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Computing with liquid crystal fingers: Models of geometric and logical computation
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When a voltage is applied across a thin layer of cholesteric liquid crystal, fingers of cholesteric alignment can
form and propagate in the layer. In computer simulation, based on experimental laboratory results, we demonstrate
that these cholesteric fingers can solve selected problems of computational geometry, logic, and arithmetics. We
show that branching fingers approximate a planar Voronoi diagram, and nonbranching fingers produce a convex
subdivision of concave polygons. We also provide a detailed blueprint and simulation of a one-bit half-adder
functioning on the principles of collision-based computing, where the implementation is via collision of liquid
crystal fingers with obstacles and other fingers.

DOI: 10.1103/PhysRevE.84.061702 PACS number(s): 89.20.Ff

I. INTRODUCTION

Liquid crystals (LCs) are fluids composed of anisotropic
(usually rod-shaped) molecules that exhibit long-range order
[1,2]. In the simplest phase, known as the nematic, the
molecules tend to align in a common direction, called the
director n. In this paper we use a cholesteric phase in which
the LC contains at least one component which is chiral so
that the director adopts a helical structure through the LC. In
a display, a thin layer of LC is enclosed between transparent
substrates which contain electrodes to enable the application
of a voltage.

LCs behave as elastic media and will adopt the director
configuration that minimizes the elastic energy of the system.
In addition the molecules have anisotropic dielectric properties
so that applying an electric field will tend to cause them
to rotate. The configuration adopted by the LC director will
therefore be determined by the combination of the boundary
conditions imposed by the inside surfaces of the substrates,
as well as the interaction between the electric field and
the LC molecules. In the devices considered in this paper
the inside surfaces of the substrates are designed to induce
homeotropic alignment, that is, with the director orthogonal to
the substrates. The thickness of the LC layer is chosen to be
close to the natural pitch of the cholesteric LC, which is the
distance over which the director undergoes a full rotation.
Under these conditions the natural tendency of the LC to
twist is suppressed and the LC adopts a uniform untwisted
configuration with the director orthogonal to the substrates.
However, small perturbations to the system can upset this
equilibrium and can cause the director to collapse into complex
localized structures known as cholesteric fingers. These fingers
consist of extended domains of twisted LC, and a rich variety
of structures and phases has been reported [3–6]. Four distinct
types of fingers have been identified [7].

In our system we perturb the equilibrium by applying
a voltage. The LC that we use has a negative dielectric
anisotropy, that is, the dielectric constant is greatest for electric
fields directed orthogonal to the long axes of the rod-shaped
molecules. The field, which is applied across the layer, tends
to rotate the director away from the initial vertical state, and as
the director becomes more planar the natural chirality of the
LC dominates, resulting in the formation of cholesteric fingers.
The anisotropic optical properties of the LC means that these
fingers are clearly visible under an optical microscope. In this
paper we enhance the contrast by adding dichroic dyes [8].
The fingers nucleate at defects or particles [3] in the LC and
grow as the applied voltage exceeds a threshold and retract as
it reduces below the threshold. For larger voltages the fingers
start to branch, and as they fill the space the fingers start to
repel each other.

Fingers have also been reported in other LC phases [9,10]
and there have also been studies of isolated fingers which
can propagate as a result of electroconvection in nematic
LCs [11,12]. These propagating localizations in liquid crystal
first attracted the attention of the unconventional-computation
community in the early 2000s in the frame of collision-based
computing. It was demonstrated in cellular automata models
that worms in liquid crystals can implement basic logical gates
when they collide with each other and either annihilate or
deflect as a result of the collision [13]; however, no extended
results were obtained at that time. Recent work in HP Labs
has focused on the interaction between LC materials and
engineered microstructures [14,15] and some of these systems
have shown the potential for engineering the nucleation and
propagation of cholesteric fingers. These results inspired us to
reconsider the concept of collision-based computing in liquid
crystals and to expand a range of problems solved by the
propagating and interacting fingers.
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The paper is structured as follows. In Sec. II we describe
how we make our samples and measurements and in Sec. III
we show how to imitate space-time dynamics of LC finger
propagation using mobile automata on lattices. The classical
problem of the planar Voronoi diagram is tackled by LC fingers
in Sec. IV. Subdivision of a concave shape in convex shapes
using LC fingers is demonstrated in Sec. V. We describe
a design of a one-bit half-adder implemented via collision
between fingers and obstacles, and between pairs of fingers, in
Sec. VI. Final thoughts of future LC finger computing devices
are outlined in Sec. VII.

II. FABRICATIONS AND MEASUREMENT OF DEVICES

Devices were constructed using glass substrates coated with
a transparent conductor layer made from indium tin oxide
(ITO). To control the nucleation of the cholesteric fingers, we
patterned polymer structures onto one surface. Fingers tend
to nucleate at the sharpest points on any structures. Figure 1
shows a typical set of features: 40-μm-diameter rings with four
protrusions to seed the nucleation of fingers. The structures
are 5 μm high and cover the ITO on one substrate. They are
made from SU-8 (MicroChem Corp.) using photolithography.

The surfaces of the two substrates are then coated with a thin
polymer layer to align the LC homeotropically. To assemble
the cell, the substrates are gently placed in contact so that
the SU-8 structures set the cell spacing, and the substrates
are sealed on two edges with UV curing glue (NOA73 from
Norland Products Inc.). The cell is then capillary filled with
the LC mixture, with the cell heated to above the isotropic or
nematic phase transition temperature to avoid the flow artifacts
that can occur when filling with the LC in the nematic phase.
The LC used was MLC2037 (Merck KGaA) which was chosen
because it has a negative dielectric anisotropy, and the filling
was carried out at 95 ◦C. It was doped with an additive (1.29%
by weight of zli811, Merck) to impart a chiral pitch to the
mixture. The concentration of the chiral dopant was chosen
so that the pitch was very close to the cell spacing, so that
the homeotropic state was just stable. The mixture was then
doped with a blend of dichroic dyes (1% by weight G232,
G241, and G472 from Hayashibara Biochemical Laboratories,
Inc.). These enhance the contrast and make the fingers visible,
without the need to use polarizers [8]. Dichroic dyes are rod-
shaped molecules that only absorb light polarized along their
long axis. They align with the LC, so in the quiescent state the

(a) (b) (c)

(d) (e) (f)

FIG. 1. (Color online) Experimental laboratory snapshots (optical microscopy) of colliding LC fingers, taken with an applied 1-kHz ac
voltage with an amplitude of 1.5 V. Each photo is taken at a different time: (a) before the voltage is applied, and (b) 4 s, (c) 25 s, (d) 40 s,
(e) 55 s, and (f) 80 s after the voltage is applied.
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FIG. 2. Simulation of experimental results, shown in Fig. 1, using mobile automata.

LC and dyes are both aligned vertically. Thus the dyes absorb
very little light. When the fingers form, the LC and dyes at least
partially align at a more planar angle, so the dyes absorb more
light and the fingers appear black. Applying a voltage across

the LC layer causes the fingers to nucleate from the sharp points
of the structures. These then slowly extend while the voltage
is maintained (Fig. 1), and then retract when the voltage is
removed. We use a 1-kHz sinusoidal voltage with an amplitude

FIG. 3. Simulated interaction between fingers when distance between initial seeds is large enough to allow prolonged movement. (a) Solid
(impassable) boundaries. (b) Boundary-less space.
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of around 1.5 V. In the next section we describe a model that
captures some of the behavior of the cholesteric fingers.

III. MOBILE-AUTOMATON MODEL
OF LIQUID CRYSTAL FINGERS

A mobile automaton is a tuple A = 〈c,s,f,α,d,〉, where
c ∈ R2 is a Euclidean coordinate of the automaton, c = (x,y);
function f : R2 → R2 transforms coordinates as xt+1 = xt +
d sin α and yt+1 = yt + d cos α; in models presented here d =
0.5. The automaton moves on a lattice L. All nodes of L are in
state “empty” (0) initially. At each step t of evolution time the
nodes are updated as follows: for every u ∈ L: ut = 1 if there
is an automaton A with coordinates u. The “occupied” state is
absorbing. Obstacles are also defined as domains of occupied
states “1”.

Figure 1 shows a sequence of microscope photos of fingers
propagating away from a dense array of nucleation sites. With
no applied voltage [Fig. 1(a)] the director will be distorted
around each nucleation site [16]. As the voltage is increased
the fingers nucleate and grow away from the polymer structures
[Figs. 1(b)–1(f)]. As fingers approach each other they deviate
from a straight path to avoid contact. We find that the fingers
always tend to turn in the same direction, left in the case
of Fig. 1. We believe this is due to the natural chirality of
the LC mixture. The model is based on these observations.
An automaton A chooses where to move as follows. If node
(xt + d sin α,yt + d cos α) is empty (0), then A moves into this
node; otherwise it rotates left: α = α + π/360 and its state s

is incremented. The exact angle of scattering is not known and
may depend on many factors beyond our present knowledge.
Thus we adopted increment π/360 whose α is increased until a
“free” site for the next position is found. The automaton stops
when s exceeds a certain threshold of attempts.

The mobile-automaton model is phenomenological. A
mobile automaton moving in a two-dimensional discrete space
very roughly imitates the tip of a LC finger propagating in
a quasi-two-dimensional space being squashed between two
electrodes. Our model in no way competes with existing
numerical models of LC fingers, see, e.g. [17], but must rather
be considered as a fast-prototyping tool in the design of LC
finger computing algorithms.

We qualitatively verified our model using experimental
observations. For example, if we consider Fig. 1, the discs
with four singularities or protrusions are arranged in a regular
grid so that the protrusions are aligned between neighboring
discs (the protrusions of four neighboring discs describe a
square array) [Fig. 1(a)]. When a voltage of 1.5 V is applied,
LC fingers nucleate near the protrusions [Fig. 1(b)]. The
fingers propagate along the original axis determined by the
protrusions. When two fingers come into a head-on collision,
each of them turns left [Figs. 1(c)–1(f)]. To imitate this
experimental finding we regularly and uniformly distributed
clusters of mobile automata in a two-dimensional space
(Fig. 2). Initially the four automata of each cluster have their
velocity vectors angles α oriented north, south, west, and east
[Fig. 2(a)]. When finger f ′ moving north collides with finger
f ′′ moving south the finger f ′ turns south-east, and finger
f ′′ north-west [Figs. 2(b)–2(d)]. Similarly, the finger initially
traveling west deviates south-west and the finger traveling east

turns north-east. Further changes of the fingers’ trajectories are
attributed to subsequent collisions [Fig. 2(e)]. If the distance
between the initiation sites of the fingers is large enough to
allow prolonged movement of the fingers, the four neighboring
fingers form spirals (Fig. 3).

IV. APPROXIMATION OF VORONOI DIAGRAM

Let P be a nonempty finite set of planar points. A planar
Voronoi diagram of the set P is a partition of the plane
into such regions that, for any element of P, a region
corresponding to a unique point p contains all those points

(a)

(b)

FIG. 4. (Color online) Experimental image of interaction between
branching LC fingers originating from several seeds. The central point
of the seeding structures are marked by small black discs. The edges
of the Voronoi diagram are calculated using a classical sweep-line
algorithm [31] and are drawn as solid lines superimposed on the
experimental image.
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of the plane which are closer to p than to any other node of P.
A unique region vor(p) = {z ∈ R2 : d(p,z) < d(p,m) ∀ m ∈
R2,m 	= z} assigned to the point p is called a Voronoi cell of
the point p. The boundary of the Voronoi cell of the point
p is built up of segments of bisectors separating pairs of
geographically closest points of the given planar set P. A
union of all boundaries of the Voronoi cells determines the
planar Voronoi diagram: VD(P) = ∪p∈P ∂vor(p) [18]. Voronoi
diagrams are applied in many fields of science and engineering.
A few books and conference proceedings are available on the
theory and applications of the Voronoi diagram [19,20].

Construction of a Voronoi diagram is a classical problem of
unconventional-computing devices. This was the first problem
ever solved in a reaction-diffusion chemical computer [21].
The basic concept of constructing Voronoi diagrams with
reaction-diffusion systems is based on an intuitive technique
for detecting the bisector points separating two given points
of the set P. If we drop reagents at the two data points, the
diffusive waves, or phase waves if the computing substrate
is active, travel outward from the drops. The waves travel
the same distance from the sites of origin before they meet
one another. The points where the waves meet are the
bisector points; see the extensive bibliography in [22,23]

and mechanisms of bisector formation in chemical media
in [24–28]. The Voronoi diagram is also approximated in
crystallization-based processors [29] and colonies of acellular
slime mold Physarum polycephalum [30]. Thus it is intuitive to
ascertain how Voronoi diagrams could be approximated with
LC fingers.

The behavior of the fingers is voltage dependent. When
the voltage exceeds a critical voltage (in this case 1.7 V), the
fingers grow much more quickly and start to branch (Fig. 4).
Recursively branching fingers form fronts or a phase boundary
between a free space and the domain filled by fingers. Fronts
originating from different sources compete for space. When
two or more fronts meet, they stop propagating. Thus to
approximate a Voronoi diagram we place the seeding structures
of fingers in positions of space corresponding to planar points
from P and increase the voltage to cause finger branching. The
locus of space not occupied by any fingers represents the edge
of the Voronoi diagram VD(P). From experimental observation
it can be concluded that the accuracy of Voronoi diagram
construction is improved when fingers are highly branched
(approximating a continuous expanding front emanating from
a defined site). This can be achieved by controlling the voltage
or maximizing the density of fingers initiated by altering the

FIG. 5. (Color online) Simulated approximation of Voronoi diagram. (a)–(e) Snapshots of the simulated dynamics of branching LC fingers.
Edges of the Voronoi diagram calculated using a classical sweep-line algorithm [31] are drawn by solid red (gray) lines in (a)–(e) and shown
explicitly in (f).
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geometry and the positioning of the seeding structures (for
example, compare the constructions in [Figs. 4(a) and 4(b)].
The approximation of the Voronoi diagram of 11 planar sites in
the mobile-automaton model of LC fingers is shown in Fig. 5.

V. CONVEX SUBDIVISION OF CONCAVE POLYGONS

A concave polygon is a shape comprised of straight lines
with at least one indentation, or angle pointing inward. The
problem is to subdivide the given concave shape into convex
shapes. The problem is solved by LC fingers as follows.
Fingers are generated at the singular points of indentations and
the fingers’ propagation vectors are co-aligned with medians
of the corresponding inward angles. Given a concave polygon,
every indentation initiates one propagating finger. A finger
turns left, relative to its vector of propagation, when it collides
with another finger or a segment of the polygon. Given a
polygon with n indentations, n fingers will be generated. By
following their “turn-left-if-there-is-no-place-to-go” routine
and also competing for the available space with each other,
the fingers fill n − 1 convex domains. At least one convex
domain will remain unfilled.

In the example shown in Fig. 6(a), there are three indenta-
tions. They initiate fingers propagating, approximately, south
(a), west (b) and north-north-east (c). The finger traveling
south (a) collides with a finger traveling north-north-east (c).
In the result of the collision, finger a turns left and moves
south-east. Finger c turns left and moves north-west-west
[Fig. 6(b)]. At some stage, finger b collides into finger c

and finger a collides into finger c. When fingers collide into
the “walls” of the polygon, they turn left and more or less
accurately follow the wall until the next collision [Fig. 6(c)].
Each finger forms a spiral and becomes stuck inside the spiral
at some point of its growth.

The computation of the convex subdivision of a concave
polygon is completed when all fingers cease moving. The
result of the computation is a set of convex polygons, each
polygon is filled by a unique finger and at least one unfilled
convex domain. In the example provided, a concave polygon
is subdivided into four domains. The north-eastern domain is
constructed by finger a, the south-eastern domain by finger c

and the south-western domain by finger b. The north-western
domain remains empty [Fig. 6(d)]. In the case of regular
polygons, e.g., star-shaped in Fig. 6(e), boundaries between

FIG. 6. (Color online) Convex subdivision of concave polygons in mobile-automaton model of LC fingers. Snapshots of the space after
the propagation of all fingers has stopped. (a)–(d) Snapshots of LC finger model subdividing a concave polygon with three indentations.
(e) Convex subdivision of star-shaped polygon.
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finger-filled convex domains correspond to the skeleton of this
planar polygonal shape.

VI. ONE-BIT HALF-ADDER

The half-adder presented is based on the paradigm of
collision-based computing, which originates from conserva-
tive logic and the billiard-ball model by Fredkin and Toffoli
[32] and logical computation by colliding gliders in Conway’s
game of life [33]. A collision-based computer employs mobile
compact finite patterns and traveling localizations to represent
quanta of information in nonlinear media. Information values,
e.g., truth values of logical variables, are given by either
absence or presence of the localizations or other parameters of
the localizations. The localizations travel in space, and when
collisions occur the result can be interpreted as computa-
tion. There are no predetermined stationary signal channels
(wires)—however, stationary localizations, or reflectors, are
allowed—and a trajectory of the traveling pattern is considered
a transient wire. Almost any part of the medium’s space
can be used as a wire. Localizations can collide anywhere
within the sample space; there are no fixed positions at which
specific operations occur, nor location-specified gates with
fixed operations. The localizations undergo transformations,
form bound states, annihilate, or fuse when they interact with
other mobile patterns. Information values of localizations are
transformed as a result of collision [34].

In the design discussed, we use reflectors, which are
stationary structures or defects. They are “artificial” in a sense
that they do not belong to the liquid crystal medium but are
externally and intentionally introduced to deflect propagating
fingers. We assume the obstacles are rectangular. In real-world

implementations, corners of the rectangular reflectors would
generate additional propagating fingers; thus obstacles must
be smooth, e.g., circular or oval. However, our model is
coarse-grained and therefore any oval reflector would be
composed of small rectangles and “perceived” as a group of
rectangles by the fingers.

Basic gate xy is illustrated in Fig. 7. The gate consists
of three obstacles o1, o2, and o3 and two input fingers
[Fig. 7(a)]. The fingers represent values of boolean variables
x and y: presence of a finger x or y corresponds to x = 1 or
y = 1 (TRUE), absence of a finger corresponds to 0 (FALSE).
Obstacles o1 and o2 are used to deflect finger x, while obstacle
o3 is for deflecting finger x after collision with finger y.

Let us consider input x = 0 and y = 1 [Fig. 7(b)]. Finger
x is not present. Finger y travels south undisturbed. There are
no obstacles in its way, thus it continues along its original
trajectory which represents output xy. For input x = 1 and
y = 0 only finger x enters the gate [Fig. 7(c)]. Finger x turns
east after colliding with obstacle o1. It then collides with
obstacles o3 and turns north. Both outputs are nil. When both
inputs are TRUE both fingers x and y enter the gate [Fig. 7(d)].
Finger x enters the gate earlier than finger y. Thus by the time
finger y passes southward along obstacle o2, finger x moves
northward. The fingers x and y collide with each other. As a
result of this collision, finger y turns east and finger x turns
west. The deflected trajectory of finger y propagating east
represents output xy. Deflected finger x collides with obstacle
o2, is deflected south, and eventually becomes trapped and
propagation ceases [Fig. 7(d)].

To implement a binary half-adder, one must realize cal-
culation of a sum and carry on results: x ⊕ y and xy. An
architecture of a LC finger half-adder can be implemented

FIG. 7. (Color online) LC finger gate 〈x,y〉 → 〈xy,xy〉. (a) Scheme: trajectories of fingers x and y entering the gate are shown by solid
lines, trajectories of fingers after collision are shown by dotted lines, obstacles are shown by grey rectangles and tagged o1, o2, and o3. (b)–
(d) Configurations of two-dimensional mobile-automaton model. Fingers and obstacles are represented by states of cells. (b) Input x = 0,
y = 1. (c) Input x = 1, y = 0. (d) Input x = 1, y = 1.
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with three gates 〈x,y〉 → 〈xy,xy〉 and five additional obstacles
(Fig. 8) (see also [35]). There are seven input trajectories
and two output trajectories. Inputs include three fingers
representing constant TRUTH, two fingers representing values
of x, and two fingers representing values of y. In the present
model we do not tackle multiplication or splitting of signals,
therefore we assume copies of variables x and y are presented
a priori. All input fingers travel south, output x ⊕ y travels
south, and output xy travels east. Note that all input fingers
enter the half-adder at different moments of time [Fig. 8(a)].
In total we have seven fingers labeled a to g and 14 obstacles
labeled o1 to o14 [Fig. 8(b)].

Simulation of the one-bit half-adder in the mobile-
automaton model is illustrated in Fig. 9. When both inputs x

and y are FALSE only three fingers corresponding to constant
TRUE propagate southward [Fig. 9(a)]. Finger c collides, is
deflected by obstacle o4, turns east, is deflected by obstacle
o11, and turns north. It collides with finger f . As a result of
this collision, finger c turns north-west and is “self-trapped”
while finger f turns south-east. The body of finger f prevents
further propagation of finger g. Finger f and g are deflected
by obstacle o14 and propagate north. Thus for input x = 0 and
y = 0 no output fingers appear along dedicated trajectories
[Fig. 9(a)]: 〈0,0〉 → 〈0,0〉.

For the input combination x = 0 and y = 1, the situation
develops as follows [Fig. 9(b)]. Fingers c, f , and g, represent-
ing constant TRUE enter the the adder as usual. Fingers a and
e, representing x, are absent. Fingers b and d, representing
y = 1, enter the adder. Finger b collides with obstacle o3 and
turns east, then collides with obstacle o7 and heads north.
Thus fingers b and c come into a head-on collision. Finger b

turns west and is self-trapped. Finger c turns east, collides with
obstacle o7 and then o6, and gets trapped. Finger d collides with
obstacle o8, heads east, collides with obstacle o12, and travels
north. Fingers f and g continue their travel undisturbed. Thus
operation 〈0,1〉 → 〈1,0〉 is implemented.

When x = 1 and y = 1 [Fig. 9(c)], finger a (representing
first copy of x) is turned north by obstacles o1 and o5. Finger
c (representing second copy of x) is turned north by obstacles
o10 and o13, and collides with finger f . Fingers c and f

stop propagating as a result of the collision. Finger c is
turned east by obstacle o4 and then north by obstacle o11.
Finger g continues its propagation undisturbed and thus
operation 〈1,0〉 → 〈1,0〉.

Most interactions between fingers take place in situation
x = 1 and y = 1 [Fig. 9(d)]. Finger a collides with finger
b. Finger b turns east as a result of the collision. The
body of finger b prevents finger c from propagating north.

⊕
(a) (b)

FIG. 8. (Color online) Scheme of one-bit
half-adder implementable with (a) LC fingers
and (b) labels of key elements of the adder.
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FIG. 9. Configurations of two-dimensional mobile-automaton model. Fingers and obstacles are represented by states of cells. (a) x = 0,
y = 0, (b) x = 0, y = 1, (c) x = 1, y = 0, and (d) x = 1, y = 1.

Finger d collides with finger e and becomes self-trapped.
Finger e turns east as a result of the collision and exits the adder.
Final trajectory of finger e represents xy = 1 [Figs. 8(a) and
9(d)]. Propagation finger g is blocked by the body of fingers e

and f , it does not exit the adder along its original trajectory,
and thus x ⊕ y = 0.

VII. DISCUSSION

Cholesteric liquid crystals exhibit growth of localized
phase defects—fingers—in response to the application of
an ac electric field. The fingers show (almost) deterministic
behavior when they collide with other fingers and obstacles,
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thus they are suitable for implementation of collision-based
computing schemes. For higher values of voltage applied,
fingers show branching. Wave fronts of branching fingers
stop their propagation when they collide with other fronts.
Thus branching fingers can approximate a Voronoi diagram,
a plane subdivision based on proximity criteria. For low
applied voltages, the fingers remain solitary and thus each
finger can represent a quantum of information and be an

elementary unit of a collision-based computing device. To
illustrate the feasibility of the approach we provided the design
of a one-bit binary half-adder and proved the correctness of its
functioning using a mobile-automaton model. Collision-based
computing prototypes presented in the paper are based on
computer imitations of finger propagation, and further work
is required to implement the design in physical laboratory
conditions.
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