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Direct evidence of heterogeneous mechanical relaxation in supercooled liquids
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Dynamic heterogeneity is now considered to be an intrinsic kinetic feature of a supercooled liquid. Here,
we access the nonlocal complex modulus of a glass-forming liquid using molecular dynamics simulations. We
find that the shear-stress relaxation exhibits a marked wave number dependence in a supercooled state. This
dependence provides direct evidence that slow mechanical relaxation takes place heterogeneously in space. Its
characteristic length ξ increases with decreasing temperature and becomes mesoscopic. The response involves
particle rearrangements over ξ and takes a time comparable to the structural relaxation time τα . Our finding
suggests that the heterogeneous structural relaxation is of fundamental importance in anomalous viscous transport
and viscoelasticity in supercooled liquids.
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I. INTRODUCTION

The viscosity η of a liquid increases steeply as it approaches
the glass-transition temperature Tg . The origin of this viscous
slowing down is the central issue of the physics of the
glass transition [1–3]. Similarly, the α-relaxation time τα

(the longest structural relaxation time) also increases. This
τα can be accessed not only by macroscopic measurements
such as mechanical and dielectric relaxation measurements,
but also by microscopic measurements, such as neutron
scattering measurements, and numerical simulations, which
probe the decay of the density correlation function at the
peak wave number kp of the structure factor S(k). Intriguingly,
τα obtained by microscopic measurements (k = kp) coincide
with that obtained by macroscopic measurements (k = 0).
Furthermore, τα is proportional to η. This proportionality
is considered to be a consequence of the Maxwell relation
η = G0τα , where G0 is the plateau shear modulus. This link
between the macroscopic η and τα at k = 0 and microscopic
τα at kp apparently suggests that the slow dynamics occur
even at the microscopic scale, and thus have a microscopic
origin. Mode coupling theory (MCT) provides a scenario that
directly bridges the macroscopic and microscopic structural
relaxations [4]. Within the framework of MCT, jamming of
density fluctuations, whose characteristic length scale is the
cage size (∼ particle size d), is the essential origin of the
excessive slowing down that identifies macroscopic structural
relaxation. Because of this feature, MCT has been considered
to be a microscopic (or first-principles) theory that can explain
various key aspects of the glass transition.

In the last decade, however, this slow structural relaxation
has been revealed to accompany dynamic heterogeneity (DH),
and its characteristic length ξ grows as the system approaches
Tg [5–15]. This property is now considered to be an intrinsic
and universal kinetic feature of the glassy dynamics of a
supercooled liquid. It is agreed by consensus that DH is
responsible for many anomalous phenomena that are absent
in a normal liquid but characteristic of a supercooled liquid.
These phenomena include the nonexponential nature of the
structural relaxation and the violation of the Stokes-Einstein
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relation (translational-rotational decoupling) [16–18]. DH
cannot be explained by the original MCT, in which the
only relevant length scale is the microscopic cage size (∼d),
although there have been some efforts to incorporate spatially
inhomogeneous dynamics by extending the original MCT
(e.g., including higher order correlations [19] or hopping
[20]). DH suggests the significance of dynamical correlation
over a mesoscopic length scale ξ ; therefore, the microscopic
and mesoscopic length scales, d and ξ , are required to
characterize the slow glassy dynamics of a supercooled liquid.
This requirement raises the fundamental question of whether
the spatial heterogeneity of structural relaxation is critical
to viscous transport and slow glassy dynamics or merely a
subsidiary phenomenon. This problem of the relevant length
scale(s) of slow dynamics is crucial for the basic understanding
of the origin of slow structural relaxation.

Recently, we studied the spatially nonlocal nature of
viscous transport in a supercooled liquid [21]. We showed
that a distinct crossover from the microscopic to macroscopic
viscosity occurs at the dynamic correlation length ξ , which is
comparable to the characteristic size of DH. It was also found
that if the relaxation time of the longitudinal modes (e.g.,
density fluctuations) was substituted for that of the transverse
shear stress, the Maxwell relation η ∼= G0τ did not hold. In
this paper, we investigate nonlocality in time and its link
to spatial nonlocality to elucidate the physical origin behind
these phenomena by accessing the viscoelastic shear response
at a finite wave number k. We will demonstrate that, for
kξ � 1, the structural relaxation linked to longitudinal modes
is strongly decoupled from the shear mechanical relaxation,
which involves only transverse modes. The fact that τ in the
Maxwell relation η = G0τ should refer to the “transverse”
shear relaxation time in principle and is much smaller than
the macroscopic structural relaxation time, τα for kξ � 1, has
been overlooked.

II. SIMULATION METHOD

In this paper, we performed molecular dynamics (MD)
simulations of a three-dimensional (3D) glass-forming model
liquid, focusing on its nonlocal viscoelastic response. The
system used is a mixture of two types of particles, 1 and 2,
with N1 = N2 = 20 000. The particles interact by means of the
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soft-core potentials Uab(r) = ε(dab/r)12 with dab = (da +
db)/2, where r is the distance between two particles, da is
the particle size, and a,b = 1,2. The mass and size ratios
are m2/m1 = 2 and d2/d1 = 1.2, respectively. We fixed the
particle number density at a value of N/V = 0.8/d3

1 , where
N = N1 + N2, and V is the system volume. Space and
time were measured in units of d1 and τ0 = (m1d

2
1/ε)1/2,

respectively. The linear dimension of the system was L =
36.84. The temperature T and viscosity η were measured in
units of ε/kB , where kB is the Boltzmann constant, and ετ0/d

3
1 ,

respectively. The simulations were carried out using velocity
Verlet algorithms in the NVE ensemble [22].

III. MICRO- AND MACROSCOPIC α-RELAXATION
TIMES IN A GLASS-FORMING LIQUID

In Fig. 1(a), we display the incoherent intermediate scatter-
ing function for species 1,

F (1)
s (k0,t) = 1

N1

N1∑
i=1

〈
e−ik0·�r (1)

i (t)
〉
, (1)

where �r (1)
i (t) = r (1)

i (t) − r (1)
i (0) and |k0| = 2π , which is

nearly equal to kp. Here, we define τ s
α as F (1)

s (k0,τα) = e−1.
We also quantify DH and the associated correlated dynam-

ics, following the method proposed in Ref. [13]: The mobility
can be characterized by the time-dependent field variable

Q̂(r,t) =
N∑

i=0

wi(t)δ(r − r i(0)). (2)

Here, wi = w(|r i(t) − r i(0)|), where w(|r|) = 1 for |r| �
0.3 and w(|r|) = 0 otherwise. The spatial integral Q(t) =∫

d rQ̂(r,t) counts the number of self-overlapping particles in
two configurations separated by a time interval t . In Fig. 1(b),
〈Q(t)/N〉 is plotted for several temperatures, and its time
evolution is found to be similar to that of F (1)

s (k0,t). We now
define the relaxation time of the particle configuration, τQ

α ,
to be the time at which 〈Q(t)/N〉 is equal to e−1. The mean
square variance of Q(t) measures the degree of cooperativity
of the particle rearrangement dynamics:

χ4(t) = V

T N2
[〈Q2(t)〉 − 〈Q(t)〉2]. (3)

Figure 1(c) shows χ4(t) for several temperatures. We estimate
τχ to be the time at which χ4(t) reaches its peak and thus the
dynamic correlation becomes maximum.

First, we investigate the macroscopic (k = 0) viscoelastic
relaxation and its relationship to other time scales characteriz-
ing the structural relaxation. The macroscopic shear viscosity
can be obtained by the Green-Kubo formula:

η(k = 0) = 1

T V

∫ ∞

0
dt〈σ̂xy(t)σ̂xy(0)〉, (4)

where σ̂xy(t) is the xy component of σ̂ k(t) at k = 0. Here,
σ̂ k(t) is the Fourier component of the microscopic stress tensor,
defined as follows [23,24]:

σ̂ k(t) =
∑

i

[
mivivi +

∑
j �=i

r ij r ij

r2
ij

�(r ij )

]
e−ik·r i (t), (5)
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FIG. 1. (Color online) (a) F (1)
s (k0,t) at |k0| = 2π , (b) 〈Q/N〉(t),

(c) χ4(t), and (d) 〈σ̂xy(t)σ̂xy(0)〉/V T (red curves) for several temper-
atures. In (d), the long-time behavior of the stress autocorrelation can
be well fitted by the KWW form, G0 exp[−(t/τ σ

α )ψ ] (blue dashed
curves). The insets show the fitted parameters G0 and ψ .

where r ij = r i − rj , rij = |r ij |, and mi and vi are the mass
and velocity of the ith particle, respectively. Here, �(r ij ) is
given by

�(r ij ) = rij

2ik · r ij

∂Uij

∂rij

(e−ik·r i − e−ik·rj ). (6)

The first term in Eq. (5) represents the momentum trans-
fer contribution (ideal-gas term); it is negligibly small in
comparison to the second term in the high-density liq-
uid. Figure 1(d) shows the macroscopic shear stress au-
tocorrelation function 〈σ̂xy(t)σ̂xy(0)〉/V T . In a supercooled
state, the long-time behavior of 〈σ̂xy(t)σ̂xy(0)〉/V T can be
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FIG. 2. (Color online) τ s
α , τQ

α , τχ , and τ σ
α against 1/T are plotted

by the red solid, blue dashed, purple dotted, and green dot-dashed
curves, respectively. The thin black dashed curve is the fit of τ s

α to the
VFT law for T � 0.473.

well fitted by the Kohlrausch-Williams-Watts (KWW) form,
G0 exp[−(t/τ σ

α )ψ ], where G0 is the plateau modulus and τσ
α

is the structural relaxation time [25]. Nonexponential decay
with the stretching exponent ψ has been considered to be a
consequence of DH. Despite this nonexponential decay, the
Maxwell relation, η(k = 0) ∼= G0τ

σ
α , holds well, even in a

supercooled state [28]. In Fig. 2, we show four time scales,
τ s
α , τQ

α , τχ , and τσ
α . They behave similarly over the entire

temperature range and follow the Vogel-Fulcher-Tammann
(VFT) law. This amazing coincidence of the macroscopic
structural relaxation time (τσ

α ) with the microscopic relaxation
time (τ s

α and τQ
α ), and also with the characteristic time of

DH (τχ ), apparently supports the MCT scenario, in which the
slowing down of the particle dynamics as a result of the caging
dominates the macroscopic transport anomalies and DH.
Contrary to this coincidence, however, we will demonstrate
below that the viscoelastic response of a supercooled liquid
cannot be described by microscopic caging dynamics; rather,
it involves the far more complicated heterogeneous dynamics
of a mesoscopic length scale ξ .

IV. NONLOCAL VISCOELASTICITY

A. General formulation

To access the k dependence of the viscoelastic (structural)
relaxation, we analyze the k-dependent complex modulus. We
start from the following generalized hydrodynamic equation
[23,24,29,30]:

∂

∂t
j⊥ = (∇ · ↔

σ vis)
⊥ + θ⊥, (7)

where j⊥(r,t) is the transverse momentum current, θ⊥(r,t)
is the transverse random force, and

↔
σ vis(r,t) is the (trans-

verse) viscous shear stress tensor given by
↔
σ vis(r,t) =∫

dt ′
∫

d r ′η(|r − r ′|,t − t ′)
↔
κ

⊥
(r ′,t ′) with the strain rate

tensor
↔
κ

⊥
(r,t) = ∇v⊥ + (∇v⊥)†. Here, v⊥(r,t) is the trans-

verse velocity, and η(|r − r ′|,t − t ′) is a response function rep-
resenting the spatiotemporally nonlocal viscoelastic response.
In the k space, the above equation is expressed as follows:

∂

∂t
j k

⊥(t) = − k2

ρm

∫
dt ′η(k,t − t ′) j⊥

k (t ′) + θ⊥
k (t), (8)

where ρm is the average mass density. Here, the Fourier
transform of an arbitrary function A(r) is defined by Ak =∫

d re−ik·rA(r). The microscopic expression of j⊥
k (t) is given

by j⊥
k (t) = 1/

√
N

∑N
i miv

⊥
i (t)eik·r i (t), where v⊥

i (t) is the
transverse velocity of particle i, which satisfies v⊥

i (t) · k =
0. The autocorrelation function is then defined as follows:
C(k,t) = 〈 j⊥

k (t) · j⊥
−k(0)〉, whose time evolution is described

by (∂/∂t)C(k,t) = −(k2/ρm)
∫

dt ′η(k,t − t ′)C(k,t ′). Here,
we make use of the relation 〈θ⊥

k (t) · j⊥
−k(t ′)〉 = 0. In the

frequency (ω) domain, the resulting k- and ω- dependent shear
viscosity can be expressed as follows:

η(k,ω) = ρm

k2C̃(k,ω)
[−iωC̃(k,ω) + C(k,0)], (9)

where C̃(k,ω) = ∫ ∞
0 dte−iωtC(k,t). The nonlocal viscoelas-

ticity is characterized by the complex shear mod-
ulus G∗(k,ω) = G′(k,ω) + iG′′(k,ω) = iωη∗(k,ω), where
G′(k,ω) and G′′(k,ω) are the so-called storage and loss
moduli, respectively [31,32]: The storage modulus represents
the elastic response, and the loss modulus represents the dissi-
pative viscous response. In the low-frequency limit (ω → 0),
we can obtain the following expression for the k-dependent
shear viscosity:

η(k) = lim
ω→0

G′′(k,ω)

ω
= ρm

k2

[∫ ∞

0
dt

C(k,t)

C(k,0)

]−1

. (10)

B. Mesoscopic nature of the viscoelastic response

The behavior of the complex modulus G∗(k,ω) describes
the transmission and propagation of force and velocity
fluctuations. Figure 3 shows the complex shear modulus
G∗(k,ω) = G′(k,ω) + iG′′(k,ω) for different wave numbers
at three temperatures. At a relatively high frequency (ω � 1),
G∗(k,ω) exhibits only a weak k dependence for all T ’s;
G′(k,ω) and G′′(k,ω) increase by less than one order of
magnitude with decreasing k. This dependence implies that the
short time scale (t � 1) relaxation dynamics are dominated by
random particle motions with little spatial correlation, which
are thermally activated rather independently, for both normal
and supercooled states. Thus, the high-frequency viscoelastic
response is microscopic, and it only weakly depends on T . In
contrast, at a relatively low frequency (ω � 1), the viscoelastic
response shows a strong k dependence in a supercooled state.
As we can see in the right column of Figs. 3(b) and 3(c), the
shoulder in the loss modulus becomes more evident and shifts
to lower frequencies with decreasing k, eventually developing
into a distinct peak that cannot be seen in the normal state
(T = 1.35). This behavior suggests the growth of dynamical
correlation and the resulting heterogeneous nature of the slow
structural relaxation as the system approaches Tg . For kξ � 1,
the viscoelastic relaxation (or response) time increases for
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FIG. 3. (Color online) G∗(k,ω) at k = 1.11, 1.62, 2.64, 3.50,
4.35, 5.20, 6.05, and 6.91 (solid curves from left to right in each
figure) in both the normal [(a) T = 1.35] and supercooled [(b) T =
0.306 and (c) 0.267] states. The storage and loss moduli are shown in
the left and right columns, respectively. In the right column, the red
dotted curves represent the loss modulus at k = 0.

longer length scales. For kξ � 1, on the other hand, the
viscoelastic response time coincides with the macroscopic
relaxation time τσ

α [see also Fig. 5(b)].
To make a quantitative analysis in the time do-

main, we calculate the response function, η(k,t),
from G∗(k,ω) using the following relations: G′(k,ω) =
ω

∫ ∞
0 dtη(k,t) sin(ωt) and G′′(k,ω) = ω

∫ ∞
0 dtη(k,t) cos(ωt).

Then, we fit η(k,t) to the k-dependent KWW model,
ηKWW(k,t) = Gve(k) exp{−[t/τve(k)]ψ }, where Gve(k) and
τve(k) are the k-dependent plateau shear modulus and structural
relaxation time, respectively [33]. This ηKWW(k,t) reduces to
the standard Maxwell model for ψ = 1. Figures 4(a) and 4(b)
show the transverse momentum autocorrelation C(k,t) and the
response function η(k,t) in a supercooled state (T = 0.285),
respectively. Interestingly, C(k,t) decays much faster than
η(k,t) for all wave numbers, though C(k,t) and η(k,t) are
related by Eq. (9).

As shown in Fig. 5(a), Gve(k) has already assumed its
macroscopic value, G0, at a wavelength comparable to the
particle size. This phenomenon can also be confirmed by
the fact that neither the plateau of G′(k,ω) nor the peak
height of G′′(k,ω) depends on k when k � 4 [see Figs. 3(b)
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FIG. 4. (Color online) (a) The transverse momentum autocorre-
lation C(k,t) and (b) the response function η(k,t) at T = 0.285. In
each figure, the red curves represent the data at k = 1.11, 1.62, 2.64,
3.50, 4.35, 5.20, 6.05, and 6.91 (from left to right). In (b), the blue
dashed curves are the fits of the long-time behavior of η(k,t) to the
KWW function. The green dotted curve represents the macroscopic
shear stress autocorrelation function.

and 3(c)]. Unlike Gve(k), τve(k) exhibits a marked k depen-
dence, as shown in Fig. 5(b). Its k dependence is characterized
by the length scale ξτ

∼= ξ , which implies that the shear stress
is dominated by the velocity fluctuations over distances of ∼ξ

and times of ∼τσ
α = τve(0). Furthermore, unlike the weak T

dependence of Gve(k), τve(k) shows a dramatic increase with
decreasing T . Thus, the mesoscopic nature of the viscoelastic
response stems from τve(k), but not from Gve(k). In Fig. 5(c),
we compare η(k) with Gve(k)τve(k) at several temperatures.
In high-temperature normal-liquid states (T � 0.772), η(k)
approaches its macroscopic (k = 0) value with a decrease in
k, already at a wavelength comparable to the particle size [30].
This result suggests that there is no important length scale
beyond the cage size in a normal-liquid state. In contrast, the
k dependence of η(k) becomes more pronounced for lower T

in supercooled states (T � 0.352) [21,34,35]. We have found
that the k-dependent Maxwell relation, η(k) = Gve(k)τve(k),
holds well from the macroscopic to the microscopic length
scale, irrespective of the degree of supercooling. The Maxwell
relation does not hold if we employ the relaxation time of a
variable linked to a longitudinal mode, such as the density ρ,
as the structural relaxation time. For τρ(k), which is the decay
time of the two-body density correlation 〈ρ(k,t)ρ(−k,0)〉,
we confirm that η(k) 
 Gve(k)τρ(k) ∼ η(k = 0) for kξ � 1
[38]. This confirmation tells us that shear viscosity, which
is the transport coefficient of a transverse velocity field, is
proportional to the structural relaxation time for a purely
transverse deformation at any k, but not one that involves
longitudinal modes.

C. Comparison with the standard MCT

In this subsection, we consider whether our find-
ings can be explained in the framework of the standard
MCT [4,36,37]. MCT assumes that the dominant stress (or
force density) is produced by density fluctuations. In a
supercooled state, density fluctuations with wavelengths near
the first peak of the structure factor (∼cage size) become
the longest-lived modes. Thus, their nonlinear (jamming)
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FIG. 5. (Color online) (a) The k-dependent plateau modulus Gve(k) in supercooled states. (b) The k-dependent relaxation time τve(k)
in supercooled states. The inset shows τve(k)/τσ

α . Here, the dot-dashed curve is the empirical function, 1/[1 + (ξτ k)2 + (λτ k)4], fitted to
the data. (c) T dependence of τve(k,T ) for different values of k. The upper and lower blue dashed curves represent Vogel-Fulcher and
Arrhenius fitting, respectively. (d) The k-dependent shear viscosity η(k) (red curves). η(k) can be well fitted by the empirical function,
η(k = 0,T )/{1 + [ξη(T )k]2 + [λη(T )k]4} (blue dashed curves), where η(k = 0,T ) is the macroscopic shear viscosity independently obtained
by the Green-Kubo formula, and ξη

∼= ξτ . The green dashed curves represent Gve(k)τve(k) in supercooled states.

interactions are considered to play a crucial role in the slowing
down of dynamics and the resulting transport anomalies. In
our previous paper [21], our simple MCT analysis predicted
that a viscosity anomaly occurs at a particle scale (∼cage
size) and that the crossover length remains nearly constant,
regardless of the degree of supercooling. This prediction is,
however, in strong contrast with our MD simulation results.
As shown in Fig. 5(c), the viscosity anomaly in a supercooled
state exhibits a marked k dependence for kξ � 1, where ξ

increases as the degree of supercooling increases. Here, we
further investigate the length-scale-dependent viscoelasticity
within the framework of the standard MCT and compare it
with the MD simulation results of η(k,ω). To capture the basic
feature of the viscoelasticity in the MCT picture, we compute
η(k,ω) of a one-component hard-sphere system, rather than a
binary soft-sphere system.

The following fluctuating hydrodynamic equations provide
a starting point:

m
∂

∂t
ρ̂ = −∇ · ĵ , (11)

where m is the particle mass, ρ̂(r,t) is the number density, and
ĵ (r,t) is the momentum density, which obeys the following
nonlinear Langevin equation:

∂

∂t
ĵ = −ρ̂∇ δF

δρ̂
− ζ0

mρ0
ĵ + θ̂, (12)

where ζ0 is the friction constant, ρ0 is the average density, m

is the particle mass, and θ̂ is the thermal fluctuating force that
satisfies the fluctuation-dissipation relation. The free energy
functional F {ρ̂} is assumed to have the following expression:

F {ρ̂} = kBT

∫
d rρ̂

[
ln

(
ρ̂

ρ0

)
− 1

]

−kBT

2

∫ ∫
d rd r ′ĉ(r − r ′)δρ̂(r)δρ̂(r ′), (13)

where δρ̂ = ρ̂ − ρ0, and the direct correlation function and
the structure factor are connected with the Ornstein-Zernike
relation as ρ0ĉk = 1 − 1/Ŝk. In a hard sphere system, the
structure factor is evaluated by the Percus-Yevick theory [23].
The wavelength corresponding to the first peak of the structure
factor provides the characteristic size of the system (∼cage
size) [see Fig. 6(a)]. In this subsection, we measure space and
time in units of d and ζ0d

2/ρ0kBT , respectively, where d is
the particle diameter. Then, the viscosity is measured in units
of ζ0/ρ0d. The k- and ω-dependent shear viscosity η̂(k,ω) can
be calculated by the Green-Kubo formula with the usual mode
coupling approximation [4] as

η̂(k,ω) = 1

4k2

∫ ∞

0
dte−iωt

∫
p

[
p2 −

(
k · p

k

)2]

×
(

1

Ŝp

− 1

Ŝ|k− p|

)2

ŜpŜ|k− p|�̂p(t)�̂|k− p|(t), (14)
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FIG. 6. (Color online) MCT results. (a) The structure factor
Sk = 〈|ρ̂k|2〉/N for several volume fractions ϕ = πd3ρ̂0/6 = ϕc(1 −
10−n/3), where ϕc

∼= 0.516 and n = 3,4, . . . ,12. Notice that Sk col-
lapses onto a single curve for n � 7. (b) The density autocorrelation
function �k(t) at n = 11 for several wave numbers.

where �̂k(t) = 〈ρ̂k(t)ρ̂−k(0)〉/〈|ρ̂k|2〉. Figure 6(b) shows �̂k(t)
at different wave numbers in a supercooled state. In the long-
wavelength, low-frequency limit, Eq. (14) reduces to

η̂macro = 1

60π2

∫ ∞

0
dpp4

(
∂

∂p
ln Ŝp

)2 ∫ ∞

0
dt�̂2

p(t). (15)

From the mathematical structure of the above integrals, the
divergence of the viscosity is dominated by the density
fluctuations with the wavelength around the first peak of the
structure factor.

Figures 7(a) and 7(b) show the MCT results of the storage
and loss moduli in supercooled states, respectively. No strong
wave number dependence is apparent over the entire frequency
range. As k decreases from 4.55 to 0.55, both Ĝ′(k,ω) and
Ĝ′′(k,ω) change by less than a factor of two; moreover,
the position and height of the α peak in Ĝ′′(k,ω) remain
nearly unchanged. In the standard MCT employed here, the
viscoelastic response is dominated by the local cage-scale
dynamics with little spatial correlation even for ωτα � 1.
Both the fast relaxation process and the slow structural
relaxation have a microscopic origin. The results in Fig. 7
are indeed consistent with this MCT picture, but they are
contradictory to the results of our MD simulation shown
in Figs. 3–5. In MCT, the relation η̂macro ∼ η̂(k) ∼ τ̂ρ(k) is
qualitatively valid, even up to the particle scale. Here τ̂ρ(k)
is the k-dependent α-relaxation time determined by �̂k(t).
This result means that the longitudinal relaxation entirely
dominates the transverse relaxation. Our MD result gives
the generalized Maxwell relation as follows: η(k) ∼ τve(k) 

η(k = 0) ∼ τρ(k) for kξ � 1. This result strongly suggests
the existence of a relaxation mechanism much faster than the
longitudinal structural relaxation, which becomes important in
the shear-stress relaxation on smaller length scales (kξ � 1).
This strong separation of time scales between the longitudinal
and transverse structural relaxations may be essential to the
understanding of some unresolved problems, such as the
breakdown of the Stokes-Einstein relation and the decoupling
between translational and rotational dynamics in a supercooled
state, which the standard MCT fails to explain. Recently, there
have been several efforts to extend MCT to explain the growing
length scale associated with DH [19,20]. Such approaches may
help to resolve the discrepancies between our MD and the
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FIG. 7. (Color online) MCT results. The storage (a) and loss (b)
moduli in supercooled states at n = 5 (red solid curves) and 11 (blue
dashed curves) for different wave numbers (k = 0.55, 1.05, 1.55,
2.05, 2.55, 3.05, 3.55, and 4.05 from top to bottom). In (c), we show
the k-dependent shear viscosity η(k) at n = 5,6, . . . ,12 (from bottom
to top).

(standard) MCT results. However, further investigation in this
direction is beyond the scope of the present paper.

V. CONCLUDING REMARKS

In conclusion, we demonstrate that viscoelastic relaxation
itself takes place heterogeneously in both space and time.
The process involves particle rearrangements over the length
scale ξ and takes τσ

α . The resulting relaxation time of a
supercooled liquid τve shows a marked k dependence. At a
microscopic length scale, τve always remains short and follows
the Arrhenius law, whereas at a macroscopic length scale it
slows down significantly with a decrease in T , following the
VFT law. This behavior implies the intrinsically mesoscopic
nature of the slow dynamics near the glass transition. The
autocorrelation of the transverse variables at finite k itself
decays much faster than τσ

α , which gives an impression that
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the dynamics of the transverse modes at finite k are not linked
to slow glassy dynamics. However, the analysis of G∗(k,ω)
reveals the spatiotemporal hierarchical nature of the slow
dynamics. This situation is similar to the case of entangled
polymer solutions [41,42], which inspired this work. In that
case, the marked k dependence of the relaxation time and the
quick decay of transverse dynamics are direct consequences of
dynamic coupling between the polymer and solvent dynamics.
Our preliminary MCT calculation shows that the complex
modulus takes the macroscopic value at a microscopic length
scale over the whole frequency range, contrary to our findings.
This discrepancy casts a doubt on the validity of the cage-based

(particle-scale) scenario. The drastic slowing down of the
microscopic relaxation time τρ(kp) could be a consequence of
the subordination of the longitudinal modes to the mesoscopic
slow structural relaxation with the timescale τve(k = 1/ξ ) ∼
τσ
α . The most fundamental remaining question is that of the

cause of slow structural relaxation of a mesoscopic nature.
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