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In the absence of synaptic coupling, two or more neural oscillators may become synchronized by virtue of
the statistical correlations in their noisy input streams. Recent work has shown that the degree of correlation
transfer from input currents to output spikes depends not only on intrinsic oscillator dynamics, but also on
the length of the observation window over which the correlation is calculated. In this paper we use stochastic
phase reduction and regular perturbations to derive the correlation of the total phase elapsed over long time
scales, a quantity that provides a convenient proxy for the spike count correlation. Over short time scales, we
derive the spike count correlation directly using straightforward probabilistic reasoning applied to the density of
the phase difference. Our approximations show that output correlation scales with the autocorrelation of the phase
resetting curve over long time scales. We also find a concise expression for the influence of the shape of the phase
resetting curve on the initial slope of the output correlation over short time scales. These analytic results together
with numerical simulations provide new intuitions for the recent counterintuitive finding that type I oscillators
transfer correlations more faithfully than do type II over long time scales, while the reverse holds true for the
better understood case of short time scales.
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I. INTRODUCTION

While the jury is still out on the functional role of
synchrony and correlations in neural firing, the ubiquity
of these phenomena in the nervous system is suggestive.
One long-standing hypothesis holds that correlated activity
in the visual system underlies feature binding. Synchronous
oscillations may also play a role in amplifying signals [1]
or transmitting information from one layer to another [2–4],
or such oscillations may encode information directly [5–12].
Correlations can be tuned to optimize coherence resonance
[13]; on the other hand, correlations may negatively impact
the signal-to-noise ratio [14–17], and excessive synchrony
is a hallmark of neurological disorders such as epilepsy and
Parkinson’s disease.

To understand the function of oscillatory correlations, or
one day achieve clinically relevant control over them, we
must first understand the underlying biophysical mechanisms.
While synchrony can arise as the result of anatomical con-
nectivity between neurons, much recent work [18–24] has
brought to light ways in which correlated activity develops
from the inherent stochasticity of neural systems. Thus, in the
absence of direct coupling, two or more neural oscillators may
become synchronized by virtue of the statistical correlations
in their noisy input streams—a phenomenon we will refer to
as stochastic synchrony.

For our analysis of stochastic synchrony, we appeal to
the theory of weak coupling, which applies in the stochastic
context provided the amplitude of the noise is sufficiently
small. In particular, a number of groups [20–22,25] have
proved that the phase reduction technique [26] can be applied
to oscillators receiving additive noise. Thus, we reduce a
noisily driven oscillator to a scalar differential equation
describing the evolution of the phase. This so-called phase
equation depends only on the properties of the noise and the
oscillator’s phase resetting curve (PRC), which characterizes
how small perturbations influence the oscillator’s subsequent
timing or phase.

Neural oscillators can be classified into two types according
to the bifurcations that occur as the dynamical system goes
from a stable rest state to a stable limit cycle. Further-
more, the oscillator’s bifurcation class has been shown to
determine the shape of its PRC and therefore its ability
to synchronize. Type I oscillators undergo the saddle node
on an invariant circle bifurcation, and the resulting PRC is
strictly positive, indicating that perturbations can only advance
the oscillator’s phase. Type II cells undergo the Andronov-
Hopf bifurcation, which produces a PRC with both negative
and positive regions; typically, inputs occurring early in the
cycle can delay the phase whereas later inputs advance it.
See Fig. 1.

An expanding body of work has demonstrated that over
short time scales of less than one period, type II oscillators
are more susceptible to stochastic synchrony than type I.
This has been shown via simulations and in vitro [19,27],
by deriving the probability distribution of the phase dif-
ference [28], by minimizing the Lyapunov exponent of the
phase difference [29], and most recently by calculating the
spike count correlation over a range of time windows [30].
The latter study further reports that this finding reverses
over long time scales, namely, that type I oscillators transmit
correlations more faithfully than type II when observed over
lengths of time much greater than one period.

In Sec. II we provide a brief introduction to the phase
reduction technique in a stochastic setting. Next, in Sec. III we
use regular perturbations to give a novel and straightforward
analysis of correlation transfer over long time scales. To
facilitate our derivation, we use the total elapsed phase
as a proxy for the spike count. Note that the total phase
(modulo the period) and the spike count differ by at most
one, which is a negligible quantity when many spikes have
been observed over a long time window. The expression we
derive for the correlation coefficient of the total phase agrees
both qualitatively and quantitatively with the results found in
Ref. [30].
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FIG. 1. We use the parametrization �(θ ) = − sin(θ + α) +
sin(α) to vary the PRC smoothly from type I (solid gray), where
α = π

2 and �(θ ) = 1 − cos(θ ), to type II (solid black), where α = 0
and �(θ ) = − sin(θ ). Note that intermediate values of α produce PRC
shapes (dashed) that more closely resemble those found empirically
in vitro.

In Sec. IV we consider short time scales less than or equal to
the period of the oscillation. In this case, the total phase cannot
be used to approximate the spike count. We therefore derive
the spike count correlation directly, using simple probabilistic
reasoning applied to the density of the phase difference.
Our analytic results together with Monte Carlo simulations
corroborate earlier work showing type II oscillators transfer
correlations more readily than type I over short time windows.

II. NOISY OSCILLATORS

Let us begin with a neural oscillator receiving additive noise
with equations of motion given by

dX = F (X) dt + σξ,

where X ∈ Rn and ξ is a white noise process. When σ = 0,
we assume the noiseless system has an asymptotically stable
periodic solution X0(t) = X0(t + τ ) with period τ .

As in the deterministic case, we can reduce this high-
dimensional system to a scalar equation for the evolution of
the phase θ around the limit cycle. Let φ : Rn → S1 map a
neighborhood of the limit cycle to the phase on a circle. That
is, θ = φ(X), with θ ∈ [0,1). Then θ satisfies

dθ

dt
= 1 + σ∇Xφ(X) · ξ,

where we have normalized the unperturbed period to be
2π . Next we can close the equation by assuming the noise
amplitude σ is sufficiently small, so that the system trajectory
can be approximated by the noiseless limit cycle X0:

θ̇ ≈ 1 + σZ(θ ) · ξ, (1)

where Z(θ ) = ∇Xφ[X0(θ )] is the adjoint or phase-dependent
sensitivity of the trajectory to perturbation along the limit
cycle. In the case of a neural oscillator, we assume the noisy
perturbations arise as the result of stochastic synaptic input,
which influences only the voltage variable. Hence Z(θ ) has
only one nonzero component, which is proportional to the
phase resetting curve �(θ ).

Thus far, we have used the conventional change of variables
to obtain Eq. (1), which therefore must be understood as a
stochastic differential equation in the Stratonovich sense. In
order to eliminate the correlation between θ and ξ we must use

the Itô change of variables, which will introduce an additional
drift term:

θ̇ = 1 + σ�(θ )ξ + σ 2

2
�′(θ )�(θ ).

Here the prime symbol denotes differentiation with respect
to θ . For a detailed discussion of phase reduction in noisy
oscillators see Ref. [31].

III. CORRELATION TRANSFER OVER
LONG TIME SCALES

We now consider the transfer of correlations over time
scales much larger than the natural period of the oscillators.
Given the level of correlation between the noisy inputs, we
wish to know what level of correlation remains between the
spike count of two oscillators after some time. For analytic
convenience, however, we will use the total phase that has
elapsed (modulo 2π ) as a proxy for the spike count. Since these
quantities differ by at most one, the discrepancy will be negligi-
ble for the large spike counts that accrue over long time scales.

Our system will consist of two identical phase oscillators
receiving weak, correlated, but not identical, additive white
noise. Keeping only terms up to order σ , we have

θ̇1 = 1 + σ�(θ1)ξ1(t),
(2)

θ̇2 = 1 + σ�(θ2)ξ2(t).

The noise takes the form

ξ1 = √
cinξC +

√
1 − cinξA,

(3)
ξ2 = √

cinξC +
√

1 − cinξB,

where ξA, ξB , and ξC are mutually independent, zero-mean
white noise processes, and cin ∈ [0,1] is the correlation be-
tween ξ1 and ξ2, which we will refer to as the input correlation.

Next let us rewrite Eq. (2) in the form of integral equations:

θ1(t) = t + θ1(0) + σ

∫ t

0
�[θ1(s)]ξ1(s) ds,

θ2(t) = t + θ2(0) + σ

∫ t

0
�[θ2(s)]ξ2(s) ds.

Let T be length of the window of time over which we
will observe the system. Throughout this discussion we will
assume that our system has reached equilibrium, and that
time has been reparametrized so that our observation takes
place on the interval t ∈ [0,T ]. In order to quantify the total
phase traversed during this time, we subtract the initial phases
by defining qi(T ) = θi(T ) − θi(0) for i = 1,2. Thus the total
phase traversed over a time window of length T is given by

qi(T ) = T + σ

∫ T

0
�[θi(s)]ξi(s) ds,

with qi(0) = 0 for i = 1,2. Finally, since we assume σ is small,
let us simplify the integrands by expanding the phase to lowest
order:

θi(t) = t + θi(0) + O(σ ). (4)

Then we have �[θi(s)] = �[s + θi(0)], and thus

qi(T ) = T + σ

∫ T

0
�[s + θi(0)]ξi(s) ds. (5)
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When taking expectations of the quantities in Eq. (5), we
must keep in mind that there are four random variables over
which averaging must take place. Namely, we must average
over the white noise signals ξ1(t) and ξ2(t) and the initial
conditions θ1(0) and θ2(0).

Assuming we begin observation after the system has
reached equilibrium, we can take one of the initial conditions,
say θ1(0), to be distributed uniformly on the interval [0,2π ]
because the noise is small. However, at equilibrium the phases
obey the steady-state probability distribution P (φ) derived in
Refs. [28,32], which depends only on the phase difference
φ(t) = θ2(t) − θ1(t). Therefore, the average of Eq. (5) is
computed as

E[qi(T )] = E

[
T + σ

∫ T

0
�(s + x)ξi(s) ds

]

= 1

2π

∫ 2π

0

∫ 2π

0
P (y − x)

×
[
T + σ

∫ T

0
�(s + x) 〈ξi(s)〉 ds

]
dx dy

= T + σ

2π

∫ 2π

0

∫ 2π

0
P (y − x)

×
∫ T

0
�[θi(s)] 〈ξi(s)〉 ds dx dy = T , (6)

where 2π is the unperturbed period of the oscillators, P (φ) is
the steady-state probability distribution of the phase difference,
and x and y represent the initial conditions θ1(0) and θ2(0),
respectively. The last line follows because the white noises
have zero mean.

Our goal is to compute the correlation of the total phase
traversed by the two oscillators, henceforth referred to as the
output correlation cout:

cout := Cor[q1,q2] = Cov[q1,q2]√
Var[q1]Var[q2]

. (7)

First, let us derive the covariance as follows:

Cov[q1,q2](T ) = E[(q1(T ) − E[q1(T )])(q2(T ) − E[q2(T ))]]

= E[(q1(T ) − T )(q2(T ) − T )]

= E

[
σ 2

∫ T

0
�[s + θ1(0)]ξ1(s) ds

×
∫ T

0
�[s ′ + θ2(0)]ξ2(s ′) ds ′

]
= σ 2 1

2π

×
∫ 2π

0

∫ 2π

0
P (y − x)

∫ T

0

∫ T

0
�(s + x)

×�(s ′ + y)〈ξ1(s)ξ2(s ′)〉ds ds ′ dx dy

= σ 2 cin

2π

∫ 2π

0

∫ 2π

0
P (y − x)

∫ T

0

∫ T

0
�(s + x)

×�(s ′ + y)δ(s − s ′) ds ds ′ dx dy

= σ 2 cin

2π

∫ 2π

0

∫ 2π

0
P (y − x)

∫ T

0
�(s + x)

×�(s + y) ds dx dy.

Similarly, we find the variance to be

Var[q1](T ) = E[(q1(T ) − E[q1(T )])2]

= σ 2 1

2π

∫ 2π

0

∫ 2π

0
P (y − x)

∫ T

0
�(s + x)2 ds dx dy.

Note that we therefore have Var[q1] = Var[q2], and hence the
denominator of Eq. (7) can be simplified:

√
Var[q1]Var[q2] =

Var[q1]. This gives the output correlation as

cout = cin

∫ 2π

0

∫ 2π

0 P (y − x)
∫ T

0 �(s + x)�(s + y) ds dx dy∫ 2π

0

∫ 2π

0 P (y − x)
∫ T

0 �(s + x)2 ds dx dy
.

(8)

Now let h(x) = ∫ 2π

0 �(y)�(y + x) dy be the autocorrela-
tion of the PRC, and let φ(t) = θ2(t) − θ1(t) represent the
phase difference as before. Then we can rewrite Eq. (8) as

cout = cin

∫ 2π

0 P (φ)h(φ) dφ∫ 2π

0 P (φ)h(0) dφ
.

Note that the right-hand side no longer depends on T after we
switched the order of integration and canceled the resulting
factors of T in both numerator and denominator. Next we
can do away with the denominator entirely, since h(0) does
not depend on φ, and P (φ) integrates to one on the interval
[0, 2π ]. This leaves simply

cout = cin

∫ 2π

0
P (φ)

h(φ)

h(0)
dφ. (9)

An explicit expression for the steady-state probability
density of the phase difference P (φ) was derived by Marella
and Ermentrout in Ref. [28]. Specifically, we have

P (φ) = N

G(φ)
,

where G(x) = 1 − cin [h(x)/h(0)], and N is a normalizing
constant, N = 1/

∫ 2π

0 1/G(x) dx. Let us further define the
PRC to be

�(θ ; α) = − sin(θ + α) − sin(α), (10)

where α is a parameter that allows us to vary the PRC shape
smoothly between type I (α = π/2) and type II (α = 0). See
Fig. 1. Using this, the phase distribution over long time scales
becomes a function of input correlation and the PRC shape
parameter:

P (φ; cin,α)

=
√

(cin − 1)[cos(2α) − 2][2 + (cin − 1) cos(2α)]

2π [2 − cin + (cin − 1) cos(2α) − cin cos(φ)]
. (11)

In the special cases where α = π/2 and α = 0, Eqs. (10)
and (11), together with Eq. (8), yield the following:

TypeI

�I(x) = 1 − cos(x)

PI(φ; cin) =
√

3

2π

√
c2

in − 4cin + 3

[3 − 2cin − cin cos(φ)]
(12)

cout,I = 1 − 1

3

√
3(cin − 3)(cin − 1)
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FIG. 2. The steady-state distribution P (φ) of phase differences φ is shown for type I (solid gray) and type II (solid black) as well as for
intermediate PRCs (dashed). Note that the unperturbed period of the oscillators is 2π . (a) Input correlation cin = 0.4. (b) Input correlation
cin = 0.8.

TypeII

�II(x) = − sin(x)

PII(φ; cin) = 1

2π

√
1 − c2

in

[1 − cin cos(φ)]
(13)

cout,II = 1 −
√

1 − c2
in.

Figure 2 shows the phase densities for type I and type II
PRCs at various input correlations. As in Ref. [30], we see in
Fig. 3 that type I oscillators display greater output correlation
than type II oscillators for any fixed value of the input
correlation c, a surprising finding in light of earlier results that
demonstrated the opposite relationship over short windows of
observation [19,27–29].

Our intuition for this finding can be honed by performing
a further perturbation expansion, now assuming small input
correlation. For sufficiently small cin, we can make the
approximation

1

G(x)
= 1

1 − cin
h(x)
h(0)

≈ 1 + cin
h(x)

h(0)
.

When we substitute this into Eq. (9) we find

cout = cin
Ñ

h(0)

∫ 2π

0
h(φ) dφ + O

(
c2

in

)
, (14)

where Ñ = 1/
∫ 2π

0 [1 + cinh(x)/h(0)]dx is likewise approxi-
mated to lowest order in cin.

The form of Eq. (14) demonstrates that output correlation
scales with the integral of the PRC autocorrelation, and for the
parametrized PRC in Eq. (10) this integral becomes simply

∫ 2π

0
h(φ) dφ = 4π2 sin(α)2.

In particular, α = 0 for the type II PRC, and hence cout = 0
to lowest order. Clearly, we have nonzero autocorrelation for

nonzero α � π
2 , and hence PRCs that deviate from pure type II

will produce higher output correlation over the long time scales
considered here.

Expanding the remaining terms in Eq. (14), we find the
approximated output correlation takes the form

cout ≈ 2cin sin(α)2

2 + cin − (1 + cin) cos(2α)
. (15)

c o
ut

α
0 π/4 π/2

0

0.2

0.4

0.6

0.8

1

FIG. 3. (Color) Output correlation for large time windows is
shown as a function of the PRC shape parameter α. Note that
when α = 0 the PRC is a pure sinusoid, and therefore the oscillator
is type II; when α = π/2, the oscillator is type I [see Eq. (10)].
Theoretical curves (solid) are a good match for both the simulated
total phase correlation (dots) and the simulated spike count correlation
(stars). Colors indicate the level of input correlation: 0.2 (blue),
0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple). In all cases, noise
amplitude σ = 0.05, and results are shown for the large time window
T = 50 × 2π.
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FIG. 4. The perturbation expansion of cout for small input corre-
lation (dashed) agrees well with the full output correlation (solid).
Note that, to lowest order in cin, the output correlation goes to zero
as the PRC shape parameter α goes to zero, that is, as the PRC
shape approaches the pure type II. Colors indicate the level of input
correlation: 0.01 (light gray), 0.05 (medium gray), 0.1 (black).

In Fig. 4 we show that this approximation agrees with Eq. (8)
for cin = 0.01 and 0.05 but begins to diverge when cin = 0.1.
Note that these curves would all lie below the lowest curve
plotted in Fig. 3 if shown on the same scale.

We verify the preceding analysis by simulating two phase
oscillators perturbed by additive white noise as described in
Eqs. (2) and (3). To generate the correlated noise processes
of Eq. (3), we first used the MATLAB function randn()
to create three independent random vectors of normally
distributed values with mean zero and standard deviation
one. These vectors correspond to the mutually independent
white noise processes ξA, ξB , and ξC in Eq. (3). Then for
each correlation value cin ∈ {0.2,0.4,0.6,0.8,0.99}, we created
correlated processes ξ1 and ξ2 as written in Eq. (3) and repeated
here:

ξ1 = √
cinξC +

√
1 − cinξA,

ξ2 = √
cinξC +

√
1 − cinξB.

The oscillators described by Eq. (2) were then integrated using
the Euler-Maruyama method [33], specifically for i = 1,2:

θi(t) = θi(t − 1) + dt + σ�[θi(t − 1)]ξi(t − 1)
√

dt,

with time step dt = 0.01 and noise amplitude σ = 0.05 in
all simulations, unless stated otherwise. Note that for conve-
nience, simulations were performed with time rescaled so that
t = T/2π . Therefore the natural period of the oscillators is on
the order of one simulation time unit.

Each combination of input correlation cin and PRC shape
parameter α was simulated independently for a total duration
of 105 time units, and the first 103 time units were discarded
to ensure that the steady-state regime had been reached. We
computed the correlation coefficient of both the total phase
and the spike count of the resulting oscillator time series
over sliding time windows of length T . Figure 3 shows the
result for T = 50 time units, or 50 times the natural frequency
of the oscillators. Both the total phase correlation and the
spike count correlation agree closely with each other and

with the theoretical curves as a function of the PRC shape
parameter α.

IV. SHORT TIME SCALES

Now we will calculate the spike count correlation directly
for observation windows T that are shorter than or equal to
the natural period, which we assume to be 2π . First, let us
consider the probability that a spike occurs in [0,T ]. We say
that oscillator i spikes when its phase θi reaches 2π , or in other
words θi(T ) � 2π . Assuming as usual that the noise amplitude
σ is small, we expand the phase to lowest order as in Eq. (4),
that is, θi(T ) = θi(0) + T + O(σ ). Therefore the probability
that oscillator i spikes is simply

P[θispikes] = P[θi + T � 2π ],

P[θidoes not spike] = P[θi + T < 2π ].

For two oscillators, there are four possibilities for the joint
spike count:

P[θ1does not spike,θ2does not spike]

= P[θ1 + T < 2π,θ2 + T < 2π ],

P[θ1spikes,θ2does not spike]

= P[θ1 + T � 2π,θ2 + T < 2π ],

P[θ1doesnotspike,θ2spikes]

= P[θ1 + T < 2π,θ2 + T � 2π ],

P[θ1spikes,θ2spikes]

= P[θ1 + T � 2π,θ2 + T � 2π ].

These probabilities can be obtained directly by integrating
the density of the phase difference Eq. (11) over the appropriate
domain. Note that this gives four discrete joint probabilities
for each observation window T ∈ [0,2π ]. For convenience, let
us define the following functions of T :

f00(T ) := P[θ1 � 2π − T ,θ2 � 2π − T ]

= 1

2π

∫ 2π−T

0

∫ 2π−T

0
P (y − x) dx dy,

f01(T ) := P[θ1 > 2π − T ,θ2 � 2π − T ]

= 1

2π

∫ 2π

2π−T

∫ 2π−T

0
P (y − x) dx dy,

f10(T ) := P[θ1 � 2π − T ,θ2 > 2π − T ]

= 1

2π

∫ 2π−T

0

∫ 2π

2π−T

P (y − x) dx dy,

f11(T ) := P[θ1 > 2π − T ,θ2 > 2π − T ]

= 1

2π

∫ 2π

2π−T

∫ 2π

2π−T

P (y − x) dx dy.[3pt]

Figure 5 shows these four functions as T varies between 0
and 2π . Let X be the random variable such that X = 1 if θ1
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FIG. 5. Joint spiking probability for two oscillators receiving
partially correlated noise is shown for observations windows T � 2π ,
where 2π is the natural frequency of the oscillation. The subscripts
ij indicate the probability that the corresponding oscillator does (1)
or does not (0) spike.

spikes during the observation period T , and X = 0 if θ1 does
not spike. Similarly, let Y represent the presence or absence

of a spike in oscillator θ2. Then the covariance is given by
Cov[X,Y ] = E[XY ] − E[X]E[Y ]. In terms of the functions
defined above we have

E[X] = 0 · (f00 + f01) + 1 · (f10 + f11)

= (f10 + f11) = E[X2],

E[Y ] = 0 · (f00 + f10) + 1 · (f01 + f11)

= (f01 + f11) = E[Y 2],

E[XY ] = 0 · 0 · f00 + 1 · 0 · f10 + 0 · 1 · f01 + 1 · 1 · f11

= f11.

A few simplifications are possible. In particular, the sum
f10(T ) + f11(T ) is just the marginal probability that θ1 spikes
within time T . Since θ1 is uniformly distributed, this proba-
bility is simply T

2π
. Furthermore, we also have f10 = f01 by

the symmetry of the density P , and hence
√

Var[X]Var[Y ] =
Var[X]. Therefore the spike count correlation over short time

(a) (b)

(c) (d)

0
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π
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0.5
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ut
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FIG. 6. (Color) (a, b) Theoretical (solid) and simulated (dotted) output correlation curves are shown as a function of the observation
window T � 2π . (a) Type I oscillators. (b) Type II oscillators. (c, d) The initial slope (dashed) of the spike count correlation (solid) is the linear
approximation of Eq. (16) at T = 0, given in Eq. (18). (c) Type I oscillators. (d) Type II oscillators. For all plots, noise amplitude σ = 0.05,
and colors indicate the level of input correlation: 0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple).
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windows is

cout(T ) = E[XY ] − E[X]E[Y ]

Var[X]

= f11 − (f10 + f11)2

(f10 + f11)[1 − (f10 + f11)]
= f11 − (

T
2π

)2

T
2π

(
1 − T

2π

)

= 1

2πT − T 2

[
2π

∫ 2π

2π−T

∫ 2π

2π−T

P (y − x) dx dy − T 2

]
.

(16)

This expression becomes indefinite as T → 0 and T → 2π ,
but a straightforward application of l’Hôpital’s rule proves that
cout = 0 in these limits. Briefly, let us recall that

d

dT

{∫ 2π

F (T )

∫ 2π

F (T )
P [x,y] dx dy

}

= −F ′[T ]

{∫ 2π

F (T )
P [x,F (T )] dx +

∫ 2π

F (T )
P [F (T ),y] dy

}
.

Thus we have for the numerator of Eq. (16)

lim
T →0,2π

d

dT

[
2π

∫ 2π

2π−T

∫ 2π

2π−T

P (y − x) dx dy − T 2

]

= lim
T →0,2π

[
2π

∫ 2π

2π−T

P (2π − T − x) dx

+ 2π

∫ 2π

2π−T

P (−2π + T + y) dy − 2T

]
.

Clearly, as T → 0, the above integrals go to zero, and so the
derivative of the numerator is zero. Meanwhile the derivative
of the denominator of Eq. (16) evaluates to 2π at T = 0. So we
have established that cout = 0 at T = 0. Similarly, as T → 2π

we have for the derivative of the numerator:

2π

∫ 2π

0
P (−x) dx + 2π

∫ 2π

0
P (y) dy − 4π.

Since P (φ) is a an even function and, moreover, a probability
distribution over phase differences φ ∈ [0,2π ], the above inte-
grals each evaluate to one. Thus the derivative of the numerator
is again zero. Meanwhile the derivative of the denominator of
Eq. (16) evaluates to −2π at T = 2π . Therefore we have
established that cout = 0 at T = 2π as well.

Figures 6(a) and 6(b) shows how the analytically derived
output correlation of Eq. (16) compares with numerical
simulations for type I and type II oscillators, respectively,
with σ = 0.05. Correlations were computed for the simulated
oscillator time series as described in the previous section;
however, now the length of the sliding windows of observation
T ranges between 0 and 2π . Note that, although T is short
with respect to the natural period of oscillation, the simulated
system remains at steady state once the initial transient has
been discarded. Therefore the steady-state phase distribution
P applies in this setting, and Figs. 6(a) and 6(b) shows good
agreement between the analytic and numerical quantities.

We can make a further simplification by considering the
linear part of Eq. (16) for T close to zero:

cout = T

[
P (0) − 1

2π

]
+ O(T 2).

Thus, the initial slope of the output correlation is proportional
to the peak of the stationary distribution of the phase difference,
P (0). Substituting PI (0) and PII (0) from Eqs. (12) and (13),
we obtain

cout,I = T

π

[
cin

3(1 − cin) + √
3(cin − 1)(cin − 3)

]

= T
c

6π
+ O

(
c2

in

)
, (17)

cout,II = T

2π

(
1 + cin√
1 − c2

in

− 1

)
= T

cin

2π
+ O

(
c2

in

)
. (18)

From here, it is clear that the initial slope of cout is greater for
type II than for type I oscillators; in fact, the type II output
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FIG. 7. (Color) Output correlation is shown as a function of
intermediate-length observation windows T . Colors indicate the level
of input correlation: 0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan),
0.99 (purple). (a) Type II oscillators (solid) exhibit higher output
correlations over short time scales than do type I (dashed) over long
time scales. (b) This result reverses over short time scales. In all cases,
noise amplitude σ = 0.2.
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correlation rises three times faster than the type I, to lowest
order in cin. See Figs. 6(c) and 6(d).

V. DISCUSSION

We have demonstrated a novel approach to approximating
the spike count correlation of noisy neural oscillators over
both long and short time scales. In the case of long windows
of observation T much greater than the natural period of
oscillation, we used the total elapsed phase (modulo the
period) as a proxy for the spike count. The difference between
these quantities is at most one and hence is negligible when
many spikes are observed over large time windows T . In our
perturbation expansion to lowest order in the noise amplitude,
σ , the correlation between oscillators depends only on the
PRC and the stationary distribution of the phase difference.
A further approximation assuming small input correlation cin

reveals that output correlation scales with the autocorrelation
of the PRC, which is a nonnegative quantity that equals zero
precisely when the PRC is a pure sinusoid, i.e., when the
oscillator displays type II dynamics. This observation sheds
some light on the surprising finding, first reported by Barreiro
et al. [30], whereby type I oscillators transfer correlations more
faithfully than do type II over long time scales, although the
reverse holds true for the better understood case of short time
scales [19,27–29].

Using straightforward probabilistic reasoning, we com-
puted the spike count correlation directly for short time
scales. In the limit of small T and small cin, we obtain
an expression for the initial slope of the output correlation,

also known as the correlation susceptibility [8]. In Ref. [8]
de la Rocha et al. use a phenomenological model to ex-
plore the complex relationship between susceptibility, fir-
ing rate, and threshold nonlinearities. The present analy-
sis illustrates the contribution of bifurcation structure via
phase resetting dynamics. In particular, the susceptibility is
proportional to the peak of the stationary phase difference
distribution, P (0), which in turn depends on the shape of
the PRC.

Our analytic expressions in the limit of small noise agree
well with spike count correlations computed from simulated
oscillators. However, for tractability we included only terms
of order one in the perturbation expansion of the phase given
in Eq. (4). As a result, the present analysis cannot account for
the slow drift of the correlation due to noise, which is visible
for values of T near 2π in Fig. 6.

In Fig. 7 the drift is even more apparent. This figure
illustrates what happens when we violate all of the assumptions
under which the preceding analysis is guaranteed to hold true.
In particular, the noise amplitude for the simulations shown
in Fig. 7 is 0.2, while for all previous figures, σ = 0.05.
As a result, we see significant drift away from the small
noise predictions, even for observation windows as small as
T = 2π . Furthermore, the preceding discussion covers cases
where either T ∈ [0,2π ] or T 	 2π . The intermediate values
of T illustrated in Fig. 7 suggest that type II cells show
damped oscillations in output correlation far longer than type I
membranes. New analytic methods will be needed to address
these and other phenomena at intermediate time scales that
may be relevant in biological systems.
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