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Simulations of thermophoretic nanoswimmers
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We consider a nanodimer in solution with asymmetric thermal properties that shows self-propelled motion.
One monomer of the nanodimer can be heated to a fixed temperature producing a radially symmetric temperature
gradient. The thermophoretic properties of the second monomer produce then a propulsion against or toward the
heated particle, such that the nanodimer becomes a puller or pusher nanoswimmer. We combine our simulation
measurements with a theoretical analysis that satisfactorily characterizes the self-propelled velocity with the
temperature gradient, and the thermophoretic properties of the bead.
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I. INTRODUCTION

Molecular motors are ubiquitous in biology, with examples
ranging from motor proteins moving along filaments [1], to
swimming bacteria [2]. In such systems self-propulsion is
mostly achieved by using chemical energy released from
adenosine triphosphate (ATP) hydrolysis [3]. Recently, syn-
thetic microscale and nanoscale motors have attracted consid-
erable attention due to their potential practical applications and
related theoretical open questions [4,5]. A relatively simple
and effective strategy to design artificial nanomotors has
already been found in employing phoretic effects. Phoresis
refers to the drift motion of a suspended particle produced
by the mechanical force that arises from an inhomogeneous
fluid environment. Such inhomogeneities can be gradients
of electric potential (electrophoresis), concentration (dif-
fusiophoresis), or temperature (thermophoresis) [6]. These
gradients are frequently a consequence of external constrains,
but interestingly, in the case that one particle is able to produce
a local gradient field by itself, self-propulsion may occur. The
theoretical basis of this phenomenon has been discussed by
different authors [6,7]. Following this line and by means of
simulations [8] and experiments [9,10], a chemical reaction
catalyzed asymmetrically on a particle’s surface has shown to
translate into a diffusiophoresis motor. More recently, a Janus
particle has been shown to display self-propelled motion due to
thermophoresis [11]. In their experiments, Jiang et al. employ a
half-metal coated colloidal sphere and heat it with a defocused
laser. The higher heat absorption of the metal side produces
a temperature gradient on the nonmetal side, which translates
into a self-propelled motion.

In this work we perform computer simulations of nan-
odimers that swim due to thermophoresis at low Reynolds
numbers. Two strongly bonded monomers are immersed in
a hydrodynamic solvent as depicted in Fig. 1. The heated
bead h can have a temperature higher than the surrounding
fluid. This accounts for a monomer of material as gold
that absorbs heat, for example, from a laser. If the average
temperature T of the system is kept constant, the surrounding
solvent will sustain a steady temperature gradient with radial
symmetry. The nonheated bead can generate a thrust due to
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thermophoresis, which will translate into a directed motion
of the nanodimer along the bond direction. We will therefore
refer to the nonheated bead as the propelling monomer p. In the
case where p bead is thermophilic, it will tend to go to higher
temperatures, and the nanodimer will behave as a pusher.
Reciprocally, in the case where the p bead is thermophobic,
the nanodimer will behave as a puller [12]. The propulsion
velocity vp is measured in our simulations and theoretically
satisfactorily explained. Our system nicely mimics the recent
experiments by Jiang et al. [11] with a simpler geometry of
the temperature profile.

II. SIMULATION MODEL

Simulations are performed with a hybrid scheme. The
solvent is described by a particle-based mesoscopic simulation
technique known as multiparticle collision dynamic (MPC)
[13], while monomers and their interactions with the solvent
are simulated by standard molecular dynamics (MD). MPC
consists of alternating streaming and collision steps. In
the streaming step, the solvent particles of mass m move
ballistically for a time h. In the collision step, particles are
sorted into a cubic lattice with cells of size a, and their
velocities relative to the center-of-mass velocity of each cell
are rotated around a random axis by an angle α. In the
collisions, mass, momentum, and energy are locally conserved.
This allows the algorithm to properly capture hydrodynamic
interactions, thermal fluctuations, and the sustainability of
temperature inhomogeneities [14]. MPC has already been
shown to be successful in the simulation of other self-propelled
particles [8,15,16]. A detailed description of the method can
be found, e.g., in Refs. [17–19]. We employ the standard
MPC parameters α = 130◦, h = 0.1, and the mean number
of solvent particles per cell ρ = 10. Simulation units are
chosen to be m = 1,a = 1, and kBT = 1, where kB is the
Boltzmann constant and T is the average system temperature.
Time and velocity are consequently scaled with (ma2/kBT )1/2

and (kBT /m)1/2, respectively.
The solvent particles interact with the nanodimer beads

through Lennard-Jones (LJ) type potentials. They can be
attractive or repulsive, with the general form

Uk(r) = 4ε

[(
σ

r

)2nk

−
(

σ

r

)nk
]

+ Ck, r � rc, (1)
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FIG. 1. (Color online) Schematic diagram of the simulated nan-
odimer solution. The h monomer can be heated to a fixed temperature
and it is strongly linked to a second monomer p. The system has then
a radially symmetric temperature gradient.

where k may be h or p. The potential intensity is always chosen
as ε = kBT , and the monomer’s radius as σ = 2.5a. nk is a
positive integer that describes the stiffness of the potential,
and rc is potential cutoff radius. The attractive LJ potential is
obtained with Ck = 0, and the repulsive with Ck = ε. In our
simulations, Uh is fixed to be strongly repulsive with Ch = ε

and nh = 24, while various choices of Up have been made.
Both bead masses are M = 650m, such that the beads are
neutrally buoyant. A strong harmonic potential is used to fix
the interbead separation to l = 5.5a.

In order to fix the temperature of the h bead, we rescale the
thermal energy of the solvent particles closer than σ + 0.2a

to the center of the bead to a value 3
2kBTh. This means

that only a small layer (�0.08σ ) around the h bead is
affected by the rescaling. The inserted energy is drained
from the system by fixing the mean temperature T of the
system. In experiments, the thermalization is performed at the
system boundaries, which is related to a different energy flux
mechanism. Nonetheless, when the system is large enough,
and considering especially the nanodimer neighborhood, the
differences are expected to be negligible.

The temperature profile around the h bead, given a fixed
Th temperature, will be time independent if the characteristic
time of the thermal energy propagation τχ is largely separated
from the bead diffusion time τD . This occurs in experimental
systems, where a hot Brownian particle carries with it a
radially symmetric temperature distribution [20]. These two
quantities can be explicitly written as τχ ∼ σ 2/χ with χ

the heat diffusivity, and τD ∼ σ 2/D, with the self-diffusion
coefficient D = kBT /4πησ (slip boundary) and η the shear
viscosity. Kinetic theory of MPC [21] provides a very
accurate approximation of η and χ in terms of the employed
parameters, which allows us to calculate that τχ/τD ∼ 10−2

for our simulation parameters. Hence this important time-scale
separation can be properly taken into account by our model
when simulating the thermal energy-driven motor.

The spherical symmetry of the temperature distribution
around the h bead, together with the energy conservation,
and the Fourier’s law implies a temperature field T (r) =
A1/r + A2 with r the distance to the h-bead center. The
constant factors A1 and A2 are determined given the imposed
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FIG. 2. (Color online) Temperature at a distance r from the
center of the h bead in units of the bead radius σ , with Th = 1.2T .
Symbols correspond to the simulation measurements and the line to
the analytical prediction.

temperatures Th and T . In Fig. 2 a typical temperature profile
around the h bead as measured from the simulations is plotted
together with the predicted profile. The small deviation is due
to the approximations made in the analytical calculation.

III. RESULTS AND DISCUSSION

The steady state temperature gradient leads to a ther-
mophoretic force on the p bead that will tend to move along
the nanodimer bond direction. The resulting self-propelled
velocity vp can then be positive (towards the heated particle),
or negative (against the heated particle), depending on the sign
of the Soret coefficient of the p bead. During its motion the
nanodimer can freely rotate, which implies that the directed
motion will change orientation, which will effectively give rise
to an enhanced diffusive behavior [9,11]. Figure 3 depicts the
trajectories of the nanodimer center of mass projected on the
xy plane. It is found that the self-propelled nanodimer can
explore a larger area with increasing thermophoretic force,
which suggests that the self-propelled nanodimer has indeed a
larger effective diffusion coefficient.

To characterize the self-propelled velocity vp, the nan-
odimer center-of mass-velocity vcm is projected in the bond

(a) (b) (c)

FIG. 3. (Color online) Trajectories of the center of mass of the
nanodimer projected on xy plane with increasing self-propelled
velocity for a fixed total time. Reference bars indicate the nanodimer
size. (a) No temperature gradient and vp = 0. (b), (c) Th = 1.2T with
increasing vp . (b) Repulsive Up (CP = ε, np = 6). (c) Attractive Up

(CP = 0, np = 24).
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FIG. 4. (Color online) Nanodimer self-propelled velocity along
the bond direction as a function of time as averaging parameter.
Simulation parameters correspond to those in Fig. 3: circles to (a),
squares to (b), and triangles to (c). Swimming characteristic behaviors
are illustrated in the insets [12].

direction n = rhp/|rhp|, such that vp = 〈vcm · n〉. In Fig. 4, vp

is averaged over a long time and clearly determined values are
shown. The employed repulsive interaction is known to display
a negative ST [14] (this is thermophilic), which agrees with the
observed pusher behavior given by vp = 0.0022. Meanwhile
the attractive interaction has a positive ST (thermophobic),
which agrees with the observed puller behavior given by vp =
−0.0068. As a reference, results in the absence temperature
gradient are presented, where a vanishing vp is obtained.
The Reynolds number Re = vpσρ/η can then be evaluated
to be Re ∈ (10−2,10−1). This means that the self-propelled
nanodimer operates in the environment of low Reynolds
number [22].

In order to gain deeper insight into the phenomenon, we
now explain the measurements of the self-propelled velocity
in terms of the passive thermophoresis. It is well accepted
[23,24] that the presence of a temperature gradient can induce
a thermophoretic force fT on a colloidal particle suspended in
a fluid,

fT = −αT ∇kBT . (2)

The proportionality factor αT is the thermal diffusion factor
of the particle related to the Soret coefficient ST by αT =
T ST . The presence of a thermophoretic force will then induce
a directed velocity vp = μpfT such that the related viscous
force balances the thermophoretic force. Similar to vp, μp

corresponds to the mobility along the bond direction. Note
that there is no thermophoretic force exerted on the h bead
since its surface is at constant temperature. The self-propelled
velocity can then be expressed as

vp = −μpαT ∇kBT . (3)

The validity of this relation can be checked, since the involved
quantities can be independently computed.

In order to quantify μp, we assume the Einstein relation
Dp = μpkBT with the related self-diffusion coefficient Dp,
which can be characterized by measuring the mean-squared
displacement (MSD) of the nanodimer center of mass along
the bond direction. The instantaneous displacement along
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FIG. 5. (Color online) MSD of the nanodimer center of mass
along the bond direction vs time. Simulation parameters are those of
Fig. 4. Lines corresponds to fits with Eq. (4).

bond direction at a certain time ti in a differential time δt

can be expressed as δxp(ti) = [rcm(ti + δt) − rcm(ti)] · n(ti).
The differential time should be small enough to consider
n(ti) constant. With this definition, the average displacement
is related to the self-propelled velocity by 〈δxp(ti)〉 = vpδt .
Consequently, the time dependent displacement along the bond
direction can be calculated as xp(t) = ∑t

ti=0 δxp(ti). When
vp is considered, the MSD corresponds to a one-dimensional
Brownian motion with 〈(xp(t) − 〈xp(t)〉)2〉 = 2Dpt . The MSD
of the nanodimer center of mass along the bond direction can
then be directly expressed as

〈xp(t)2〉 = 2Dpt + v2
pt2. (4)

The MSD as a function of time is shown in Fig. 5 for two
different potentials. At very small times, an initial purely
quadratic regime due to inertial effects is observed. For times
larger than the Brownian time, the diffusive behavior coexists
with the presence of the self-propelled velocity as stated in
Eq. (4). A fit to the data allows us to determine Dp and
vp with good accuracy, which for the displayed example are
Dp = 0.0033 and vp = 0.0023 (repulsive), and Dp = 0.0028
and vp = −0.0068 (attractive), respectively. Note that the
values of vp nicely agree with the direct measurements shown
in Fig. 4.

The quantities αT and ST have been extensively measured
from experiments and simulations [23–29] for various systems.
MD simulations with single colloidal particles have been
performed by Galliéro and Volz [28]. For the particular model
and potentials chosen in this work we employ the values
obtained from simulations by Lüsebrink [14] for a single
colloid particle in a linear temperature gradient. It is known
that MPC solvent has an ideal gas equation of state, however
this does not influence the existence of the thermophoresis,
and consequently of the self-propelled behavior treated in
this work. In Fig. 6, direct measurements of vp are presented
for different temperature gradients and potential interactions
(different αT ). The temperature gradient has been locally
estimated at the center of the p bead. Simultaneously, the
values of vp indirectly obtained by computing the right-
hand side of Eq. (3) are presented for comparison. The
agreement is satisfactory, though the indirect evaluated vp
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FIG. 6. (Color online) Self-propelled velocity as a function of
the temperature gradient in (a) and of the thermal diffusion factor
in (b). Bullets correspond to direct simulation results, diamonds to
the evaluation of Eq. (3), and lines to linear fits. (a) The p bead
has a repulsive Up (CP = ε, np = 6). From left to right, the points
correspond to Th = T ,1.1T ,1.2T ,1.3T . (b) Th = 1.2T is fixed and
Up potentials are, from left to right, (Cp = ε, np = 3), (Cp = ε, np =
6), (Cp = ε, np = 12), (Cp = 0, np = 48), and (Cp = 0, np = 24).

values systematically overestimate the directly measured
ones.

The overestimation of vp obtained with the right-hand side
of Eq. (3) can be attributed to several factors. (i) The employed
values of αT are obtained from single-particle simulations. In
the nanodimer environment, the existence of the h bead and the
radial temperature gradient will have certain influence in the
distribution of the solvent near the p bead, and therefore in αT .
(ii) The temperature gradient generated by the h bead near the
p bead is, as shown in Fig. 2, rather large and decreases rapidly

with the distance. Thus the local linear temperature gradient
at the center of the p bead is just an approximation. (iii) The
Einstein relation assumed to calculate μp is not necessarily
valid for a system far beyond equilibrium [20,30]. (iv) The
temperature dependence of αT [31] has not been considered
in our estimations. (v) Equation (2) is based on the linear
response theory, which is only the lowest-order approximation
under large temperature gradients as those presented here. The
clear linear behavior observed in Fig. 6 indicates that the main
contributions might be in the determination of αT , ∇T , and μp

as indicated in (i)–(iv). Nevertheless, the relative importance
of the different contributions should be further investigated.
Reciprocally, in systems where a better agreement can be
achieved, the self-propelled velocity could be employed to
determine αT [11,32].

IV. CONCLUSION

In summary, we present a simulation model of the
swimming motion caused by thermophoresis that can be
theoretically well supported. The required local temperature
gradient can be experimentally created by inhomogeneous
absorption of external light [11] or by internally released heat
from chemical reactions. The directed motion is achieved by
the transformation of thermal energy of the nonequilibrium
fluid environment into kinetic energy of the nanodimer.
Thermophoresis appears then as a promising mechanism to
design synthetic nanomachines.
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