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We reexamine the convolution approximation commonly used in the mode-coupling theory (MCT) of
nonergodic states of classical fluids. This approximation concerns the static correlation functions used as input in
the MCT treatment of the dynamics. Besides the hard-sphere model, we consider interaction potentials that present
a short-range tail, either attractive or repulsive, beyond the hard core. By using accurate static correlation functions
obtained from the fundamental measures functional for hard spheres, we show that the role of three-body direct
correlations can be more significant than what is inferred from previous simple ansatzs for pure hard spheres.
This may in particular impact the location of the glass transition line and the nonergodicity parameter.
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I. INTRODUCTION

Understanding the nonergodic states that are frequently
observed in soft condensed matter, as for example, colloidal
gels, motivated numerous experimental and theoretical studies
for several decades now, first for their practical interest. On the
other hand, the presence in soft matter of a new mechanism
of dynamical arrest, the attractive glass [1], that differs from
the “caging” responsible for the repulsive glass in molecular
systems has given a new impetus to the study of the glassy
states (see also [2–4] for reviews). The MCT analysis of
dynamically arrested states in colloids extends to Brownian
particles the concepts originally developed for molecular fluids
[5]. This application of the MCT theoretical framework [6],
originally elaborated for dense fluids [7,8], raises different
questions. Some of them are relative to the assumptions
made to obtain the MCT equations for the dynamics of the
density fluctuations. For example, dynamical heterogeneities
or cluster aggregation neglected in the MCT are expected to be
relevant [1,4] in low density states, like gels. This is why more
advanced versions of the mode-coupling theory have been
developed [9–12], which aim at a more complete description
of this dynamics. On the other hand, alternatives to the MCT
have also been proposed [13,14]. Aside from these important
questions, it is useful to examine further, in the framework
of the MCT, the approximations made for the static input, in
particular the convolution approximation. This is the main goal
of this paper.

In the MCT, the dynamical arrest, or nonergodicity transi-
tion, is characterized by the nonvanishing of the long-time
limit of the density autocorrelation function 〈ρ(q,t → ∞)
ρ(−q,t = 0)〉, where ρ(q,t) is the Fourier transform of the
microscopic particle density. The MCT dynamic properties are
entirely determined by the static correlation functions and in-
volve the two-body and three-body direct correlation functions
(dcfs) c(2)(q) and c(3)(q) (in Fourier space) through a vertex
function from which the memory kernel is computed. While
accurate methods have been developed for c(2) [15], much less
is known about c(3). This question is eluded in the convolution
approximation, which assumes c(3)(q) = 0. This approxima-
tion, not fundamental in the MCT, was substantiated by a work
by Barrat et al. [16] on the hard-sphere (HS) fluid. The authors

used for c(2) the analytical solution of the Percus-Yevick (PY)
closure of the Ornstein-Zernike (OZ) equations [15] and for
c(3) an expression proposed by Denton and Ashcroft [17] (DA)
based on a combination of the PY two-body dcfs. Accordingly,
they showed that within this class of trial functions, the
density of the glass transition depends weakly on c(3): the
critical packing fraction changes from 0.516 with c(3) = 0
to 0.512 with c(3) �= 0. The convolution approximation then
became widely admitted, and generalized to various situations,
including mixtures or non-HS interactions. It was discussed
only for some specific mixtures by Sciortino et al. [18], who
also showed that the incorporation of c(3) has little effect on the
nonergodicity parameter for Lennard-Jones mixtures, but that
it is important to include it for silica. Except for this case, the
convolution approximation has systematically been used in the
applications of the MCT. We shall examine here simple ways to
improve it, on the basis of sufficiently accurate expressions of
c(3), beyond the simple ansatzs, that exist for hard spheres (we
will also use more accurate two-body dcfs c(2), known to be
required for some interaction potentials [19,20]). The influence
of the three-body HS contribution on two quantities will be ex-
amined: the critical packing fraction of the glass transition, and
the long-time density correlation function which determines
the Debye-Waller factor and some mechanical properties of the
glass.

We study first the HS model for which these triplet correla-
tions are fully incorporated. We next consider the addition of a
short-range tail. In this case we also use the HS contribution to
c(3), with a suitably defined hard-sphere diameter. The practical
reason for this is the scarcity of accurate expressions for the
non hard-sphere contribution (see, for example, [21,22] for soft
spheres and the Lennard Jones fluid). On the other hand, simple
geometric arguments suggest that the dominant contributions
to c(3) should originate for hard-sphere-like particles mostly
from the (effective) hard-core interaction. A contrario, a great
sensitivity to details in c(3) would raise the very question
of neglecting three-body contribution and the necessity of
describing c(3) beyond the HS contribution.

This paper is hence organized as follows: Sec. II presents the
theoretical methods, Sec. III presents the results, and Sec. IV
presents the conclusion.
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II. THEORY

A. Mode-coupling theory of dynamical arrest
for colloidal particles

We briefly recall here the MCT treatment of the nonergodic-
ity transition in colloids. The mode-coupling theory introduced
by Kawasaki [23] was originally used for molecular glasses
[6]. The central assumption is that the dynamics is dominated
by collective modes. They reduce for colloids to the particles
density [5]. By factorizing four-point correlations into a
product of two-point terms (assumption of independent modes)
one obtains a closed equation for the coherent intermediate
scattering function S(q; t):

S(q; t) = 1

N
〈ρ(q,t)ρ(−q,0)〉 (1)

whose transform in the frequency domain is the dynamic
structure factor S(q; ω). In the MCT for colloids, the time
evolution of S(q; t) without hydrodynamic interactions obeys
the equation [24]

∂

∂t
S(q; t) + q2 D0

S(q)
S(q; t)

+ 1

D0

∫ t

0
dt ′M(q; t − t ′)

∂

∂t ′
S(q; t ′) = 0, (2)

where D0 is the Stoke-Einstein diffusion coefficient and
M(q,t) is the memory kernel:

M(q,t) = ρ

2
D2

0

∫
d3k

(2π )3
V 2(q,k)S(k; t)S(q − k; t). (3)

In this expression V (q,k) is the vertex function

V (q,k) = 1

q
[q · (q − k)c(2)(q − k) + q · k c2(k)

+ ρq2c(3)(k,q − k)] (4)

with ρ as the number density (for hard spheres of diameter
σ , the packing fraction is η = π

6 ρσ 3). The actual wave
vectors as they appear in the c(3) term [24] are consistent
with the derivation in Ref. [5] but they differ from those
in Ref. [18]. In these equations, the static structure factor
S(q) = [1 − ρc(2)(q)]−1 is related to c(2) by the OZ equation
(in q space). Equations (2)–(4) govern the time evolution of
S(q; t). Since we are interested here in a simple illustration
of the impact of c(3), we will consider only its long-time
limit. S(q,t → ∞) can be determined without solving Eq. (2)
at all times, which is numerically more demanding. In an
ergodic fluid, S(q,t → ∞) = 0. The ideal glass is defined by
S(q,t → ∞) �= 0. This arrested state is usually characterized
by the nonergodicity parameter f (q) (or glass form factor)
defined by

S(q,t → ∞) = S(q)f (q). (5)

From the long-time limit of Eqs. (2)–(4), one gets the following
equation for f (q):

f (q) = m(q)

1 + m(q)
(6)

with

m(q) = 1

2

∫
d3k

(2π )3
Ṽ (q,k)f (k)f (q − k) (7)

and

Ṽ (q,k) = ρ

q2
V 2(q,k)S(q)S(k)S(‖q − k‖). (8)

The physical solution of Eqs. (6) and (7) is the greatest one,
in the range 0 � f (q) � 1 [6]. It is the limit of the iteration
process: f (0) = 1, f (n+1) = F (f (n))

1+F (f (n)) , where the functional F

is the right-hand side of Eq. (7). In the glass, f (q) gives direct
access to the Debye-Waller factor and to the longitudinal stress
modulus m0 = m(q = 0). From Eq. (7) this limit is

m0 =
∫ ∞

0
W (k)f 2(k)dk (9)

with

W (k) = ρS0

[
kS(k)

2π

]2 {
[c(2)(k) + ρc(3)(k,−k)]2

+ 2

3
k[c(2)(k) + ρc(3)(k,−k)]

dc(2)(k)

dk

+ 1

5

[
k
dc(2)(k)

dk

]2 }
. (10)

The function W (k) follows from the limit q → 0 of Eqs. (7)
and (8) with a proper account of the q2 terms in the square of
V (q,k) given in Eq. (4) (S0 = ρkBT χT is the static structure
factor at zero wave number with χT the static susceptibility).
Note that given the exact sum rule

∂

∂ρ
c(2)(k) = c(3)(k,−k), (11)

W (k) is determined solely by c(2)(k) and its density derivative.
The effect on m0 of different approximations of c(3) that
obey Eq. (11) is then through f (k). The importance of m0

is shown, for example, by the sound velocity in the glass
state: in the generalized hydrodynamic description [25] one
finds at low frequency [26] v̂0 = v0

√
1 + m0 with v0 = v/

√
S0

and v = √
kBT /m the hydrodynamic and thermal velocities,

respectively.1

To test the convolution approximation, we summarize in
the next section the methods we used to compute c(3) for hard
spheres beyond the simple ansatzs.

B. Three-body direct correlation function for hard spheres

In the density functional theory (DFT), the n-body dcf is
given by the functional derivative

c(n)(r1, . . . ,rn) = − δ(n)βF ex[ρ]

δρ(r1) · · · δρ(rn)
, (12)

where F ex[ρ] is the excess (over the ideal gas) free-energy
functional. In Rosenfeld’s fundamental measures functional

1In Ref. [25] the relation was written using the high frequency
velocity v∞ instead, replacing χT by that of the glass χq = χT /(1 +
m0), a result quoted in [27].
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(a)

(b)

FIG. 1. Three-body direct correlation function for hard spheres
from the density functional theory and the Denton-Aschcroft ansatz.
The curves show ρ2c(3)(k, cos θ ), with θ the angle (
q,
k) in the isocele
triangle geometry. Symbols: simulation [29]; solid line: Rosenfeld’s
FMF [28]; dashed line: modified FMF [32,33]; dotted line: DA anstaz.
The packing fraction is η = 0.45.

(FMF) for hard spheres [28], it is taken as

F ex = kBT

∫
dx�({nα(x)}). (13)

In its original form [28] the free-energy density � corresponds
to the PY compressibility equation. It is a function of
the weighted densities nα(x) = ∫

dx′ρ(x′)wα(x − x′) obtained
from the actual density ρ(x) through convolution with weights
wα . The FMF uses four scalar and two vectorial weights (see
the Appendix for details). In Fourier space one obtains from

FIG. 2. f (q) with c
(2)
PY and c(3) = 0. From left to right: η = 0.516,

0.54, 0.56, 0.58, and 0.60. Inset: small q region.

Eqs. (12) and (13)

c
(3)
ijk(q1,q2,q3) = −

∑
α,β,γ

∂ (3)�

∂nα∂nβ∂nγ

wα
i (q1)wβ

j (q2)wγ

k (q3)

× δq3,−q1−q2 . (14)

This expression is given here for the general case of a mixture
(the Appendix of Ref. [29] lists the 32 contributions). We
have checked that when the vectorial terms are computed with
the correct sign, using the original FMF or that of Kierlik

FIG. 3. f (q) with c
(2)
RHNC using the Labik-Malijevski bridge

function [37] and c(3) = 0. From left to right: η = 0.526, 0.54, 0.56,
0.58, and 0.60.
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and Rosinberg [30,31] with purely scalar weights, gives the
same c(3). An example is shown in Fig. 1, which also shows
the results obtained with �CS [32,33] corresponding to the
Boublik, Mansoori, Carnahan, Starling, and Leland (BMCSL)
equation of state [34], and those with the DA ansatz. Note
that there exists an alternative route to c(3) based on the
inhomogeneous integral equations theory (see, for example,
[35]) but its implementation is more involved than that of
Eq. (14).

III. RESULTS

A. Hard-sphere fluid

1. Influence of the closure for c(2) in the
convolution approximation

To better separate the influence of different static input, we
first reexamine the sensitivity to c(2), when c(3) = 0. To this
end, the critical packing fraction ηc of the glass transition was
determined by using the PY and the reference hypernetted
chain (RHNC) closures [36] with the bridge function of Labik
and Malijevsky [37]. We found ηPY

c = 0.516 as in [16], and
ηRHNC

c = 0.526. ηc is thus not very sensitive to the closure of
the OZ equation. The nonergodicity parameter f (q) was next
computed for packing fractions above ηc. Figures 2 and 3 show
the behavior of f PY(q) and f RHNC(q) for ηc � η � 0.60. Both
show similar trends: broadening of f (q) and simultaneous
increase of f (0) when η increases. This indicates a stronger
localization of the caged particles and long-range correlations
of the density fluctuations, as expected. Besides these simi-
larities, quantitative differences are however observed at high
density (Fig. 4). f (q) extends over a greater range with the
RHNC input than with the PY one: For η = 0.60, a simple
Gaussian approximation f (q) ≈ exp(−q2r2

loc/6) [38] gives a
localization length rRHNC

loc ≈ 0.033σ instead of rPY
loc ≈ 0.045σ .

FIG. 4. Influence of the closure for c(2) on f (q) for c(3) = 0: solid
line: RHNC; dashed line: PY. Inset: radial distribution function g(r).
The packing fraction is η = 0.6.

Additionally, the long wavelength value f0 = f (q = 0) is
greater for RHNC than for PY. This leads to a significant
difference for the longitudinal stress modulus: mRHNC

0 = 11.7
instead of mPY

0 = 5.62, a result of the strong variation of
m0 = f0

1−f0
for f0 ≈ 1. Thus, in spite of qualitative similar-

ities, the insufficiency of the PY static input for describing
some dynamical properties of the glass at high density is
evidenced at the two-body level. This is already known
for the static properties, in particular the pair distribution
function, which exhibits at high density a double peak not
shown by gPY(r) (see inset in Fig. 4). The structural origin
of this split second peak (see, e.g., [39]) is still debated (see,
for example, [40]). Concerning the nonergodicity transition,
the necessity of accurate static input was already shown in
the case of low density gels of HS with short-ranged attractive
interactions [20,41]. This is confirmed here also for pure
HS fluids, independently of the question of the convolution
approximation.

2. Influence of c(3)

We summarize here the results for ηc and f (q), for two
versions of c(3): the Denton-Ashcroft ansatz (c(3)

DA) constructed
with c

(2)
PY, and c(3) from Rosenfeld’s FMF (c(3)

Ros), that is, with
the free energy density �PY (using �CS gives essentially the
same results). When comparing both versions of c(3), we used
for consistency c

(2)
PY (the functional used to compute c

(3)
Ros is

also consistent with c
(2)
PY). We will designate this combination

c
(2)
PY/c

(3)
Ros as the PY approximation. However, as c

(2)
RHNC is

more accurate at high density, we also used the combina-
tion c

(2)
RHNC/c

(3)
Ros, referred to as the RHNC approximation.

Both approximations for c(3) lead to similar trends for the
nonergodicity transition. With c

(2)
PY we found critical packing

fractions ηDA
c = 0.516 and ηRos

c = 0.504. The value of ηDA
c

is the same as in the convolution approximation. With c
(2)
RHNC

we observe a similar impact of c
(3)
Ros: ηRos

c = 0.509, instead of
ηc = 0.526 for c(3) = 0 (these values are probably the correct
MCT ones with the appropriate static input). The effect of c

(3)
Ros

on the critical packing fraction is thus greater than with the DA
ansatz, although it remains moderate. Recalling the simulation
value ηMD

c = 0.58, we observe that incorporating static triplet
correlations worsens the MCT prediction for the extension of
the domain of glassy states.

For a given c(2), the behavior of f (q) with η is qualitatively
similar for all versions of c(3), viz the one observed for c(3) = 0:
broadening of f (q) and increase of the long wavelength value
f0 when η increases beyond ηc. The effect of c(3) with c

(2)
PY

is shown in Fig. 5 for η = 0.52: while it is hardly observable
with c

(3)
DA, it is more significant with c

(3)
Ros, as for the value of ηc.

The inset shows the same effect of c
(3)
Ros with c

(2)
RHNC. For q = 0,

one gets in this case m0 = 1.98 for c
(3)
Ros instead of m0 = 1.50

with c(3) = 0 (the localization length rloc is the same as in the
convolution approximation). For η = 0.6, this effect of c(3) is
less important. This is coherent with the idea that the caging
effect should be determined mostly by the hard-core repulsion
between pairs when approaching the random close packing.

Finally, we can also conclude here about the choice for the
static input in the MCT for hard spheres: the most accurate
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FIG. 5. Influence of c(3) on f (q) with c
(2)
PY. Solid line: c(3) = 0;

dashed line: c
(3)
Ros; dotted line: c

(3)
DA for η = 0.52. Inset: same with

c
(2)
RHNC and η = 0.53.

description is the one that combines the RHNC closure for
c(2) and the c(3) from DFT, presently with Rosenfeld’s FMF.
In trying to understand this from the q dependence of the
correlation functions, we found a more complex scenario than
for the other versions of c(3)(q). The latter have little influence
for q ≈ q0, the position of the main peak of S(q), that gives
indeed the leading contribution to the memory kernel m(q)
[see Eqs. (4) and (7)]. With c

(3)
Ros the small-q part in the vertex

function is more important. This explains the increase observed
in m0.

B. Short-range hard-core Yukawa potential

We now consider the addition of a short-range Yukawa
tail to the HS potential: βV (r) = 1

T ∗ exp [ − κ( r
σ

− 1)]/r ,
where T ∗ = kBT /ε and κ are the reduced temperature and
inverse range, respectively. The case of attractions (ε < 0) has
been extensively studied, because it may lead for very short
ranges to attractive glasses, or low density gelation [1,2,4,19].
For such potentials, besides the question of the dynamic
heterogeneity [1,4,42], the consequences of the convolution
approximation on the MCT predictions has not yet been
checked. We thus computed the MCT glass transition line for
an attractive Yukawa potential as follows: for the two-body dcf
we used c

(2)
RHNC since an accurate c(2) is required for short-range

attractions [19,20] (here with κ = 20). For the three-body
contribution now, we incorporated only the HS contribution
through c

(3)
Ros. This amounts to considering that the effect of

a third particle on a pair of neighboring particles (that form
“bonds” in attractive glasses) is mainly to reduce the volume
accessible to the pair, due to the exclusion sphere of the third
particle. This should be an acceptable approximation for very
short attraction ranges, as in this case the excluded volume
exceeds that of the attraction shell (Fig. 6). The latter, having
the radius of the exclusion sphere and a thickness of the order

FIG. 6. Triplet configuration showing a particle (filled circle
labeled 3) approaching a bonded pair (1 and 2). The short dashes
show the exclusion sphere of particle (3) for the pair. These particles
(1) (2) experience an attractive interaction with (3) when their centers
lie in the shell between the short and the long dashes and whose
thickness is the attraction range.

of the range of the tail, corresponds to distances between the
centers of the spheres for which the potential is attractive.
In this case, the effective diameter used in c

(3)
Ros is simply

the actual HS diameter σ . The results are shown in Fig. 7.
We also computed the MCT glass line using the DA ansatz
for c(3) (still with the HS contribution): the transition line
and the nonergodicity factors do not depart much from those
for c(3) = 0. The effect c

(3)
Ros is however more significant,

since it extends the domain of the attractive glass to higher
temperatures. For analyzing the underlying mechanism, we
compute rloc in the Vineyard approximation for T ∗ = 0.3
since the onset of gelation occurs close to this temperature

FIG. 7. Nonergodicity line for the attractive Yukawa fluid. Solid
line: c

(2)
RHNC and c(3) = 0; dashed line: c

(2)
RHNC and c

(3)
Ros (the long

dashes show the RHNC nonconvergence domain). Inset: same for
the localization length.
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for κ = 20. The transition packing fractions are ηc = 0.40 for
c(3) = 0 and ηc = 0.31 with c

(3)
Ros. For c(3) = 0, the particles

are strongly localized for η ≈ 0.40 (rloc = 0.025), as expected
from the picture of long-lived bonds induced by the short-range
attraction, while they are diffusive for η < 0.40 in the ergodic
liquid (rloc → ∞). The incorporation of the HS contribution
c

(3)
Ros leads to an intermediate situation for 0.31 < η < 0.40:

in this state rloc is still finite, but its value is much greater
(it is also greater than for an ordinary repulsive glass). One
can understand that in the density (or temperature) range in
which the bonding mechanism is insufficient for stabilizing
the arrested state, the diffusion of the particles is limited
by the HS three-body correlations. The value of rloc might
then be related to the typical size of the structure formed
by the network of particles in the gel. Nevertheless, one
should be reminded that only the HS contribution to the triplet
correlations is considered here, so that the picture might be
more complex with the complete c(3). This clearly raises the
question of its accurate description beyond the situation of pure
HS interactions. As already stressed in previous work, this is
important for an accurate determination of the static input even
for a simple LJ fluid [22] or for accounting for many-body
effects in the effective fluid representation of size asymmetric
mixtures [43].

We also considered the case of a repulsive Yukawa tail
(ε > 0). As for the attractive one, c(3) was calculated using
Rosenfeld’s functional for hard spheres. To begin with, the
repulsive tail was completely neglected, c

(3)
Ros being computed

using the actual hard-core diameter σ . To go beyond this,
however, the simplest idea consists in defining an effective
HS diameter, as, for example, in the Barker-Henderson
perturbative treatment [15] of soft potentials:

σ eff =
∫ ∞

0
dr{1 − exp[−βV (r)]}. (15)

This approximation, accounting grossly for the effect of
the additional soft repulsion (σ eff > σ here), usually gives
acceptable results for the equilibrium quantities (the free
energy for instance). However, its consequences for the glass
transition are unknown. We then anticipate that the softer the
interaction, the larger the overestimation of the caging effect in
the dense fluid. We thus took a rather steep repulsive tail, with
κ = 10. We show in Fig. 8 the nonergodicity factor f (q) in the
glassy state for T ∗ = 1 and η = 0.52, computed with c(3) = 0
and c(3) = c

(3)
Ros using either the true hard-core diameter σ or

the effective one σ eff from Eq. (15). In both cases, f (q) is
enhanced by c(3), but the effect is much greater with the latter
[in the former one the increase of f (q) is comparable to what
was observed with the previous potentials]. It is particularly
strong for q � q0. As replacing the Yukawa tail by a purely
HS interaction probably exaggerates the caging effect, one
would expect the actual f (q) to be between these two curves.
We observed similar features on the MCT transition line (not
shown here), which is markedly moved toward lower densities
since σ eff > σ (recall that η grows as the cube of the HS
diameter). This raises again the need of an accurate description
of c(3) beyond the hard-sphere model for assessing the present
estimates for repulsive tails.

FIG. 8. Influence on f (q) of the effective HS diameter used in
c

(3)
Ros for the repulsive Yukawa at η = 0.52. Solid line: c(3) = 0; dotted

line: σ eff = σ ; dashed line: σ eff > 1.073σ from Eq. (15).

IV. CONCLUSION

In this paper we discussed the effect of the three-body
direct correlations function c(3) on some properties of the
dynamically arrested states as described by the mode-coupling
theory. In particular, we studied its effect on the packing
fraction of the ideal glass transition and the nonergodicity
factor. This was done for the pure hard-sphere fluid and for
interaction potentials between the particles having in addition
a short-range tail, either attractive or repulsive. This was
motivated by the fact that while the basic approximations of the
MCT have been discussed in several theoretical works, even
recently [1,4,44], the convolution approximation concerning
the static input which assumes c(3) = 0 is generally readily
accepted. More precisely, a sizable effect of the triplet
correlations on the nonergodicity factor has already been
found for specific mixtures [18], but this question is generally
eluded without further discussion. It was actually known
that, in certain circumstances, a fine description of the static
input, already at the two-body level, can be important for
an accurate determination of the glass transition line [19,20].
While confirming that the effect of c(3) is indeed negligible
when using the early ansatz proposed in [17], we have shown
that using c(3) from an accurate density functional theory may
have a more significant effect. For the hard-sphere fluid, the
glass transition packing fraction is slightly decreased with
respect to that obtained in the convolution approximation. The
second effect for hard spheres is to increase the nonergodicity
factor, in particular at small q, which thus modifies the
Debye-Waller factor and the longitudinal stress modulus m0.
For the attractive hard-core Yukawa fluid, the HS contribution
to the triplet correlations enhances the stability of the attractive
bonds with an ensuing extension of the attractive glass domain
to higher temperatures. For the repulsive hard-core Yukawa
fluid, the strong sensitivity of the results to the choice of the
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effective hard-sphere diameter functions raises the question
of the appropriate treatment of the triplet correlations for soft
repulsive interactions.

These observations suggest that the search of improved
methods for computing c(3) beyond the hard-spheres term
is worthwhile. They nevertheless show that in the various
situations investigated, three-body direct correlations system-
atically reinforce the stability of the dynamically arrested state.
This underlines one natural insufficiency of the mode-coupling
theory, which is the overestimation of the dynamical arrest, due
to the neglect of heterogeneities. It should also be interesting
to analyze the relation of these results with the question raised
concerning the determination of the dynamical properties
solely from the two-body correlations [44]. It might well
be that higher order correlations are more important for the
dynamics than for the static properties.

APPENDIX

We summarize here the main quantities required in the
modified fundamental measures functional given in Refs.
[32,33]. The free-energy density �({nα}) consistent with the
BMCSL equation [34] (superscript CS) contains scalar and
vector contributions:

�CS({nα(r)}) = �S(CS)({nα(r)}) + �V(CS)({nα(r)}), (A1)

�S(CS) = −n0 ln(1 − n3) + n1n2

1 − n3
+ 1

36π

×
[

1

n2
3

ln(1 − n3) + 1

n3(1 − n3)2

]
n3

2, (A2)

�V(CS) = −nV1 · nV2

1 − n3
− 1

12π

[
1

n2
3

ln(1 − n3) + 1

n3(1 − n3)2

]
× n2nV2 · nV2. (A3)

The weighted densities are computed in Fourier space as
ñα(k) = ∑

i ρi(k)ω̃(α)
i (−k), where the Fourier transforms of

the weight functions ω̃
(α)
i are

ω̃
(q)
i (k)

R
(q)
i

= sin(kRi)

kRi

, q = 0,1,2,

ω̃
(3)
i (k)

R
(3)
i

= 3
sin(kRi) − kRi cos(kRi)

(kRi)3
, (A4)

ω̃
(V2)
i (k) = (−1)

1
2 kω̃

(3)
i (k), ω̃

(V1)
i (k) = ω̃

(V2)
i (k)

4πRi

with R
(q)
i = 1, Ri , Si , Vi for q = 0, 1, 2, 3, respectively (Ri ,

Si , Vi denote the hard-sphere radius, the surface area, and the
volume of the sphere of species i).

[1] J. Bergenholtz and M. Fuchs, Phys. Rev. E 59, 5706 (1999);
J. Phys. Condens. Matter 11, 10171 (1999).

[2] K. Dawson, Curr. Opin. Colloid Interface Sci. 7, 218
(2002).

[3] F. Sciortino and P. Tartaglia, Adv. Phys. 54, 471 (2005).
[4] E. Zaccarelli, J. Phys. Condens. Matter 19, 323101 (2007).
[5] G. Szamel and H. Löwen, Phys. Rev. A 44, 8215 (1991).
[6] W. Götze, in Liquids, Freezing and Glass Transition, edited by

J.-P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland,
Amsterdam, 1991), p. 287.

[7] U. Bengtzelius, W. Götze, and A. Sjolander, J. Phys. C 17, 5915
(1984).

[8] W. van Megen and S. M. Underwood, Phys. Rev. E 49, 4206
(1994).

[9] K. Kroy, M. E. Cates, and W. C. K. Poon, Phys. Rev. Lett. 92,
148302 (2004).

[10] J. Wu and J. Cao, Phys. Rev. Lett. 95, 078301 (2005).
[11] G. Biroli, J. P. Bouchaud, K. Miyazaki, and D. R. Reichman,

Phys. Rev. Lett. 97, 195701 (2006).
[12] G. Szamel and E. Flenner, Phys. Rev. E 81, 031507 (2010).
[13] G. Szamel, Phys. Rev. Lett. 90, 228301 (2003).
[14] M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E 72,

031107 (2005); 76, 039902(E) (2007); R. Juárez-Maldonado
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