-jump processes are a class of random walk in which
each walker’s velocity undergoes a series of discrete jumps
[2,21-24]. Several authors have suggested that velocity-jump
processes are better suited to represent collective biologi-
cal motion than position-jump models [2,25]. Typically, a
velocity-jump model involves simulating the movement of a
population of agents on a regular lattice with lattice spacing A.
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FIG. 1. (a) Three-dimensional trajectory of a single bacterium
showing the stereotypical run and tumble motion characterized by
many persistent runs at constant velocity and occasional tumbles
corresponding to changes in velocity. (Reprinted from Ref. [6], with
permission.) (b) Image of a crowded colony of Escherichia coli.
(Reprinted from Ref. [26], with permission.)

During each discrete time interval, of duration 7, each agent
undergoes a displacement of vr with probability P € [0,1].
Here v is a velocity vector that encodes information about
the speed and direction of motion for each agent. In addition
to the possibility of changing position, during each discrete
time interval of duration t all agents are given the opportunity
to change their velocity with probability A € [0,1]. When A
is zero we have perfectly persistent ballistic motion, with
all agents continuing to move at a constant velocity. One of
the key biological motivations behind velocity-jump models
with A > O is that they can capture the stereotypical “run
and tumble” motion of isolated bacteria cells that undergo
persistent motion with occasional changes in direction [1,6].
Figure 1(a) shows a three-dimensional trajectory of an isolated
bacteria cell where we see that the motion is composed of many
persistent “runs” with occasional “tumbles,” which correspond
to changes in velocity. Because the trajectory corresponds to
an isolated bacteria cell, it is clear that crowding effects are
unimportant for this particular system.

All velocity-jump models described in the literature are
noninteracting. This means that crowding effects are ignored,
multiple agents can reside on the same lattice site, and
motility events that would require an agent to step across
another agent are permitted. To describe a one-dimensional
noninteracting velocity-jump process we consider a general
one-dimensional lattice with lattice spacing A. During each
time step of duration 7, all agents have the opportunity step
a distance +(vt) with probability P € [0,1]. Here v is a
dimensionless velocity, which we describe in detail in Sec. II.
To account for differences in the direction of motion, the total
population is considered as the sum of two subpopulations,
with subpopulation L moving in the —x direction and
subpopulation R moving in the +x direction. Turning events,
whereby left-moving agents convert to right-moving agents
and right-moving agents convert to left-moving agents, occur
with probability A during each time step. By constructing a
discrete conservation statement for both subpopulations and
taking the limit that A — 0 and v — 0 simultaneously, we
obtain [22,23]

R _ VaR + AL — R) )
ar dx ’

oL _ vaL +AR-1L) 3)
ar ~ ox ’
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where V = Pvlima ;0(A/7) is the advective velocity and
A = limp ;—0(A/7)isthe turning rate. In contrast with Eq. (1),
where information propagates with infinite speed, we note
that Egs. (2) and (3) are a system of linear hyperbolic
equations in which information propagates with finite speed.
Instead of writing the macroscopic model as a system of two
coupled equations, it is possible to define the total density as
S(x,t) = L(x,t) + R(x,t) and rewrite Egs. (2) and (3) as a
linear telegraph equation for S(x,#) [2,22,23].

We note that until now there has been no corresponding
theory developed for interacting analogs of the velocity-
jump processes. Given that we are interested to use discrete
random-walk models to describe systems with a high degree
of cell-to-cell contact and crowding effects, the aim of this
work is to formulate, derive, and validate several extensions
of the traditional noninteracting velocity-jump process. For
example, the colony of bacterial cells in Fig. 1(b) [26]
shows that these kinds of cells can occur in densely crowded
conditions. Although there is no experimental measurement
of the individual trajectories of the bacterial cells in Fig. 1(b),
we note that these cells are densely packed and we intuitively
expect that the motion of individual cells in Fig. 1(b) will be
reduced as a result of crowding effects that are not present
in Fig. 1(a). In addition to the experimental image shown
in Fig. 1(b), we note that other experimental systems have
reported cell trajectory data that illustrate how cell motility is
reduced by crowding effects. Such observations have been
reported in several experimental systems including scratch
assays with fibroblast cells [9] and the migration of embryonic
precursor cells during development [10].

Although we have used the idea of collective cell migration
to motivate our study, we believe that the models outlined
in this work are also relevant to other biological transport
processes. The motion of biomolecules along microtubules
is a key process involved in maintaining proper cellular
function [27]. Of particular relevance to the work outlined
in this paper is the fact that the motion of biomolecules along
microtubules is a one-dimensional process where crowding
effects and ballistic motion can be important [28]. Therefore,
the analysis outlined in our work will have application in the
understanding of biological processes across a range of scales
including collective motion of cells within tissues (such as
wound healing and malignant invasion) as well as collective
motion of biomolecules within a cell.

In addition to the random-walk models outlined so far,
many other kinds of random-walk models are known to have
application in studying biological and ecological motion. One
area of great interest is the study of animal swarming behavior
where alignment interactions [29] and group leader decisions
[30] have been shown to be important for certain applications.
It is also possible to study random-walk phenomena from the
point of view of a continuous time random-walk framework
instead of a discrete time framework [31].

This paper is outlined as follows. In Sec. II we summarize
a traditional noninteracting one-dimensional velocity-jump
process, derive the governing macroscopic equations, and
explore the relationship between simulation data and the
solution of the macroscopic equations. In Secs. III-V we
propose three different cases of an interacting velocity-jump
process. Each case builds on the previous case by introducing
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more realistic, and more complex, forms of interaction. For
each case we derive the corresponding macroscopic model
and explore the relationship between discrete simulation data
and the solution of the corresponding macroscopic models
developed here. For our velocity-jump models with only one
subpopulation and no turning, we provide an interpretation of
the continuum models in Sec. VI. A discussion is presented in
Sec. VII and we summarize in Sec. VIII.

II. CASE (0): NONINTERACTING
VELOCITY-JUMP MODELS

To motivate our interacting velocity-jump models we first
recall and present key results for the standard velocity-jump
model. We do this for two reasons. First, it will be insightful
to present our averaging arguments, simulation data, and
discrete-continuum comparisons for the traditional noninter-
acting case before we present the more detailed interacting
cases. Second, in this work we will compare discrete and
continuum information in a way that is very different from pre-
vious studies. That is, we will develop continuum descriptions
for the left-moving subpopulation L(x,#) and the right-moving
subpopulation R(x,t) separately and then compare solutions
of these continuum equations with the discrete data. In
contrast, previous studies have considered developing models
for the total population S(x,7) = L(x,t) + R(x,t) only. We
prefer to consider the subpopulation approach since we obtain
more detailed information about the velocity-jump processes.
Further, when we go on to consider interacting velocity-jump
models, itis no longer mathematically convenient to rewrite the
governing equations in terms of a single equation for S(x,?).

A. Discrete simulation

To simulate a one-dimensional noninteracting velocity-
jump process we consider a regular one-dimensional lattice
with lattice spacing A. Each site is indexed i € Z* and the
position of each site is x = Ai. Simulations will be updated by
discretizing time into a series of discrete intervals of duration
7. The total duration of a simulation is given by t = bt, where
b is the number of discrete time steps.

We will consider the population of agents to be composed
of aleft-moving subpopulation and a right-moving subpopula-
tion, such as the schematic population shown in Fig. 2. In our
simulations, if there is a total of N agents on the lattice, then
during the next time step of duration r, N agents are selected
independently at random, one at a time. When chosen, an
agent is then given the opportunity to change the direction

® |-
i1 0 i+

i+2 +3 i+4 i+5
FIG. 2. (Color online) One-dimensional schematic used to il-
lustrate the key differences between the traditional noninteracting
velocity-jump process [case (0)] and the three interacting velocity-
jump processes [cases (1)—(3)] introduced in this work. Light gray
(green) agents are shown with a left arrow and dark gray (red)
right-moving agents are shown with a right arrow.
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of movement with probability A € [0,1]. Once the change in
direction has been considered, the same agent is then given the
opportunity to move with some probability P € [0,1]. This
means that right-moving agents will attempt to step in the
+x direction, while left-moving agents will attempt step in
the —x direction during that time step. After N agents have
been chosen and given the opportunity to change direction and
move, time is incremented by a duration t.

All results presented in this paper have been produced
by assessing changes in direction before motility events. For
completeness, we also replicated all results by reversing the
order of operations so that motility events were assessed
before changes in direction. For all problems considered in this
paper we observe that averaged simulation data do not depend
on the order of operations in the discrete algorithm. This
independence of the order of operations is similar to known
results about operator splitting techniques that are used to
generate numerical solutions of differential equations [32,33].
We note that some random-walk processes, in particular
asymmetric processes, are sensitive to the order of update
[34,35]; however, it appears that the models presented in this
work are insensitive to these details.

Since we are considering a lattice-based velocity-jump
process, our choice of parameters in the discrete simulations
is restricted so that the displacement of each agent during
any motility event is an integer multiple of the lattice spacing
A. To describe this we set vt = aA, where a is a positive
integer with dimensions 7'/L. We note that there are several
ways to interpret the scales in the problem and we choose to
interpret v as a nondimensional measure of speed. Physically,
v is a ratio of the number of lattice sites per computational
step. We note that for the standard noninteracting model it
is always possible to choose A and 7 so that v =1 and
this corresponds to nearest-neighbor transitions on the scaled
lattice. For the interacting cases introduced here, we take
the most general approach and describe the random walk
by specifying A, 7, and v separately without scaling. This
allows us to consider non-nearest-neighbor transitions (v > 1).
The details of the interacting cases outlined in Secs. III-V
require that we retain the flexibility to study either nearest- or
non-nearest-neighbor transitions. We achieve this by choosing
v without any rescaling.

To demonstrate some key features of the velocity-jump
process, we present three snapshots of a noninteracting
velocity-jump process in Fig. 3. To initiate each simulation
we occupy the ith lattice site with a left-moving agent with
probability L(x,0) or a right-moving agent with probability
R(x,0). Later in this work we will introduce crowding effects
so that each lattice site can be occupied by at most a single
agent. To be consistent with this approach we always deal with
initial conditions that satisfy L(x,0) + R(x,0) < 1.

For all problems considered in this work we choose L(x,0)
to be Gaussian and R(x,0) to be identically zero so that we
have

R(x,0) =0, “4)

X — X 2
oo ()]s
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FIG. 3. (Color online) Snapshots of a one-dimensional nonin-
teracting velocity-jump process. The distribution of agents in 20
identically prepared realizations are shown at (a) t =0, (b) t = 15,
and (c¢) r = 30. Each independent realization is presented as a separate
row in (a)—(c). Each realization is performed on a one-dimensional
lattice with 1 < x < 200 and the parameters in the velocity-jump
processare A = v = P = 1 withv = 2and A = 0.01. Each snapshot
shows light gray (green) left-moving agents and dark gray (red)
right-moving agents. The initial distribution of agents is given by
Egs. (4) and (5) with g = 4, w = 0.5, and x. = 100.

where w € (0, 1] specifies, on average, the maximum density
of agents per lattice site and g is a positive parameter specifying
the average width of the Gaussian profile that is centered at
x.. To initiate a simulation we consider each lattice site at
position x separately. A random number U € [0,1] is drawn
from the uniform distribution. If 0 < U < L(x,0), we place a
left-moving agent at that site, whereas if L(x,0) < U < 1, we
leave that site unoccupied.

The algorithm was used to generate results shown in Fig. 3,
where we show several snapshots, each of which are composed
of 20 identically prepared realizations of the noninteracting
velocity-jump process with v = 2 and A = 0.01. By showing
all 20 realizations side by side in Fig. 3, we aim to illustrate
the stochastic nature of the algorithm since the distribution of
agents in each row of the lattice in Figs. 3(a)-3(c) is quite
different. The distribution of agents in Fig. 3 is consistent with
our physical intuition about the noninteracting velocity-jump
process. Given that we consider simulations with small A, we
expect that most of the initially left-moving subpopulation
will continue move in the —x direction at speed v = 2;
the snapshots in Figs. 3(a)-3(c) confirm this expectation.
As the simulation proceeds and ¢ increases, we see that a
small number of left-moving agents convert into right-moving
agents. These right-moving agents then move in the +x
direction at speed v = 2. We note that in all simulation data
presented in this work we always consider a sufficiently wide
lattice and sufficiently short simulations that the agents on the
lattice never touch the boundaries of the lattice during the time
scale of the simulation.

To quantify the mean behavior of the velocity-jump process,
we consider performing a large number of identically prepared
realizations and average the occupancy of each lattice site
across each realization. If R and L' are the occupancy
of right-moving and left-moving agents at site i during the
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mth realization, estimates of the mean agent densities are
given by

<m=iiM, (6)
M=

<m=%ﬁu, (7
j=1

where M is the number of identically prepared realizations
used to construct the average. For all problems in this paper we
choose M to be sufficiently large so that the density profiles of
(L;) and (R;) are reasonably smooth and contain only modest
fluctuations about the mean. At the same time we are also
careful not to choose M too large otherwise the averaged
profiles of (L;) and (R;) are so smooth that it will be difficult
to visually distinguish the discrete density profiles from the
corresponding continuum density profiles.

B. Macroscopic description

To develop a continuum partial differential equation (PDE)
description of the noninteracting velocity-jump process we
formulate a discrete conservation statement for both (L;) and
(R;) and consider the change in average occupancy at site i
during a discrete time step of duration . By considering all
mechanisms in the discrete model we arrive at

8(R;) = P(Ri—yc)(1 =) + P(Li—vz)(A) + (1 = P)(L;)(2)
— P(Ri)(1 =) = (1 = P)(Ri)(A) — P(Ri)(2), (8)

8(Li) = P(Litvr)(1 = 2) + P(Ritc)(A) + (1 — P)(Ri)(2)
— P(Lj)(1 = A) = (1 = P)(L;)(A) — P(L;)(2), (9)

where §(L;) and §(R;) represents the small change in the
average occupancy of left-moving and right-moving agents at
site i during the next time step of duration T, respectively.
These discrete conservation statements encode all the physical
processes in the random-walk model and each term on the
right-hand side has a simple physical interpretation. For exam-
ple, on the right-hand side of Eq. (9) we have P (L;,.)(1 — 1),
the probability that a left-moving agent at site i 4+ vt does
not change direction and moves into site i; P(R;,;)(A), the
probability that a right-moving agent at site i + vt changes
direction and moves into site i; (1 — P)(R;)(A), the probability
that a right-moving agent at site i changes direction and
does not attempt to leave site i; P{L;)(1 — A), the probability
that a left-moving agent leaves site i and does not change
direction; (1 — P)(L;)(%), the probability that a left-moving
agent at site i changes direction and does not attempt to
leave site i; and P(L;)(1), the probability that a left-moving
agent leaves site i and changes direction. We remark that
the last two terms on the right-hand side of Eq. (9) can
be summed to give — P (L;)(A) — (1 — P)(L;)(X) = —(L;)(L).
This simplified term can be interpreted as the probability that
a left-moving agent at site i changes direction, regardless of
whether or not it attempts to leave site i.

To convert Egs. (8) and (9) into continuous macroscopic
PDEs, we will identify the average densities (L;) and (R;),
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with their continuous counterparts L(x,#) and R(x,t), and then
expand all terms in a truncated Taylor series about site i as

R(Gi £aA,t)=R(@,1)+ (aA)aRa(;’t) + 0@A)?, (10
LG +aA,t)= L3+ (aA)% +0@A)?.  (11)

We now substitute Eqs. (10) and (11) into the discrete
conservation statements Eqs. (8) and (9). After dividing
through by 7, we consider the limit as A — 0 and 7 — 0
simultaneously and obtain

R = VaR + A(L — R) (12)
ar ax ’
oL = VaL + A(R—-1L) (13)
at  ox ’
. A . A
V =Pv lim (—) , A= lim (—) . (14)
ATt—=0\ T ATt—>0\T

Equations (12) and (13) are a system of coupled linear
hyperbolic PDEs. To ensure that the coefficients in the PDEs
are finite we require that A = O(tr) as A - 0 and t — 0
jointly with the ratio A /7 held constant [2,31,36]. All discrete
simulations performed in this work are for small finite values
of A and t; therefore, we expect that the continuum model will
match the discrete model for small values of A only [2,31,36].
We explore this effect in Sec. ITC.

To make a continuum-discrete comparison we generate
numerical solutions of Eqs. (12) and (13) on the same
domain as the discrete simulations. We use no-flux boundary
conditions at both boundaries for both subpopulations and
apply the same initial conditions given by Eqs. (4) and (5).
All PDE models in this work are solved using an upwind
finite-difference approximation on a grid with constant grid
spacing 8x and implicit Euler stepping with constant time
steps of duration §¢ [37]. The two PDE models are solved
sequentially. Picard linearization, with tolerance ¢, is used to
solve the resulting algebraic systems [38].

We now illustrate how averaged discrete data compare
with solutions of the corresponding continuum models in
Fig. 4. In this case we consider a lattice with 1 < x <
2000. One thousand identically prepared realizations of the
discrete process were generated and average density profiles
were obtained using Eqgs. (6) and (7). Numerical solutions
of Egs. (12) and (13) were obtained for the same initial
condition and boundary conditions. These numerical solu-
tions are superimposed on the discrete density profiles in
Fig. 4 for a range of A values and this shows that the
PDE models are able to accurately predict the mean density
distribution.

C. Quality of continuum-discrete match

Although we have demonstrated excellent quality of the
continuum-discrete match for a range of parameters in
Fig. 4, our limiting analysis suggests that the quality of
the continuum-discrete match will be parameter dependent.
We will now briefly explore these effects. To ensure that
the coefficients in Eqgs. (12) and (13) are finite, we require
that A = O(r) as A — 0 and 7 — O jointly with the ratio
A/t held constant [2,31,36]. This implies that the continuum
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FIG. 4. (Color online) Comparison of discrete and continuum
density profiles for various noninteracting velocity-jump processes
with small turning rates. Simulations are performed on a one-
dimensional lattice with 1 < x < 2000 and the parameters in the
velocity-jump process are A =7 = P = 1 with v = 2 and various
values of A. The initial distribution of agents is given by Egs. (4)
and (5) with ¢ = 150, w = 0.5, and x. = 1000. Density profiles
from the discrete simulations are computed using Egs. (6) and (7)
with M = 1000 identically prepared realizations. The profile shown
in (a) corresponds to the initial condition and the three profiles shown
in (b)-(d) correspond to A = 107%,1073, and 107!, respectively.
The stochastic density profiles are shown by the thin solid, dark
gray (red) line and the thin solid, light gray (green) line for
the left-moving and right-moving subpopulations, respectively. The
solution of the continuum PDE model Egs. (12) and (13) is shown
by the superimposed, thick dashed, dark gray (red) line and the thick
dashed, light gray (green) line for L(x,7) and R(x,t), respectively.
The numerical solution of the PDE models was obtained using the
technique outlined in the manuscript with éx = 0.5, 6t = 0.05, and
e=1x107°.

model will match the discrete model for small values of A
only [2,31,36]. To demonstrate this restriction we repeat the
simulations shown in Fig. 4 for larger turning probabilities and
present the continuum-discrete comparison in Figs. 5(a) and
5(b). Here we see that the solution of the continuum equations
fails to match the discrete profiles and the discrepancy between
the continuum and discrete profiles increases with A. This
divergence between the continuum and discrete profiles is
consistent with our limiting analysis and is also consistent
with previous analysis, which showed that the noninteracting
velocity-jump process can be described by a parabolic equation
in the limit that A — oo [39].

In addition to comparing continuum and discrete profiles
for the two subpopulations in Figs. 5(a) and 5(b), we also
compare continuum and discrete profiles for the total popu-
lation S(x,t) = L(x,t) + R(x,?) in Figs. 5(c) and 5(d). It is
interesting to note that the total continuum density profile and
the total discrete density profile match very well even for larger
turning rates [Figs. 5(c) and 5(d)], whereas the continuum-
discrete match for the two subpopulations is very poor
[Figs. 5(a) and 5(b)]. This observation justifies our approach
of focusing on conducting continuum-discrete comparisons for
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FIG. 5. (Color online) Comparison of discrete and continuum
density profiles for various noninteracting velocity-jump processes
with larger turning rates. Simulations are performed on a one-
dimensional lattice with 1 < x < 2000 and the parameters in the
velocity-jump process are A =7 = P = 1 with v = 2 and various
values of A. The initial distribution of agents is given by Eqs. (4) and
(5) with g = 150, w = 0.5, and x. = 1000. Density profiles from
the discrete simulations are computed using Eqgs. (6) and (7) with
M = 2000 identically prepared realizations and the profiles shown in
(a) and (b) correspond to A = 0.8 and 0.9, respectively. The stochastic
density profiles are shown by the thin solid, dark gray (red) line and the
thin solid, light gray (green) line for the left-moving and right-moving
subpopulations, respectively. The solution of the continuum PDE
model Egs. (12) and (13) is shown by the superimposed, thick dashed,
dark gray (red) line and the thick dashed, light gray (green) line for
L(x,t) and R(x,t), respectively. Results in (c) and (d) are for the
total population S(x,?) = L(x,t) + R(x,t) and these profiles were
obtained by summing the corresponding profiles in (a) and (b) with
the discrete results shown by the thin solid line and the continuum
results shown by the thick dotted line. The numerical solution of the
PDE models was obtained using the technique outlined in the paper
with §x = 0.5, 8t = 0.05,and e = 1 x 1076,

the subpopulations instead of the total population. Our results
in Fig. 5 show that it is more rigorous to compare results for
the subpopulations separately. One reason for this is that the
expression for the total population S(x,?) = L(x,t) 4+ R(x,?)
is underdetermined and there are infinitely many choices of
L(x,t) and R(x,t) that can be added to give the correct profile
for S(x,t), as we have demonstrated in Fig. 5.

We remark that all continuum-discrete matches presented
in this paper correspond to the initial condition given by
Egs. (4) and (5) with P = 1. These choices correspond to
situations where we consider an initially Gaussian distribution
of left-moving agents and that every agent always moves
within each computational time step. We also generated
and compared discrete and continuum density profiles for a
range of other initial conditions (e.g., Heaviside functions and
multiple Gaussian distributions) for situations that involved
both subpopulations present on the lattice at ¢t = 0, so that
L(x,0) > 0 and R(x,0) > 0 simultaneously. Furthermore, we
also generated and compared discrete and continuum density
profiles for other situations where P < 1, which corresponds
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to the situation where agents need not move in every single
time step. Our physical interpretation of setting P < 1 is that
an agent is able to rest during some time steps. For all these
additional situations we observed the exact same trends as we
demonstrate here in Fig. 4. Instead of presenting results for
all possible initial conditions and parameter combinations, we
chose to present all results in this work using Eqs. (4) and (5)
and P = 1 since these conditions are sufficient for us to clearly
demonstrate the key features of our study.

Now that we have demonstrated how the noninteracting dis-
crete density profiles compare with solution of the governing
PDE models, we will systematically introduce three different
ways to represent crowding effects into the velocity-jump
process. In each case we will perform simulations, derive the
relevant governing PDE models, and compare the continuum
and discrete density profiles. From this point forward we will
consider sufficiently small values of the turning probability A
so that we expect a good match between the continuum and
discrete profiles.

III. CASE (1): AGENTS MOVE TO THE TARGET SITE
ONLY IF THE TARGET SITE IS VACANT

In the first instance we will introduce the most straight-
forward form of agent-to-agent interaction by preventing
multiple agents from residing on the same lattice site. This
is achieved by performing simulations in the exact same
way as we did for the noninteracting problem, except that
potential motility events that would place more than one
agent on any target site are aborted. In essence, this extension
means that we are transforming a traditional noninteracting
velocity-jump process into an exclusion process [12]. For
biological applications, we interpret the lattice spacing as
being the same length as the cell diameter [13].

To understand the details of the interaction, consider the
configuration shown in Fig. 2 for a system in which vt = 2A.
Under noninteracting conditions [case (0)], the left-moving
agent residing at site i —2 would attempt to step to site
i — 4 (with probability P), meaning that two agents could
reside at site i — 4 simultaneously. However, for the interacting
velocity-jump model developed in this section [case (1)],
such a move would be aborted. Similarly, for case (1) the
right-moving agent at site i — 1 would be permitted to step
to the site i + 1 since the target site is vacant, whereas the
left-moving agent at site i + 5 would not be permitted to step
to site i + 3.

To demonstrate the effects of this interaction mechanism
we present a snapshot of 20 identically prepared realizations
in Figs. 6(a)-6(c). Figure 6(a) shows an initial distribution
of left-moving agents. Figure 6(b) shows 20 identically pre-
pared realizations of a noninteracting velocity-jump process
[case (0)], whereas Fig. 6(c) shows 20 identically prepared
realizations of the interacting velocity-jump process [case (1)],
both with v =2 and A = 0.01. Comparing the snapshots in
Figs. 6(b) and 6(c) shows that the distribution of left-moving
agents appears to be further spread out in the interacting case
relative to the noninteracting case.

To understand these differences we will incorporate the
crowding effects into the discrete conservation statements that
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are given by
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8(Ri) = P(Ri—y)(1 — (Li) = (Ri))(1 — 1) + P(Li—ye)(1 — (L) — (Ri))(A) + P(Li)((Litvr) + (Rioe)(R)

+ 1 = P)(Li)(A) = P(Ri)(1 = (Lisvr) —

(Rivoe ) —A) = P(Ri)(1 — (Li—vr) —

(Ri—vr>)()\)

— P(Ri)((Li—vz) + (Ri—r))(A) — (I = P)(R;)(R), (15)
8(Li) = P(Litve)(1 = (Li) = (Ri)(1 = 2) + P(Riyvr)(1 = (Li) = (Ri))(A) + P(Ri)((Li—vc) + (Ri—v))(X)

+ (1 = P)Ri)(A) — P(Li)(1 = (Li—vr) —

(Ri—ye)( = 4) = P(Li)(1 = (Lisor) —

<Ri+vt))()")

— P(Li)({Litve) + (Rigoe))(A) — (1 = P)(Li)(1). (16)

We remark that the last three terms on the right-hand side
of Eq. (16) can be added to give —(L;)(A), which can be
interpreted as the probability that a left-moving agent at site i
changes direction. Each of the terms in Egs. (15) and (16) has a
straightforward physical interpretation. For example, the terms
in Eq. (16) correspond to P(L;y,)(1 — (L;) — (R;))(1 — A),
the probability that a left-moving agent at site i 4 vt attempts
to move, does not change direction, and that the target site,
site i, is vacant; P(R; 7 )(1 — (L;) — (R;))(}), the probability
that a right-moving agent at site i + vt attempts to move,
changes direction, and that site i is vacant; P{R;)({L;_y;) +
(Ri—yz))()), the probability that a right-moving agent at site
i attempts to move, changes direction, and that the target
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FIG. 6. (Color online) Snapshots of several one-dimensional non-
interacting and interacting velocity-jump processes. The distribution
of agents in 20 identically prepared realizations are shown at (a)t = 0
and in (b)—(e) at # = 20 for a range of interacting and noninteracting
cases. Noninteracting results are shown in (b) while interacting
cases (1)—(3) are shown in (c)—(e), respectively. Each independent
realization is presented as a separate row in (a)—(e). All simulations
are performed on a one-dimensional lattice with 1 < x < 200 and the
parameters A = v = P = 1 withv = 2and A = 0.01. Each snapshot
shows light gray (green) left-moving agents and dark gray (red)
right-moving agents. The initial distribution of agents is given by
Egs. (4) and (5) with g = 4, w = 0.5, and x, = 100.

site, site i — vt, is occupied; (1 — P)(R;)(A), the probability
that a right-moving agent at site i does not attempt to move
and changes direction; P(L;)(1 — (L;_yz) — (Ri—ye))(1 — A),
the probability that a left-moving agent at site i attempts to
move, does not change direction, and that the target site,
site i — v, is vacant; P(L;)(1 — (L;yyc) — (Ritvr))(A), the
probability that a left-moving agent at site i attempts to
move, changes direction, and that the target site, site i + v,
is vacant; P(L;)({(L;tyr) + (Ri+vz))(X), the probability that
a left-moving agent at site { attempts to move, changes
direction, and that the target site, site i 4+ vt, is occupied;
and (1 — P)(L;)(X), the probability that a left-moving agent at
site i does not attempt to move and changes direction. The key
difference between Egs. (15) and (16) and the noninteracting
conservation equations (8) and (9) is the presence of factors
such as 1 — (L;) — (R;) in the terms that represent motility
events. For example, the first term on the right-hand side of Eq.
(16) represents a left-moving agent at site i + Tv that attempts
to step to site i. This motility event will be successful only if site
i is vacant; this condition is specified by introducing the factor
1 — (L;) — (R;), which is the probability that site i is vacant.
These additional factors ensure that all potential motility events
would only take place provided the target site is vacant [11].

To understand how these changes affect the resulting PDE
models, we substitute the truncated Taylor series expansions
into Egs. (15) and (16) and then divide through by t.
Considering the limit as A — 0 and 7 — 0 simultaneously,
we obtain

OR 0
— =—-V—(R[l—R—-L])+A(L —R), 17
Jt 0x
oL 0
— =V—(L[1=R—-L)+AR—-1L), (18)
ot 0x

m(5) 2= ()
V=Pv lm (—]), A= Ilim (—-]). (19)
AT—=0\T AT—=>0\T
Equations (17) and (18) are a system of coupled nonlinear
hyperbolic PDEs. The presence of the [1 — L — R] factor in
the flux terms in Eqgs. (17) and (18) indicates that the flux of
agents is zero in regions where space is completely occupied
and L(x,t) + R(x,t) = 1.
It is interesting to note that we have demonstrated that
a noninteracting velocity-jump model and an interacting
velocity-jump model give rise to very different continuum
PDE representations. This is, in some sense, an expected
result since it is intuitive to think that the differences in
the random walk would give rise to differences in the PDE
representations. However, as we have already outlined in
Sec. I, it is well known that unbiased interacting position-jump
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models and unbiased noninteracting position-jump models
are both described by the same PDE model [11]. One
way to interpret these differences between velocity-jump
and position-jump models is that position-jump models are
relatively insensitive to crowing effects, whereas velocity-
jump models are relatively sensitive to crowding effects. This
difference also suggests that velocity-jump models are, in some
sense, better suited to interpreting collective cell migration
problems rather than position-jump models since crowding
effects are often observed in experimental cell migration
studies [8-10].
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of identically prepared realizations and extracted density
profiles, which are shown in Figs. 7 and 8§ with A =0 and
0.01, respectively. The solutions of the corresponding PDE
models Egs. (17) and (18) were generated with parameters,
boundary conditions, and initial conditions to match the
discrete simulations. Both the discrete and continuum density
profiles are superimposed in Figs. 7-8(a) and Figs. 7-8(d).
In all cases we see that the quality of the match between the
continuum and discrete density profiles is excellent.

To examine how the solution of Egs. (17) and (18) compare

with discrete density profiles we performed a large number (5| £25¢1 025 tcjssez Case 3
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FIG. 7. (Color online) Comparison of discrete and continuum
density profiles for various interacting velocity-jump processes with
no turning A = 0. Simulations are performed on a one-dimensional
lattice with 1 < x < 2000 and the parameters A = t = P = 1 with
v = 2. In all cases the initial distribution of agents is given by Egs. (4)
and (5) with ¢ = 150, w = 0.25, and x. = 1000. Density profiles
from the discrete simulations are computed using Eqs. (6) and (7) with
M = 1000 identically prepared realizations. The profiles in (a) and (d)
are for case (1) at# = 50 and 100, respectively. The profiles in (b) and
(e) are for case (2) at + = 50 and 100, respectively. The profiles in
(c) and (f) are for case (3) at# = 50 and 100, respectively. The discrete
profiles for the left-moving subpopulations are shown by the thin
light gray (green) line. The solution of the continuum PDE models
(Egs. (17), (18), (22), (23), (27), and (28) are by the superimposed,
thick dashed, light gray (green) line for L(x,?). (g) and (h) Compar-
ison of the continuum initial condition (dotted black line) with the
solution of the noninteracting (solid black line) model and the three
interacting models [light gray (green) solid line] for this particular
problem at# = 50 and 100, respectively. The profiles for cases (0)—(3)
are shown with the number indicating the case. The numerical solution
of the PDE models was obtained using the technique outlined in the
paper with 8x = 0.5, 8t = 0.05,and e = 1 x 107°.

a small turning probability A = 0.01. Simulations are performed on
a one-dimensional lattice with 1 < x < 2000 and the parameters
A=1=P =1 with v=2. In all cases the initial distribution
of agents is given by Egs. (4) and (5) with ¢ = 150, w = 0.25,
and x, = 1000. Density profiles from the discrete simulations are
computed using Egs. (6) and (7) with M = 1000 identically prepared
realizations. The profiles in (a) and (d) are for case (1) at r = 15
and 30, respectively. The profiles in (b) and (e) are for case (2) at
t = 15 and 30, respectively. The profiles in (c) and (f) are for case (3)
at + = 15 and 30, respectively. The stochastic density profiles for
the left-moving subpopulations and the right-moving subpopulations
are shown by the thin light gray (green) and dark gray (red) lines,
respectively. The solutions of the continuum PDE models Eqgs. (17),
(18), (22), (23), (27), and (28) are shown by the superimposed, thick
dashed, light gray (green) line for L(x,#) and the thick dashed, dark
gray (red) line for R(x,t). (g) and (h) Comparison of the continuum
initial condition (dotted black) with the solution of the noninteracting
model (black line) and the three interacting models [light gray (green)
line] for this particular problem at + = 15 and 30, respectively. The
profiles of the left-moving subpopulation are shown for cases (0)—(3)
with the number indicating the case. The numerical solution of the
PDE models was obtained using the technique outlined in the paper
with §x = 0.5, 8t = 0.05,and e = 1 x 107°.
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We will now extend case (1) by considering a second form
of agent-to-agent crowding. Interacting case (1) was derived to
prevent motility events that would place multiple agents on a
single site, but did not account for crowding effects that might
take place during the displacement of an agent from one lattice
site to another.

IV. CASE (2): AGENTS MOVE TO THE TARGET SITE
ONLY IF THE TARGET SITE AND THE
INTERMEDIATE SITES ARE VACANT

We will now introduce a second form of agent-to-agent
interaction to prevent agents stepping across other agents
during potential motility events. For example, in Fig. 2 with

vr—1

8(Ri) = P(Ri_ye)(1 =) [T = (Lizs) —

s=0

(Rize))+ P(Li—ye)0) [T(1 = (Liy) —
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vt = 2A, the agent residing at site i — 1 would attempt to
step to site i + 1. Under the conditions described previously
in Sec. III for case (1), this motility event would be permitted
since the target site is vacant. For the distribution of agents
shown in Fig. 2, this potential motility event seems to be
unnatural since there is an agent residing at site i that would
interfere with the transition of the original agent from site
i — 1 to the target site i + 1. To account for this situation,
in case (2) we will only permit motility events provided two
conditions are met. First, the target site must be vacant. Second,
all sites between the original site and the target site must be
vacant.

These conditions can be translated into a set of discrete
conservation statements that are given by

vr—1

(Ri—s))

s=0

+ P(L;)() [1 - 1_[(1 — (Liys) — (Rm))} + (I = P)Li)(A) — P(R)(1—2) ]_[(1 — (Lits) — (Rigs)) — (M)(Ri),
s=1

s=1

vr—1

8(Li) = P(Litvc)(1 —2) 1_[ (I = (Lits) —
s=0

(Riys)) + P(Rior) W) [T (1 = (Liss) —

(20
vr—1

(Rits))
s=0

+ P(Ri)(A) |:1 - l_[(l —(Li—s) — (Ris>):| + 1 = P)YR;)A) — P(L;)(1 — )»)l_[(l —(Li—s) — (Ri—s)) — (W)(L;).
s=1 s=1

The key difference between Egs. (20) and (21) and the
discrete conservation statements in Sec. III for case (1)
[Egs. (15) and (16)] is that now we have products of terms
suchas [1°%," (1 = (Li+s) — (Riy,)) appearing in the discrete
conservation statement. These product terms reflect the fact
that successful motility events require not just one vacant site,
but now require a string of adjacent sites to be vacant for the
motility event to be successful. To examine the continuum limit
of Egs. (20) and (21) we substitute the truncated Taylor series
expansions into the discrete conservation statements. Dividing
through by 7 and considering the limitas A — Oand r — 0
simultaneously, we obtain

OR 0

— =—-V—(R[1-=R—-LIY)+A(L—R), (22)

dt 0x
oL 0
—=V—(UL[1-R-LIY)+AR-1L), (23)
ot 0x

. A . A
V =Pv lim (—) , A= lim (—) . 24)
At—>0\ T At—>0\T

Equations (22) and (23) are a system of coupled nonlinear
hyperbolic PDEs, with the [ — L — R]" factor in the flux
terms indicating that the flux of agents is zero in regions where
space is completely occupied and L(x,?) + R(x,t) = 1. For
the simplest case with v = 1, Egs. (22) and (23) for case (2)
are identical to Eqgs. (17) and (18) for case (1). For v > 1 the

21

crowding factor [1 — L — R]” in the flux terms for case (2)
[Egs. (22) and (23)] is smaller than the crowding factor [1 —
L — R] in the flux terms for case (1) [Egs. (17) and (18)],
implying that the crowding effects for case (2) will act to
reduce the population-level motility to a greater extent than
case (1) whenever v > 1.

To examine how the solution of Egs. (22) and (23) compare
with discrete density profiles we performed a large number
of identically prepared realizations and extracted density
profiles, which are shown in Figs. 7 and 8 with A =0 and
0.01, respectively. The solutions of the corresponding PDE
models Egs. (22) and (23) were generated with parameters,
boundary conditions, and initial conditions to match the
discrete simulations. The discrete and continuum density
profiles are superimposed in Figs. 7(b) and 8(b) and Figs. 7(e)
and 8(e), where again we see that the quality of the match
between the discrete and continuum profiles is excellent.

V. CASE (3): AGENTS MOVE TO THE TARGET OR AS FAR
AS POSSIBLE TOWARD THE TARGET SITE UNTIL
ANOTHER AGENT BLOCKS THE PATH

We will now extend cases (1) and (2) by considering a third
and final form of agent-to-agent crowding. If we consider the
distribution of agents in Fig. 2 for the case in which vt = 2A,
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then the left-moving agent at site i + 5 would attempt to move
to site i + 3, which is already occupied by a right-moving
agent. For interaction cases (1) and (2) this potential movement
event would be aborted because the target site and/or the sites
across which the agent would move to reach the target site are
occupied. Instead of strictly imposing that all sites between
the original site and the target site must be vacant to allow a
motility event to take place, we will now introduce the most
complex form of interaction whereby an agent will attempt to
step to a target site and will only move as far as it can until either
it (i) reaches the target site without stepping on or stepping
across another agent or (ii) meets another agent obstructing

vt—1

(Ri—e))+ P(Li—r)) [T = (Liss) —

(Lip1) + ,H)]"[(l— (Lin)
D) — P(1=1)(R)(1

(Riis)) + P(Rior)) [T = (Ligs) —
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its path to the target site. For (ii) the motile agent then steps
as far along the path as possible without stepping through any
obstructing agent. For example, in Fig. 2 with vt = 2A, the
left-moving agent at site i + 5 would attempt to step to site
i + 3 and in doing so will move left until it becomes obstructed
by the agent residing at site i + 3, causing the motile agent to
be deposited at site i + 4. In summary, for case (3) we will
allow an agent to move as far as it can until the motility event
is blocked by any other agent lying in the path of the motile
agent.

This mechanism can be translated into a set of discrete
conservation statements given by

vr—1

(Rifs))

5s=0

- (Rin>):|

— (Liy1) = (Rit1) — (Ri)(Q), (25)

vt—1

(Rits))

S(R)) = P(Ri_e)(1 =) [T = (Lisy) —
vr—1 = s—1
+PO) Y. {<L,-s><<L,-+1> + (R[] = (i) — mm}
s=1 n=0
+P(1—2) WZI [
+ P(L)(L i>(< i+1> + (Riz1) + (1 — P)(L
8(Li) = P{Liyye)(1 = 1) vﬁ(l — (Liys) —
s=0

vr—1
+m)2[ i) (Licr) =+

vt—1
+P<1—A)Z[ i) (Lic1) +

+ POO)(R)ULi—1) + (Ri—1)) + (1 — P)(

We now substitute the truncated Taylor series expansions into
the discrete conservation statements and divide through by 7.
Considering the limit as A — 0 and v — 0 simultaneously,
we obtain

TE] " ((=1)"(v+ DL + R)"
o o (e

n=1

~

+A(L — R), 27
L 93 S ((=D"(w+ DIL + R)"
E_Vax{L[lJ“;( v(n 4+ D!(v —n)! )“
+A(R - L), (28)
m,(2) a=m,(7)
V=Pv lim (—]), A= lim [—]). 29)
A1—>0\ T At—>0\T

Equations (27) and (28) are a system of coupled nonlinear
hyperbolic PDEs with very complicated crowding factors in
the flux terms.

s=0

s—1
R [ = (Liva) — <Ri+n>>}
n=0
s—1
R [ = (Liva) — <Ri+n>)}
n=0

Ri)(A) — P(1 = 2)(

Li)(1 = (Li—1) = (Ri-1)) = (Li)(A). (26)

To see the relationship between Eqgs. (27) and (28) and the
previous systems of PDEs for cases (0)—(2), we can rewrite
the summation terms that appear in the flux terms to arrive at

oR d { |: (1—(1—R—L)“)“
— =—-V—1R|(1-=R-1L)
at 0x v(R+ L)

+ A(L — R), (30)
aL ad { |: (1—(1—R—L)”)i|}
—=V—J{L|0—-R-L){ ———
ot dx v(R+L)

+ A(R—L), a3n

. A . A
V =Pv lim (—) , A= lim (—) . (32)
A0\ T At—>0\T

Written in this form, we can see that Egs. (30) and (31) are
related to the previous PDE models. For example, by setting
v = 1, it is clear that the PDE models for case (1) [Eqgs. (17)
and (18)], case (2) [Eqgs. (22) and (23)], and case (3) [Eqgs. (30)
and (31)] all relax to become the same expression.

To examine how the solution of Egs. (27) and (28) compares
with discrete density profiles we performed a large number of
identically prepared realizations and extracted density profiles,
which are shown in Figs. 7 and 8 with A =0 and 0.01,
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respectively. The solutions of the corresponding PDE models
Egs. (27) and (28) were generated with the same parameters,
boundary conditions, and initial condition to match the discrete
simulations. The discrete and continuum density profiles are
superimposed in Figs. 7(c) and 8(c) and Figs. 7(f) and 8(f),
respectively, where again we see that the quality of match
between the discrete and continuum profiles is excellent.

It is now relevant to mention some key differences between
the traditional noninteracting case and the interacting cases
with respect to scaling. In the noninteracting case it is always
possible to scale our choice of A and 7 in the random-walk
model so that v = 1. This amounts to considering nearest-
neighbor transitions on the rescaled lattice. Conversely, for the
interacting cases we wish to study crowding effects and it is
relevant to consider situations where these crowding effects
might occur as an agent attempts to step across many lattice
sites so that v > 1. Therefore, for the interacting cases, we
must be able to choose A, 7, and v independently without
rescaling.

VI. ZERO TURNING RATE A =0

The nonlinearity in the PDE models for cases (1)-(3) is
most easily illustrated in Fig. 7, which is for A =0 (zero
turning rate). With the initial conditions given by Egs. (4) and
(5), setting A = 0 means that R = 0 for all time, leaving only
left-moving agents L > 0. Under these conditions we have

oL aJ
N (33)
at ox
where, with the further assumption that A=7=P =1
(as in Fig. 7), we find that the flux J is

J =Jy=—vL [case (0)], (34)
J=J=—vL({—L) [case(1)], 35)
J=J,=—vL(0 —-L)" [case (2)], (36)

J=J3=—(1—=L)[1—(—L)"] [case(3)]. (37)

In regions for which L <« 1 the density of agents is low and
intuitively we would expect each of the cases (1)—(3) to behave
like case (0), as vacant sites are plentiful, and any attempted
movement is likely to be successful. Indeed, each J,, ~ —vL
as L — 0% form = 1,2,3, agreeing with case (0) (Jo = —vL)
in the dilute limit. In contrast, in regions for which 1 — L < 1
the density of agents is high and crowding effects are most
important. In densely populated regions we expect (for v >
2) that |J;]| is larger than |J3| and that |J3| is much larger
than |J,| since in a crowded region agents are more likely
to move under the case (1) scenario, with the only test being
whether or not the target site is vacant, and least likely to move
under the case (2) scenario, with by far the most number of
aborted motility events possible. These intuitive predictions
are confirmed by noting that J; ~ —v(l — L), J, ~ —v(l —
L)Y, and J3 ~ —(1 — L) in the dense limit L — 1.

The PDE [Eq. (33)] in the four cases Egs. (34)—(37) has
exact solutions [40], which can be written implicitly as L =
L(&,0), where & = x + vt for case (0), £ = x +v(1 —2L)t
forcase (1),& = x + v(l — L)*"![1 — (1 + v)L]t for case (2),
and £ = x 4+ [(1 +v)(1 — L)’ — 1]t for case (3). (We have
used these solutions as a check on our numerical scheme

PHYSICAL REVIEW E 84, 061920 (2011)

described in Sec. II B.) Written in this way, we can observe
the effect each crowding case has on a given agent density
profile. For example, for case (1) at a given time, each point on
a profile of L(x,t) moves to the left with velocity v(1 — 2L).
Thus points on the profile for which L < 1/2 move to the
left, while points for which 1/2 < L < 1 move to the right.
This may seem counterintuitive, as all agents are left moving;
thus we must be careful how to interpret the evolution of these
profiles. For a Gaussian-type initial condition [Eq. (5) with
w > 1/2] points on the right-hand tail correspond to agents in
a low-density region that are moving in the —x direction and
so are moving into a region with a higher agent density. Thus,
as time evolves, the agent density immediately to the right of
X. increases, while the agent density at x, itself decreases. The
result is that the agent density profile appears to move to the
right near x., when in fact the agents themselves are moving to
the left. Similar observations can be made for cases (2) and (3).
In the special case where A =0, the nonlinearity in
Egs. (33) and (37) gradually causes an increase in the
magnitude of the slope to the right of the peak, with the
profiles ultimately forming a shock at some finite time [40].
For times just before the shock forms, we expect our PDE
models to break down, as they are based on the assumption
that 9L /dx = O(1). However, as we have shown in Fig. 7, we
find the PDE models accurately reflect the average behavior of
the simulations for small and moderate times. We also note that
in the most general case with A > 0, such as the results shown
in Fig. 8, we expect that turning events would regularize shock
formation and our assumption that 9L /dx = O(1) is valid.

VII. DISCUSSION

In this paper we have introduced three different forms of
crowding interactions into a one-dimensional velocity-jump
model. The key result is that the details of the crowding
interactions lead to differences in the relevant macroscopic
PDE models that we have derived and validated here. This
means that, unlike position-jump models, the macroscopic
PDEs for a traditional noninteracting velocity-jump model
are very different from the macroscopic PDE models for a
velocity-jump process that includes crowding effects.

In Figs. 7(g) and 7(h) we compare the solution of the PDE
governing a traditional noninteracting velocity-jump process
and the solutions for the three interacting velocity-jump
processes for a particular problem with A = 0. We see that the
noninteracting profile has moved farther in the —x direction
than any of the interacting profiles, meaning that the crowding
effects introduced in the interacting models act to decrease the
net motility of agents in the system.

The differences between the interacting and noninteracting
models have some obvious and important consequences. For
example, if we were to apply a traditional noninteracting
velocity-jump model to interpret a cell migration assay where
crowding effects are present, then we would expect that any
calibration process used to match the experimental results
to the solution of the noninteracting model would lead to
an incorrect estimation of the parameters in the problem.
By comparing the discrepancy between the interacting and
noninteracting profiles in Figs. 7(g) and 7(h), we see that
this discrepancy increases as ¢ increases with a very large
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discrepancy after 100 time steps. The interacting and non-
interacting profiles in Figs. 8(g) and 8(h) for A > 0 show
the exact same trends. Note that in Figs. 8(g) and 8(h) we
only present results for the left-moving subpopulation and that
the continuum profiles L(x,t) for interacting cases (1)—(3)
are almost indistinguishable from each other, whereas the
continuum profile for the noninteracting model, case (0), is
very different.

Although we observe a very large discrepancy between
the solutions of the interacting and noninteracting models in
Figs. 7 and 8, we note that the differences between the profiles
among the three interacting models is relatively small. This
can be explained by considering the relationship between the
three interacting cases. For example, setting v = 1 in cases (2)
and (3) means that the governing PDEs simplify to give the
same PDEs that we have for interacting case (1). Furthermore,
we note that the differences between the PDEs for cases (1)
and (2) will increase as v increases. For case (3) we have a
more complicated crowding factors in the PDEs [Eqgs. (31)
and (30)] and it is more difficult to see a relationship between
case (3) and the other cases.

The accuracy of all PDE models derived in this paper
depends on the accuracy of the truncated Taylor series used
to relate the average occupancy of lattice sites Eqs. (10)
and (11). The error term in the truncated Taylor series is
proportional to O (vt), which means that we expect the quality
of the continuum-discrete match to degrade as v increases. We
chose to present all simulation data and continuum-discrete
comparisons in this work for v =2 in order to balance
two competing effects. First, this was the smallest value of
v for which the PDE descriptions of the three interacting
velocity-jump models are different [had we chosen v = 1,
then the PDE descriptions of cases (1)—(3) would have been
identical]. Second, we chose to set v = 2 instead of a much
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larger value of v since we know that the truncated Taylor
series are more accurate when v is small. For completeness,
we also generated simulation data, density profiles, and made
continuum-discrete comparisons for larger values of v (e.g.,
v = 3,5) and observed a reasonably good match between the
continuum and discrete profiles for these additional larger
values of v; however, these additional results are not reported
here.

VIII. CONCLUSION

In summary, the key focus of our work has been to
introduce and analyze three different forms of crowding
effects in a velocity-jump process to show that the relevant
governing macroscopic PDE description of the system depends
on the form of crowding interactions introduced into the
discrete model. Although our main aim has been to extend
the traditional noninteracting velocity-jump process to in-
corporate crowding effects, it should also be possible to
introduce many other biologically motivated mechanisms into
the discrete model, including agent proliferation [17], agent
death [20], agent-to-agent adhesion [15,41,42], and agents of
different shapes and sizes [43]. A similar procedure could be
implemented for any of these additional mechanisms to arrive
at the governing PDE model for these more complex discrete
mechanisms. Other extensions could include considering two-
and three-dimensional transport processes or more general
turning kernels [21] and a distribution of possible velocities
instead of motion at a constant speed.
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