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Department of Physics, Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare (INFN),

via Celoria 16, I-20133 Milano, Italy

L. Sutto
Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme,

Melchor Fernandez Almagro, 3. E-28029 Madrid, Spain
(Received 5 August 2011; published 12 December 2011)

Random heteropolymers do not display the typical equilibrium properties of globular proteins, but are the
starting point to understand the physics of proteins and, in particular, to describe their non-native states. So far,
they have been studied with mean-field models in the thermodynamic limit, or with computer simulations of
very small chains on lattice. After describing a self-adjusting parallel-tempering technique to sample efficiently
the low-energy states of frustrated systems without the need of tuning the system-dependent parameters of
the algorithm, we apply it to random heteropolymers moving in continuous space. We show that if the mean
interaction between monomers is negative, the usual description through the random-energy model is nearly
correct, provided that it is extended to account for noncompact conformations. If the mean interaction is positive,
such a simple description breaks out and the system behaves in a way more similar to Ising spin glasses. The
former case is a model for the denatured state of globular proteins, the latter of naturally unfolded proteins, whose
equilibrium properties thus result as qualitatively different.
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I. INTRODUCTION

Random heteropolymers are chains of molecules displaying
quenched disordered interactions. Although they usually do
not display a dominant equilibrium conformation as globular
proteins do, they have been the subject of substantial theoreti-
cal interest. Aside from being a model for peptides built out of
random sequences of amino acids, like those that are supposed
to be involved in prebiotic evolution, random heteropolymers
are the starting point to describe the behavior of proteins.
Consequently, they have been widely used as a benchmark to
study the physics of globular proteins, whose sequence is not
random but has undergone natural evolution [1–4], in a way
similar to that in which the ideal gas is the starting point to
study real gases and the ideal chain is the starting point to
study real homopolymers.

The simplest description of a random heteropolymer
is through the random-energy model (REM) [5,6], which
assumes that the total energy of the system is the sum of a
constant, large number nc of uncorrelated two-body energies,
defined by an average ε0 and a standard deviation σ . The model
predicts a parabolic entropy

S(E) = − (E − ncε0)2

2ncσ 2
(1)

down to a ground-state energy Ec = zNε0/2 − Nσ

(z log γ )1/2, where z is the number of contacts per monomer,
so that nc = zN/2, and γ is the number of conformations
available to each monomer. The thermodynamics of random
heteropolymers has been investigated also in the canonical en-
semble with a replica approach [7–9], showing the validity of
the REM under the condition that only globular conformations
contribute to the partition function [10].

The understanding of the physics of random heteropoly-
mers has been very helpful in the study of globular proteins,
that is, of heteropolymers that are nonrandom and that display
at biological temperatures a unique equilibrium conformation
(the native state). In particular, the S(E) of random heteropoly-
mers has been used to model the unfolded state of proteins.
The attractive property of this S(E), and of the associated
Ec, which makes this approach useful, is its self-averageness,
namely, in the limit of large N it does not depend on the
specific realization of the two-body energies, and consequently
on the protein sequence. If a protein sequence displays in some
conformation an energy lower than the sequence-independent
value of Ec, this is the native state of the protein and the system
displays the two-state thermodynamics typical of proteins
[11,12].

This strategy has been successfully applied to lattice
models, designing proteins through the minimization of the
energy of the sequence on the wanted native conformation
[13], designing potentials to fold specific sequences [14,15],
estimating the effect of mutations in the protein sequence [16],
or studying natural evolution [17]. In fact, for lattice-model
heteropolymers it was shown that the free energy is indeed
self-averaging [18] and that the statistical independence of
energy levels required by the REM, although not strictly
obeyed, is enough to allow protein design [19].

However, lattice models are not very realistic and constrain
the polymer much more than what the chemistry of proteins
requires. This favors the applicability of the REM, because it
depletes the conformational space of correlated conformations.
As a matter of fact, the design of the folding sequence
in continuous conformational space is much more cumber-
some [20,21] and the attempt to obtain a potential to fold
protein sequences with variational approaches of the kind of
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Refs. [14,15] has been so far frustrated, even using a strong
dihedral potential to obtain a latticelike behavior.

The goal of the present work is to investigate the thermody-
namics of a heteropolymer model in continuous space, in order
to understand whether the REM physics applies and what are
the related consequences on the study of proteins. The model
is an inextensible chain of beads put at a distance a = 3.8 Å
interacting through a spherical-well potential

U =
N∑

i<j−2

[
B(σi,σj )θ (R − |ri − rj |) + 1

θ (|ri − rj | − R0)

]
,

(2)

where Bαβ is a 20 × 20 Gaussian random matrix with mean
ε and standard deviation σ = 1, σi is a random sequence of
integers in the range [1,20] (to mimic natural amino acids), θ

is a step function, R = 5.5 Å is the range of the interaction,
and R0 = 4 Å is the hardcore radius.

The sampling of the conformational space of such a system
is not a trivial problem, especially at the low temperatures
needed to calculate Ec, and consequently we have first to
design a computational strategy to face this problem. This
is done in Sec. II. In Secs. III and IV we investigate the
applicability of the REM scenario, considering that the typical
size N of polypetides and proteins is small (the thermodynamic
limit does not make sense in this context) and that here
the assumption concerning a constant number of contacts is
doubtful. The coil-globule transition is discussed in Sec. V.
Particularly interesting is the case of interaction matrices with
positive average, which models proteins with low content in
hydrophobic amino acids [22]. These proteins are intrinsically
disordered and do not display a unique equilibrium state at
biological temperature. In Secs. III and VI we show that they
populate a phase that is physically distinct than the denatured
state of proteins, and try to characterize it.

II. SAMPLING ALGORITHM: ADAPTIVE
SIMULATED TEMPERING

The study of the low-energy properties of frustrated systems
is computationally challenging [23]. Replica-exchange sam-
pling [24] is a powerful technique, needs very little knowledge
of the system to be sampled, but needs large parallel computers
to be efficient. On the contrary, simulated tempering [25]
is efficient on a single processor, provided that one can
tune correctly some parameters of the simulation. In fact, in
simulated tempering temperature is regarded as a dynamic
variable that changes in a discrete set of values {Ti} with rate

w(Ti → Tj ) = w0 min(1, exp[−(1/Tj−1/Ti)E − gj+gi]),

(3)

where w0 is the rate of attempting a temperature change, E is
the energy of the system in the current conformation, and g(T )
are dimensionless weights, which are meant to improve the dif-
fusivity of the temperature. The system-dependent parameters
to be tuned are then the set of allowed temperatures {Ti} and
the weights {gi}. A uniform sampling of all temperatures is
obtained by choosing gi = F (Ti)/Ti , where F (Ti) is the free

energy at temperature Ti , which of course is not known in
advance.

In order to use simulated tempering in an automatic way,
we have developed an adaptive scheme that updates the values
of {Ti} and of {gi} in a self-consistent way, in the spirit of the
approach developed in Ref. [26]. The idea is to carry out a
simulated tempering starting at high temperatures, to estimate
the density of states of the visited range of energies, and from
this to obtain a lower temperature and its weight to continue
the tempering efficiently. The procedure is iterated until the
system reaches the desired low temperature. Moreover, at
each iteration the current set of temperatures and weights is
adjusted, exploiting the better knowledge of the density of
states obtained as the simulation proceeds.

Specifically, the algorithm works as follows.
(i) A plain Monte Carlo sampling is performed at high

temperature T1 for nadj steps, collecting the histogram of
sampled energies.

(ii) A multiple-histogram algorithm [27] extracts the den-
sity of states g(E) from the histogram(s) of sampled energy.
From g(E), the partition functions and the free energies F (T )
are obtained by summation over the sampled energies, and
the Boltzmann probability pT (E) simply from definition. In
the iteration following the first one, the histograms used in the
multiple histogram are those belonging up to the six previous
iterations.

(iii) A new temperature Ti is added below the other(s). The
new temperature is chosen in such a way that the mean-field
temperature-jump rate wMF(Ti−1 → Ti) is equal to a preset
value wnew, where

wMF(Ti−1 → Ti)

≡ w0

∫
dE min(1, exp[(1/Ti−1 − 1/Ti)E − gi−1 + gi])

×pTi−1 (E) (4)

and the weights gi are set to F (Ti)/Ti .
(iv) If the number of temperatures nT used in the simulation

is > 3, the temperatures from T2 to TnT −2 are readjusted,
also allowing a decrease of nT . Operatively, for each possible
n′

T > 3 the product

wglob ≡
n′

T −2∏
i=1

wMF(Ti → Ti+1)wMF(Ti+1 → Ti) (5)

is maximized with respect to the set [T2,Tn′
T −2]. The minimum

value of n′
T such that wglob is larger than the value it had before

is taken as new nT , together with the associated temperatures
and weights.

(v) A simulated tempering with the nT new temperatures
and weights is carried out for a total of nT · nadj steps.

(vi) The simulated tempering is considered successful if the
fraction of time that the system has spent at each temperature is
larger than a preset threshold ht/nT and if the jump probability
between each pair of consecutive temperatures calculated from
the simulation is larger than a preset threshold pt/nT . If
the simulated tempering fails, the set of temperatures Ti is
substituted by the last successful set of temperatures, and the
lowest temperature TNT

is raised to half with respect to TNT −1.
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FIG. 1. An example of adaptive simulated tempering. The algo-
rithm adds new temperatures as the simulation goes on. When a set
of temperatures fails (see arrow), the system restarts from the last
successful set, increasing the lowest temperature.

(vii) If the simulated tempering is considered successful,
return to (ii).

Unlike standard simulated tempering, the present algorithm
does not rely on the knowledge of thermodynamic features of
the specific system, except for the initial temperature T1. One
has only to define some parameters, which control the quality
of the simulation, and consequently are weakly dependent on
the specific system. The choice we made is wnew = 4 · 10−3,
ht = 0.1, pt = 0.01, nadj = 106, w0 = 10−4. An example of
application of the adaptive simulated tempering is given in
Fig. 1. For each polymer and each interaction matrix we
run the algorithm to obtain an efficient set of temperatures
and weights. Then, we repeat thrice a simulated tempering
sampling keeping the temperatures fixed, to evaluate the
convergence of the thermodynamic quantities.

For each average ε of the interaction matrix
(−1,−0.5,0, and + 1, while the standard deviation is 1, setting
the energy scale of the system) and for each length N of the
polymer (20, 25, 30, and 60), we have sampled 20 realizations
of the matrix. Almost in all cases we could reach temperatures
lower than 0.1. A typical run of the adaptive algorithm for
a polymer of 60 residues takes of the order of 10 hours on
a single desktop cpu. For chain of length N = 90 we were
not able to reach full equilibrium at temperatures lower than
0.7, and consequently we discarded such simulations from the
analysis.

From these simulations one can obtain the density of states
and thus all the other thermodynamic quantities (e.g., the
specific heat Cv , as shown in Fig. 2). All Cv obtained for
the different realizations of the interaction matrix are quite
irregular. All of them show a crowded set of peaks at very low
temperatures corresponding to the freezing of the system into
the lowest available conformations. These temperatures are
Tg ≈ 0.2 for ε0 = 1, Tg ≈ 0.4 for ε0 = −0.5, and Tg ≈ 0.7
for ε0 = −1. In all cases the simulated tempering could visit
temperatures below Tg , as expected from the analysis of this
algorithm in the case of other frustrated systems [28].
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FIG. 2. The specific heat of a polymer interacting with two
realizations of the interaction matrix at ε0 = −0.5 and two at
ε0 = +1.

III. INTERACTION MATRICES WITH DIFFERENT
AVERAGE RESULTS IN TWO DIFFERENT

THERMODYNAMIC BEHAVIOURS

The natural order parameter to study the conformational
space of random heteropolymers [4,7,9] is the structural
overlap

q(α,β) = 1

max(nc(α),nc(β))

∑
i<j

�
(∣∣rα

i − rα
j

∣∣)�(∣∣rβ

i − r
β

j

∣∣),
(6)

where nc(α) = ∑
i<j �(|rα

i − rα
j |) is the number of contacts

of conformation α.
The equilibrium distributions p(q) averaged over the

interaction matrices are displayed in Fig. 3 for some selected
simulations. For negative values of the average ε of the
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FIG. 3. (Color online) The distribution p(q) of the order param-
eter for two sizes of the polymer (N = 30 above and N = 60 below)
and for two different values of the average ε0 of the interaction matrix
(ε0 = −0.5 to the right and ε0 = 1 to the left). In each plot the different
distributions are calculated from temperature T = 0.1 (blue curve,
peaked at q ≈ 1) to T = 1.0 (red curve, peaked at q ≈ 0.2).
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interaction matrix (cf., left panels of the figure) the distribution
p(q) display two well-defined peaks, one close to q = 1 and
the other one below q = 0.5. As the temperature is decreased,
the peak close to q = 1 decreases, while the low-q peak
increases and moves toward q ≈ 0.2.

The behavior of the distributions associated with ε0 = +1
is qualitatively different. There is a broad peak at high q,
which further broadens increasing N . The top of the peak
moves from q = 0.82 to q = 0.74 as N increases from 30
to 60. The lower part of the distribution does not display a
single peak, but a complicated pattern covering the whole
range of variability of q. Moreover, there is a sharp peak
exactly at q = 0. The curves at ε0 = −1 are similar to those
at ε0 = −0.5, while those at ε0 = 0 are somewhat in between
the two behaviours (data not shown).

The behavior of the distribution at ε0 = −0.5 is typical of
frustrated systems undergoing a one-step replica symmetry
breaking (RSB) [23], where thermodynamically relevant
conformations are either identical to each other (resulting in
the q = 1 peak) or markedly different (resulting in the peak
at q0 � 1, cf., Ref. [29]). On the contrary, the bulky shape of
p(q) and the position of the high-q peak at q < 1 observed in
the case ε0 = +1 suggest a more complicated pattern of RSB,
more similar to the full RSB of Ising spin glasses [23,29]
than the one-step RSB observed in our simulations at negative
ε0. The sharp peak at q = 0 is a polymeric effect: Increasing
the temperature, the system stabilizes loose conformations
characterized by few contacts (see Sec. V) and the probability
that a pair of such conformations share their few contacts is
combinatorially low. This effect is of course absent in spin
glasses, where the number of contacts is fixed.

A further characterization of the p(q) is given by the Binder
parameter B, which quantifies the kurtosis of the distributions
(see Fig. 4). Although one cannot draw absolute conclusions on
the kind of RSB from the shape of B(T ) [30], it is still possible
to notice that the low-temperature part of B(T ) at ε0 = 1
resembles the monotonic shape of the Sherrington-Kirkpatrick
model undergoing full RSB (while at higher temperatures
departs from that, due to the increasing polymer-swelling
effect). On the contrary, at ε0 < 0 it displays bumps similar to
those of the three-spin glass undergoing a one-step RSB [31].

IV. ε < 0 CASE AND ITS RELEVANCE
FOR GLOBULAR PROTEINS

The determination of the lowest conformational energy
Ec of a polymer controlled by a given interaction matrix is
important to understand the folding of globular proteins. In
fact, the assumption of a self-averaging behavior of Ec allow
to interpret protein evolution as a minimization of their energy
EN in the native conformation and describe the denatured state
of the protein with the random-energy model [6,11,32].

To verify these hypotheses, we show in in Fig. 5 the average
and the standard deviation of εc ≡ Ec/N over the realization of
the interaction matrices with varying values of ε0. The average
εc is not independent of N in the range 20 < N < 60, as
required by the random-energy model. The curvature of the
curves allows to extrapolate that εc becomes constant only for
N > 100. The standard deviation of εc is a few percent of the
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FIG. 4. The Binder parameter B, which is a measure of the kurto-
sis of the distribution p(q), for the polymers controlled by interaction
matrices with different averages ε0, as a function of temperature. The
curves have been smoothed to facilitate the comparison. The length of
the polymer is N = 20 (solid curve), N = 25 (dotted curve), N = 30
(dashed curve), and N = 60 (dot-dashed curve).

average and shows no sign of decreasing with N . This suggests
that there is a non-negligible variability of Ec with respect to
the interaction matrix and that this variability is not a finite-size
effect. For instance, the typical energy scale of interaction
between amino acids is kTroom and the typical stability of
globular proteins (that depends on Ec − EN ) is of the order
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FIG. 5. (Color online) The value of the energy density εc ≡ Ec/N

of the lowest-energy conformation, averaged over the realizations of
the interaction matrices at different ε0 (solid curves, referred to the y

axis on the right), and their standard deviation (dotted curves, referred
to the y axis on the left).
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FIG. 6. (Color online) The density of contacts zc in the lowest-
energy conformation, as a function of the associated energy density
εc, for the different realizations of the interaction matrices at various
ε0. In the inset, the linear correlation parameter r of the data displayed
in the main plot.

of 0.1 kTroom per residue. Consequently, the variability of Ec

with respect to the interaction matrix is of the same order
of magnitude than the stabilization energy of the protein.
Evolution has to do extra work to design proteins with an EN

low enough to be robust against mutations and environmental
changes, which could affect the interaction energy. Moreover,
becoming larger is not a good evolutionary strategy for proteins
to become more stable, as the variability in Ec would also
increase.

To investigate the origin of the variability of Ec, we
have plotted the density of contacts z = 2nC/N within the
lowest-energy conformation with respect to its energy density
εc (see Fig. 6). First of all, one can notice that even for ε0 < 0
the density of contacts varies within a 30% from polymer
to polymer, indicating that the ground-state conformation is
not completely compact. In this case, the value of εc is well
correlated to z (cf., the correlation coefficient in the inset of
Fig. 6), suggesting that the variability in Ec is due to the
different number of contacts that low-energy conformations
can accommodate.

The entropy function whose endpoint is Ec is given in Fig. 7
for a few representative cases. The curve S(E) is variable
with respect to the different realizations of the interaction
matrix. Differently than the predictions of the REM, S(E)
cannot be fitted by the parabola of Eq. (1). As a matter
of fact, the REM assumes a constant number of contacts,
while polymers display a nontrivial distribution of the number
of contacts, which is also responsible for the coil-globule
transition [33].

The shape of S(E) seems to display two different behaviors
at low and high energies, which can be captured by a two-REM
description, that is

S(E) = ln

[
α exp

(
− (E − zNε0/2)2

zNσ 2

)

+α′ exp

(
− (E − z′Nε′

0/2)2

z′Nσ ′2

)]
, (7)
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FIG. 7. (Color online) The entropy S(E) as a function of energy
for three realizations of random heteropolymers of 60 monomers with
average interaction energy ε0 = −1 (red solid curves on the left) and
ε0 = −0.5 (blue solid curves on the right). The dashed curves indicate
the fit (see text). In the inset, a zoom of the low-energy tails.

where N is the length of the chain, ε0 = −1, − 0.5, and σ = 1
are the mean and the standard deviations of the interaction
matrices. The fit over the other parameters gives a reduced χ2,
which ranges between 0.98 and 3.07 for N = 60 and worsen
for smaller chains. This suggests that it is possible to describe
effectively the states of the heteropolymer as a superposition
of two set of conformations building out, respectively, z and
z′ interactions per monomer, and corresponding to the two
Gaussians in Eq. (7). The fit gives values of z and z′ whose
means over the realizations is z = 3.22 ± 0.12 for ε0 = −0.5
and z = 4.10 ± 0.14 for ε0 = −1. This indicates compact
conformations, but not fully compact (because z increases with
ε0). Moreover, the variability over the different realizations of
the interaction matrix is very small. On the other hand, to the
high-energy part of S(E) is associated a z′ = 1.52 ± 0.35 and
z′ = 0.34 ± 0.22 for ε0 = −0.5 and ε0 = −1, respectively.
These correspond to more swollen conformations and suffer a
much larger variability among realizations of the interaction
matrix. To fit properly the high-energy part of the computed
S(E) it is also necessary to use values of ε′

0 and σ ′ different
from the values set for the interaction matrix (the fit with
the actual values ε′

0 = −1, − 0.5, and σ ′ = 1 give a reduced
χ2 > 30).

The picture that emerges is that for negative values of
ε the REM fails because the underlying hypothesis of a
constant number of contacts does not apply. Nonetheless,
the system can be effectively described as built out of two
sets of conformations, different for the (constant) number
of contacts, each of them displaying a REM-like behavior.
The parameters controlling the more compact conformations
are rather independent on the interaction matrix, while those
controlling the swollen conformations are not.

The low-energy end of the S(E) curve is irregular and
departs slightly from the REM behavior in a matrix-dependent
way (see insets of Fig. 7). This irregularity involves only an
interval of few σ and sets the actual value of Ec below that
predicted by the REM. Thus, the major determinant in the
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FIG. 8. The average number of contacts with respect to
temperature.

variability of Ec seems to be the shape of the high-energy part
of S(E).

V. COIL-GLOBULE TRANSITION

The heteropolymers interacting with ε0 < 0 display a broad
peak in the specific heat at high temperature (see Fig. 2), which
corresponds to the midpoint in the decrease of the number
of contacts in the chain (see Fig. 8), and consequently to a
transition from globular to coil states. In the proteinlike range
of chain lengths the width of the peak in Cv is quite constant
with respect to the realization of the interaction matrix (e.g.,
at ε0 = −0.5 �T = 0.78 ± 0.06 at half height for N = 60
and �T = 0.82 ± 0.14 for N = 30) but does not display the
N−1/2 behavior associated to the coil-globule transitions of
homopolymers.
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FIG. 9. The coil-globule transition temperatures for the different
realizations of the interaction matrix with ε0 = −1 (crosses) and ε0 =
−0.5 (circles). The dotted and solid lines indicate the average over
realizations, while the error bars the associated standard deviation.
The set of points at different values of ε0 and a given value of N

are slightly displaced along the horizontal axis to allow a clearer
identification.

On the other hand, the transition temperature (operatively
defined as the temperature Tcg corresponding to the top of
the highest-T peak in Cv) is rather realization dependent, and
does not show any clear trend in decreasing its variability with
respect to the length of the heteropolymer, as shown in Fig. 9.

The replica approach of Ref. [34] highlights a coil-globule
transition only for ε0 > 0, due to the strong hypotheses on
the density of the chain. A Flory-Huggins description of
a homopolymer corrected with the effective second virial
coefficient introduced in Ref. [34] predicts a coil-globule
transition, which depends on the number of contacts of the
most compact conformation [21]. The values of Tcg calculated
according to Ref. [21] from the number of contacts displayed
in Fig. 6 correlate poorly (r = 0.32) with the values of Tcg

of Fig. 9. This suggests that simple mean-field theories are
not able to capture the large variability of the coil-globule
transition temperatures.

A high-temperature-expansion approach identifies a first-
order transition between a frozen globule and a random coil,
and a second-order transition between a random globule and
a coil [35]. Due to the limited size of the heteropolymers that
can be treated computationally, we are not able to investigate
the order of the transition.

A striking feature that emerges from these calculations
is that the coil-globule transition is very broad in the range
of polymer lengths corresponding to single-domain proteins.
This means that it is very likely that the denatured state of
proteins belong to the transition region, which also depends
on the details of the interaction between amino acids. As a
consequence, one expects a high variability in the size of the
denatured state of proteins.

VI. ε > 0 CASE AND ITS RELEVANCE FOR NATIVELY
UNFOLDED PROTEINS

As discussed in Sec. III, in the case of positive mean of the
interaction matrix the REM scenario does not hold. In fact,
the shape of S(E) associated with the different realizations of
the matrix with mean ε0 = 1 displays an irregular behavior
(see Fig. 10). These curves cannot be fitted by a parabola or
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FIG. 10. (Color online) The entropy S(E) as a function of energy
for fifteen realizations of random heteropolymers of 60 monomers
with average interaction energy ε0 = 1.
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by Eq. (7), the reduced χ2 being larger than 30, in agreement
with a complicated RSB pattern.

The ground-state conformations display a spread that is
comparable with that of negative ε0 (cf., Fig. 5), something
that is somewhat unexpected, due to the irregularity of the
associated S(E). Such conformations are still globular [with
a z of the order of 2 (see Fig. 6)] even if much less compact
than those with ε0 < 0. But differently from that case, now
the number of contacts decreases drastically above Ec. From a
canonical-ensemble point of view, the specific heat displays a
single broadened (and quite irregular) peak at low temperatures
(see Fig. 2), which inevitably marks the glassy transition.
But in the same range of temperatures (T = 0.1–0.4) the
average number of contacts decreases to values typical of
coils, consequently the system jumps from a glassy globule
to a random coil.

The study of random heteropolymers interacting through a
matrix with positive mean is interesting because they represent
the lowest-order approximation of natively unfolded proteins.
This class of proteins does not display a unique native
conformation in solution, but displays biological activity
either when unstructured, or getting structured (or partially
structured) upon binding other molecules [36]. The low content
of hydrophobic amino acids in these kinds of proteins [22]
suggests that the average interaction is much less attractive
than that of globular proteins. The hydrodynamics radius of
natively unfolded proteins in solution is either that of a random
coil or that of a molten globule, depending on the specific
protein [36]. This indicates that biological temperature is likely
to lie in or close to the transition region (T = 0.2–0.4 in
Fig. 8 ), also in the case of coil proteins, which get promptly
compacted upon binding.

A consequence of this scenario is that the free-energy
profile of natively unfolded proteins is quite different from
that of unfolded globular proteins. As in Ising spin glasses,
where a full RSB transition applies, the free energy displays
a hierarchical tree of states at all energy scales, giving rise
to conformational substates reminiscent of those observed in
myoglobin but at very low temperature [37]. In other words,
while the denatured state of globular proteins is expected to
display a set of conformations, which can only be completely
different from each other (i.e., are different at the length scale
of the whole protein), natively unfolded proteins are expected
to populate conformations that are different from each other at
all possible length scales.

As a matter of fact, several experiments carried out on
alpha-synuclein, a natively unfolded protein, give results
that are consistent with this picture. Single-molecule Förster
resonance energy transfer experiments at room temperature
provide broadened distributions of distances between pairs
of residues [38]. While the authors of this work com-
ment that (they) cannot eliminate the possibility that peak
broadening results from alpha-synuclein sampling of two
or more specific conformations with close mean energy-
transfer-efficiency values that are not resolved in their mea-
surement, a full RSB scenario would explain well such
a peak broadening. A study of the same protein with
fluorescent energy transfer combined with electron transfer
measurement also shows distance distributions that are signif-
icantly broadened and appear to be continuous at the fitting

resolution of 2 Å [39], compatibly with the scenario we
suggest.

Moreover, nuclear magnetic resonance experiments on
another natively unfolded protein, HIV-1 Tat, show many weak
cross peaks, more abundant and more broadened than expected
from a 92-residue protein [40]. Again, this is compatible
with an energy landscape whose roughness involves all length
scales.

The full-RSB scenario has deep consequences in the way
one models the experimental data in order to obtain structural
information on a natively unfolded protein. In fact, one
approach is to try to obtain well-defined clusters of confor-
mations, which are overall compatible with the data [41].
If a one-step RSB applied, such clusters would be naturally
defined as different on the length scale of the whole protein.
But in a full-RSB scenario, where differences apply over a
continuum of length scales, one expects the classification
of probable conformation to be more complicated, due to
the absence of a natural length scale to distinguish between
them.

Another interesting phenomenon that takes place in frus-
trated systems is the existence of slow and multiple relax-
ation time scales and aging [29]. It was shown that these
phenomena affect both RSB schemes, although at different
scales [42]. Anyway, they have been observed in the case of
natively unfolded proteins on the time scale of milliseconds
to microseconds [40,43], and not in the denatured state of
globular proteins up to the time scale of nanoseconds [44],
suggesting a marked quantitative difference between the two
cases.

VII. CONCLUSION

The study of random heteropolymers with continuous
degrees of freedom and with size comparable to that of
small globular proteins is computationally demanding, but
important to complement the available mean-field theories
and the simulations done with lattice models and very short
polymers. If the interaction energy between monomers is
negative, random heteropolymers display a one-step replica
symmetry breaking at low temperatures, and the density of
states can be described by a modified random-energy model,
which accounts also for noncompact conformations. The effect
of these swollen conformations is to cause a variability in the
lowest-energy Ec available to the system with respect to the
details of the interaction potential. Such a variability is not
negligible and should be accounted for in the de novo design
of globular proteins and in the study of the effect of mutations
in protein sequences.

On the other hand, if the mean interaction energy is
positive, a more complicated replica symmetry breaking
pattern takes place at low temperatures, suggesting that the
free-energy profile is now more complicated. This scenario
is expected to apply to natively unfolded proteins, whose
residues are on average less hydrophobic than those of globular
proteins.

We think that the self-adjusting simulated-tempering algo-
rithm employed for this investigation can be useful to study
the low-energy properties of other systems without the need
of massive parallel computers.
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