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Lift force on an asymmetrical obstacle immersed in a dilute granular flow
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This paper investigates the lift force exerted on an elliptical obstacle immersed in a granular flow through
analytical calculations and computer simulations. The results are shown as a function of the obstacle size,
orientation with respect to the flow direction (tilt angle), the restitution coefficient and ellipse eccentricity. The
theoretical argument, based on the force exerted on the obstacle due to inelastic, frictionless collisions of a very
dilute flow, captures the qualitative features of the lift, but fails to reproduce the data quantitatively. The reason
behind this disagreement is that the dilute flow assumption on which this argument is built breaks down as a
granular shock wave forms in front of the obstacle. More specifically, the shock wave changes the grains impact
velocity at the obstacle, decreasing the overall net lift obtained from a very dilute flow.
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I. INTRODUCTION

Granular matter is a generic name given to a system
composed of macroscopic, athermal particles that have mutual
repulsive, dissipative interactions [1]. It is an intensely studied
field in the physics community given the several distinct
behaviors shown by such systems as a consequence of different
external conditions imposed on them.

One such condition is that which imposes a flow of particles,
named granular flow [2–5]. Within the several granular flow
examples, the flow around immersed obstacles has received
some attention lately [6–8]. One of the objectives of such
investigations is to measure the force in the obstacle due to
interactions with the flowing grains, the so-called granular drag
[9–15], analogously to the viscous flow force on an obstacle.

On the other hand, one knows that a viscous fluid flow
around an obstacle produces an additional force called lift,
which is perpendicular to the flow. Given the analogy between
a viscous flow and the granular flow, a lift force should exist
in an obstacle immersed in a granular flow under suitable
conditions. However, most investigations focus only on the
drag, while the lift studies are restricted only to a few
experiments and simulations [14,15].

Soller and Koehler [14] showed that the lift on a rotating
vane inserted in a granular packing scaled with geometric
parameters of the system, such as an effective aspect ratio and
immersion depth. The word effective means that the referred
quantity, say the immersion depth, is considered taking into
account the finite grain size. Ding et al. [15], dragging an
intruder at constant velocity through a granular packing,
showed that a lift force is induced on the intruder and it depends
on its geometry. Common to both investigations is the fact that
the lift arises as a consequence of the hydrostatic nature of the
stress in granular packings.

Given that these experiments were carried on such hydro-
static stress systems, variations of this condition might reveal
different aspects of this force. For instance, is there a lift
force in intruders immersed in flows where the stresses are
not hydrostatic? If so, in what conditions does this force arise?

This paper is aimed at studying the lift force on an obstacle
due to a dilute granular flow through numerical simulations.
The approach will be identical to the one used in probing the
drag on a cylinder due to a dilute granular flow [12]. The

argument drawn here to obtain an analytical expression for the
lift shows that there is no net lift in such dilute conditions
on a circular obstacle. Hence, the obstacle chosen here is
an elliptical one. The dependence of this force on the flow
parameters will be obtained and studied numerically.

Section II is reserved for developing the theoretical argu-
ment and presenting its predictions. In Sec. III, the simulation
is described along with the numerical results for the lift.
Section IV holds analyses regarding the argument given in
the previous section in order to understand the discrepancies
between the theoretical and the numerical results. Finally,
Sec. V has the conclusions.

II. THEORY

In this section, the theoretical argument leading to an
expression for the lift force on the ellipse is developed. Also,
some predictions are shown in order to be compared to the
numerical results in the next section.

A. Argument development

In [12], the line of thought that led to an expression for the
drag force on the circular obstacle was based on the dissipative
collisions among the grains and obstacle. The same line of
thought can be drawn here in order to obtain an expression for
the lift force on the ellipse due to collisions with the incoming
stream.

First of all, all disks are assumed to have only the horizontal
velocity component, U . Therefore, for the ellipse given in
Fig. 1, which is located at (xE ,yE), a collision will occur only
if the impact parameter (the vertical distance between a disk’s
center and the horizontal line through the ellipse’s center) is
in the range [yC + d

2 , yD + d
2 ]. This is so because C and D are,

respectively, the lowest and the highest points in the ellipse, in
the same way as A and B are the leftmost and the rightmost
ones. Any collisions that happen in the segment AD will exert
a downward lift, while collisions that occur in the AC segment
will produce an upward lift (from now on, the AD segment, and
all other segments in the text, will be referred to only as AD).
Moreover, since the lengths of both segments are, in general,
unequal, the longest of them, in this case AD, will suffer more
collisions than the other, which implies a net, negative, lift
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FIG. 1. Ellipse’s local frame of reference (primed system), rotated
an angle φ about its center. The major and minor half-axes are given by
a and b, respectively. The force F is the total (normal plus tangential)
force between a disk and the obstacle. See text for the meaning of the
four points A, B, C, and D.

force. It is this mechanism that prevents any net lift from taking
place on a circular obstacle under these conditions (in general,
any body that is symmetrical with respect to the flow direction,
and is fully immersed in the flow, does not suffer a net lift).
Therefore, the determination of the coordinates of these four
points in the ellipse, A, B, C, and D, is very important.

In order to do this, one should notice that the tangent line
to the ellipse is horizontal at D and C and vertical at A and
B. Therefore, starting from the tilted ellipse’s equation in the
global frame:

(a2 sin2 φ + b2 cos2 φ)X2 + (a2 cos2 φ + b2 sin2 φ)Y 2

− sin 2φ(a2 − b2)XY = a2b2, (1)

where X = x − xE and Y = y − yE , one can write for D
and C:

xD,C = xE ± sin φ cos φ(a2 − b2)√
a2 sin2 φ + b2 cos2 φ

, (2)

and

yD,C = yE ±
√

a2 sin2 φ + b2 cos2 φ, (3)

where the plus(minus) sign is for point D(C). A similar
calculation yields for points A and B:

xB,A = xE ±
√

a2 cos2 φ + b2 sin2 φ (4)

and

yB,A = yE ± sin φ cos φ(a2 − b2)√
a2 cos2 φ + b2 sin2 φ

, (5)

where in both equations the plus(minus) sign is for point B(A).
The force due to a collision between a disk and the ellipse

can be obtained by calculating the change in linear momentum
of the disk. The total force is obtained by integrating the
product of this individual momentum change and a suitable
collision rate over the obstacle section facing the flow, i.e.,
integrating over CD.

FIG. 2. Geometry of the collision between a disk and the ellipse,
centered at E. They touch each other at the point P in the ellipse. θ

and α are the impact and collision angles.

Suppose a disk hits the obstacle in AD. Figure 2 presents
schematically the geometry of the collision (assumed friction-
less).

The grain velocity is v0 = −U i, and the impact angle is θ ,
which is the one between the direction i and the normal at the
contact point. The postcollisional velocity is v = vx i + vyj. In
order to obtain the final components as a function of U , one has
two equations that relate the normal and tangential velocities
before and after the collision: v · n̂ = −ev0 · n̂ and v · ŝ = v0 ·
ŝ, where n̂ = cos θ i + sin θ j and ŝ = − sin θ i + cos θ j are
the normal and tangential unit vectors at the collision point
and e is the normal restitution coefficient, assumed velocity
independent.

From these considerations, the components of the disk
velocity after the collision are vx = U (sin2 θ − e cos2 θ ) and
vy = 1

2U (1 + e) sin 2θ . Therefore, the vertical momentum
change for a general collision is given by

�Py(θ ) = mvy = 1
2mU (1 + e) sin 2θ. (6)

The number of disks that strike the ellipse in a time dt

is given by the number of particles within the area of the
parallelogram with sides U dt and ds, this last quantity being
the arclength around the collision point. Given the geometry
of the collision (Fig. 2), the area of this parallelogram is dA =
U cos θ dt ds. Hence

dN = 4ν

πd2
dA = 4ν

πd2
U cos θ dt ds, (7)

where ν is the area fraction of the incoming flow. The collision
frequency is simply this number divided by dt .

The arclength ds is given by the product of the collision
radius, R(α), by the arc element, dα. This product is readily
evaluated for a circle. However, in the ellipse case, this is
not so simple, since this radius varies with α. In addition, the
grain size introduces an additional complication for calculating
R(α), as seen in Fig. 3, which shows the triangle formed by
the disk center, the ellipse center, and the collision point.

Hence, the ellipse is assumed much larger than the disks
and the disk size only enters the expression for R(α) as
a minor correction. With this assumption, the arclength is
given by ds = D(α)dα. In parametric form, x = a cos α and
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FIG. 3. Triangle formed by the disk center, (xC,yC), the ellipse
center, (xE,yE) and the collision point, (x,y) (angles are exaggerated).
The angle between D(α) and the normal to the disk center is π −
α + θ . Dashed lines are sketches of the surfaces of the disk and the
ellipse.

y = b sin α, this length reads:

ds =
√(

dx

dα

)2

+
(

dy

dα

)2

dα = (
√

a2 cos2 α + b2 sin2 α)dα.

Finally, the effective collision radius is given by

D(α) = (a2 cos2 α + b2 sin2 α)1/2. (8)

Another difficulty in obtaining the expression for the lift
force is that the momentum change (i.e., the force) depends
explicitly on θ , while the collision frequency depends on
α. Therefore, any hope of integrating the lift force over
all collisions should pass through obtaining the relationship
between the angles θ and α. This is done in the following
paragraph.

Since dx/dy gives the tangent of the angle between the
normal line to a point in the ellipse and the x axis, from the
ellipse equation (1), one has

tan θ = 2C2Y − C3X

C3Y − 2C1X
,

where C1, C2, and C3 are the coefficients of the terms X2, Y 2,
and XY in Eq. (1). Since tan α = Y/X and from Eqs. (2)–(5),
the relation between θ and α can be cast in terms of the
coordinates of the points D and A, since

tan αD = yD − yE

xD − xE
= a2 sin2 φ + b2 cos2 φ

(1/2) sin 2φ(a2 − b2)
= 2C1

C3

and

tan αA = yA − yE

xA − xE
= (1/2) sin 2φ(a2 − b2)

a2 cos2 φ + b2 sin2 φ
= C3

2C2
.

Hence

tan θ = 1

tan αA

tan αA − tan α

tan αD − tan α
. (9)

The lift force can now be evaluated as

L = −
∫

�PydṄ,

where dṄ = dN/dt . By using Eqs. (6)–(8), the total lift on
the ellipse due to collisions is given by

L = −1

2
ρU 2(1 + e)

∫ D

C

sin 2θ cos θ ds(α), (10)

where ρ = 4mν/πd2 is the flow mass density and the arclength
is to be calculated bearing in mind Eq. (9).

B. Model results

The lift force scales with the obstacle size a, as expected,
since it depends linearly on the arclength. Also, it is seen
that, for more inelastic grains the lift is smaller, since more
inelasticity implies a less intense change of momentum [see
Eq. (6)]. The dependence of the lift on the tilt angle is hidden
in the integral over CD, because the lengths of AC and AD,
which contribute forces with distinct signs, are unequal for a
general φ.

Apart from the dependence of L in these parameters, it
also depends on the ellipse eccentricity, i.e., on the ratio of
the ellipse’s axes 0 � k = b/a � 1. For k = 1, the obstacle
is a circle, and the lift vanishes by symmetry. In the other
extreme value, k = 0, which corresponds to a flat plate, the
lift vanishes only for φ = 0 (horizontal plate) and φ = ±π/2
(vertical plate), which are the only symmetrical orientations
with respect to a horizontal flow. In Fig. 4, the predictions
of Eq. (10) for distinct values of k (the parameter values in
plotting these curves were chosen to agree with those used in
the simulations) are shown.

One can see that the maximum (absolute) value of L

increases when k decreases. This happens because when
k → 0, the points D and C merge with points B and A, as
can be inferred from Eqs. (2), (3), (4), and (5). In this case,
AD → 2a and AC → 0. Since the lift is the difference of
the contributions from AD and AC, all collisions will give
positive contributions to the net lift value, and it should reach
its maximum for a particular φ.

-0.5 -0.4 -0.3 -0.2 -0.1 0
φ/π

-0.004

-0.002

0

L
if

t, 
eq

. (
10

)

k=0.8
k=0.5
k=0.2

FIG. 4. Equation (10) for distinct eccentricity, k, values. The
curves were obtained with ν = 0.196, d = 1, m = 1, U = 10, and
e = 0.952.
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The objective of the simulations is to study the lift force
on the obstacle as a function of four parameters that appear in
Eq. (10), namely, the obstacle size, a, the restitution coefficient,
e, the ellipse eccentricity, k, and the tilt angle, φ.

III. SIMULATION

In this section, the simulation is detailed, along with the
parameter values used in the computations, and the numerical
results for the lift are shown.

A. Design

The system is composed of N soft disks, with unity diameter
d and unity mass m, located in a workspace of lengths LX and
LY in the horizontal and vertical directions, respectively. They
interact through normal and tangential forces, according to the
model used in [13,16]. The normal force between two disks is

FN
ij = fij + fd

ij , (11)

where the first term is the conservative part, given by a simple
harmonic spring force

fij = κ

(
di + dj

2
− rij

)
r̂ij ,

where κ is the spring constant, di is the ith disk diameter, rij

is the distance between the two disks, and r̂ij is a unit vector
along the normal between the disks’ centers. The second term
is a dissipative, velocity dependent force, given by

fd
ij = −γd (r̂ij · vij )r̂ij ,

where γd is the normal damping coefficient and vij = vi −
vj is the relative velocity between the contacting disks. The
tangential force at the contact point is given by the following
expression:

FS
ij = − min

(
γsv

S
ij ,μFN

)
v̂S

ij , (12)

where γs is the sliding friction constant and μ, the static friction
coefficient, while v̂S

ij is the unit vector along the direction of the
relative velocity at the contact point. This vector is calculated
as

vS
ij = vij − (r̂ij · vij )r̂ij −

(
ωi + ωj

2

)
× rij ,

where ωi is the ith disk angular velocity and vS
ij = |vS

ij |. The
total contact force Fij = FN

ij + FS
ij vanishes if the disks are not

in contact, i.e., if di+dj

2 > rij .
The values of the elastic parameters used were κ = 50 000,

γd = 10 and γd = 100, γs = 0.1, and μ = 1. The restitution
coefficient [17] for these parameters were e = 0.952, for γd =
10, and e = 0.608, for γd = 100. The ellipse’s major and minor
half-axes are a and b = ka, respectively. The parameter a has
the values 5, 10, 20, 30, and 40, with k = 0.8. For the studies
of the dependence on k, size a = 10 was used, with k = 0.80,
0.50, and 0.20. All these cases were studied for both e values.
For the two smaller obstacle sizes, results were obtained with a
N = 2500 and LX = LY = 100 packing, while for the others,
a N = 10 000 and LX = LY = 200 packing was used. In both
cases, the packing fraction was about 0.200. The ellipse is

located in xE = 0.5LX and yE = 0.5LY , and its major half-
axis is tilted related to the horizontal axis (flow direction) by
φ. The values of the tilt angle were in the range [−π/2,0],
divided in π/20 increments, which gives a total of 11 distinct
φ values.

At the beginning, all disks are randomly generated without
overlap among them and the ellipse. At this stage, the obstacle
is modeled as a circle with diameter 2a since this facilitates
the overlap check. All disks have initial velocity v0 = −U i,
where i is the unit vector in the horizontal (flow) direction and
U = 10.

The system has periodic boundaries perpendicular to the
flow direction, while, along the flow, the conditions are the
same as in [12]: whenever a disk leaves the system through
the right boundary, it is placed at the left one in a random
vertical position. In fact, the code searches for a position
where the incoming grain overlaps with no other disk, which
is fairly easy, giving the low density that is used here. Its
velocity is set as the incoming flow velocity v0 plus a small
random vertical component chosen uniformly in the interval
[−f U,f U ], where f = 0.10 (results obtained with f = 0
differ little from those shown here).

The interactions between the disks and the ellipse are the
same as those given above for two disks. The main problem is
to resolve particle-ellipse contacts. In order to do this, all disks
are checked for overlap with a circle of diameter 2a. If one disk
overlaps with the circle, it is mapped in the ellipse’s local frame
of reference (ELFR). Then, the contact point coordinates, in
the ELFR, are calculated using the algorithm proposed in [18].
The direction of the normal force is along the line joining the
disk center and the contact point, while the tangential force is
perpendicular to this direction.

Lengths, forces, and time are given in units of d, κd, and√
m/κ , respectively. Equations of motion are integrated with a

leapfrog scheme [16], with a time step of 0.001. Each simula-
tion is performed during 105 molecular dynamics (MD) cycles
for thermalization and 106 MD cycles for measurements. All
results are averaged over 20 and 10 independent runs for the
N = 2500 and N = 10 000 packings, respectively. The main
interest is to measure the force exerted on the obstacle by the
stream of grains due to the collisions among them. Therefore,
the components of this force, drag, and lift, are measured at
all cycles after thermalization. At regular intervals, the forces
are recorded as averages over this period. This accumulation
interval is 1000 MD cycles long (results were also obtained
with 10 000 MD cycles long accumulation periods and do not
differ appreciably from those reported here). The flow velocity
and particle number density fields, v(x,y) and ρ(x,y), were
measured as follows: the workspace is divided in square bins of
side d. At each cycle, all particles are mapped in an appropriate
bin and its velocity components are added to the respective
field element. Similarly, angular profiles related to the contact
angle between the grains and the ellipse, the collision angle α,
were measured. They are the collision number and the velocity
components. Each time there is a disk-ellipse contact, the angle
formed by the line joining the collision point and the ellipse
center with the flow direction is calculated. Then, the above
mentioned quantities are added to the appropriate profile bins.
The field and the profiles are presented as averages over cycles
and runs.
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FIG. 5. (Color online) Lift as a function of eccentricity, k,
restitution coefficient, and tilt angle, φ. Squares represent k = 0.80
results, inverted triangles, k = 0.50, and left triangles, k = 0.20.
Open and filled symbols are for e = 0.952 and 0.608. All results
are for a = 10. Lines are only guides to the eyes.

B. Results

In Fig. 5, the numerical results for the lift as a function of
the tilt angle and the eccentricity are shown.

Comparing Figs. 4 and 5, it is clear that Eq. (10) captures
the qualitative features of the lift force, even though the
correspondence becomes weak for k = 0.20 and e = 0.952.
Also, the results agree with the prediction that the lift should
be higher for less inelastic flows. Finally, the theoretical result
overestimates the numerical ones by, roughly, a factor of 2, for
these cases.

In Fig. 6, the numerical results for the lift force as a function
of the tilt angle and obstacle size are shown. As expected,
the lift increases with the obstacle size. However, the lift
does not grow linearly with a. Plotting these data against the
obstacle size shows that 〈L〉 ∼ a0.78(2). Since the results are not
conclusive, it suffices to acknowledge that more simulations

-0.5 -0.4 -0.3 -0.2 -0.1 0
φ

-0.002

-0.0015

-0.001

-0.0005

0

<
L

>

FIG. 6. (Color online) Lift force as a function of the tilt angle,
obstacle size, a, and restitution coefficient e. Distinct symbols are
a = 5 (black circles), a = 10 (red squares), a = 20 (green diamonds),
a = 30 (blue triangles), and a = 40 (orange left triangles). All are
for k = 0.80. Open and filled symbols are results for e = 0.952 and
e = 0.608, respectively. Lines are only guides to the eyes.

are needed in order to obtain a more reliable scaling with the
obstacle size. Also, this figure shows that the lift force for
e = 0.608 packings grows faster with a than for those with
e = 0.952. Finally, the numerical results, as seen in Fig. 5,
also are smaller than their theoretical counterparts (for a = 40,
the factor is about 4). This shows that the difference between
model and theory depends only a little on the tilt angle, while
the obstacle size, inelasticity, and eccentricity are the factors
that accept the most on this difference.

The reasons behind the failure to reproduce the numerical
results will be analyzed in the next section, where the
assumption that led to Eq. (10) will be reviewed in detail.

IV. ANALYSES

There are three basic hypotheses on which the argument for
the lift force in Sec. II A was built. The first one is that particle-
obstacle interactions were frictionless, despite the fact that the
force model, Eq. (12), is not. Second, the arclength expression,
ds = D(α)dα, does not take into account the fact that the
grains have a finite diameter d. Finally, the collision frequency
expression (7) was obtained under the hypothesis that only
one particle at a time hits the obstacle, i.e., a disk-ellipse
collision does not affect the next collision, a condition met
only in very dilute or in ideal gas flows (which is not the case
here). Therefore, its applicability here is clearly questionable,
as inferred from the system configuration shown in Fig. 7.

There is a dense region that begins above point A and
forms a separation boundary in front of the ellipse. This is
the typical granular shock wave [6–8,11,12] that forms around
bodies immersed in fast granular flows. Clearly, the dilute flow
assumption is not valid. Figure 8 shows the clear signature of
this structure in the velocity field.

Also, this picture shows that the two branches of the shock
wave meet behind the obstacle. This fact could, at first sight,
invalidate the lift results because this clearly does not allow
the use of periodic boundaries perpendicular to the stream.
This is not the case, however, as seen in the results for the
lift obtained from simulations that used rigid walls in the y

X

Y

0
0

200

200

FIG. 7. System configuration. Parameters: a = 40, k = 0.80, e =
0.952, and φ = −π/4.
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FIG. 8. (Color online) Velocity fields detailed around the obstacle
for a = 10, k = 0.80, and φ = 0: (a) e = 0.952 and (b) e = 0.608.

direction. These results agree with those shown in Figs. 5 and 6
within numerical error. Nevertheless, periodic boundaries in
a particular direction should only be used when the system is
independent in that direction.

Before discussing the influence of the shock wave in the
results, a few brief comments will be made regarding the first
two assumptions in the theoretical argument.

To take into account the grain size in computing the
collision radius is to consider a larger (effective) obstacle
facing the flow, which would increase the theoretical prediction
for the lift. Since this quantity is already larger than the
numerical results, it was safe to ignore it in the calculations.

The influence of the friction force on the lift can be inferred
from the velocity field results, as shown in Fig. 8. As seen
in this figure, particles follow tangential trajectories along the
ellipse [6–8], which means that they slide along the obstacle.
Since friction is a tangential force, one concludes that a grain
sliding along AD exerts an upward lift. By symmetry, a disk
exerts a downward lift while sliding along AC. Therefore,
the net effect of friction is to decrease the lift exerted by
collisions in each segment. The combination of both effects

might decrease or increase the net lift. The numerical results
for the lift rising from friction show that it is opposite to the
one resulting from the normal force. In other words, friction
decreases the net lift. The effect is small, though, because the
sliding friction is also small, γs = 0.1. In most simulations of
granular matter, regardless of the tangential force model, the
sliding friction is only mildly lower than the normal interaction
parameter. Here, a much lower value was used, which could
greatly affect the results. Simulations performed with a distinct
set of parameters, γs = 5000 and μ = 0.1, values which are
more common to general simulations of granular matter, show
that the results do not change significantly, and are still
qualitatively the same as those in Figs. 5 and 6. In fact, the
lift data are reduced only by 5%–10%. This happens due to
the fact that the velocities involved in the simulations are high
enough for the tangential force to reach the Coulomb static
friction criterion, which caps its maximum value and limits its
influence on the lift. This conclusion is supported by the fact
that the fraction of all disk-obstacle contacts, for γs = 5000,
that reach the failure condition is about 99.5%, with only a
very small φ dependence.

As stated earlier, the dilute flow assumption does not hold.
A rigorous calculation of the force in the obstacle, in which all
dense packing effects are taken into account, is not a simple
matter. In [19] an attempt was made in this direction. The
formation of the shock wave produces a dense region that
shields the obstacle from the incoming particles. Since the
interactions are dissipative, particles should reach the obstacle
with reduced velocities. This clearly reduces the force exerted
by the disks. Also, given the large density within the shock
wave, the collision rate might be affected. Finally, as seen from
the velocity field data (Fig. 8), particles should hit the obstacle,
on average, with a nonvanishing vertical velocity component,
i.e., particles suffer oblique inelastic collisions, which could
affect the force on the obstacle. Both effects will be discussed
in more detail in the following two sections. This discussion
will by made only qualitatively, since more simulations are
needed to determine the amount of influence each of them has
on the results.

A. Obstacle shielding

One of the consequences of the existence of the shock
wave is that the obstacle is shielded from the flow, in a way
that the grains hit it with lower horizontal velocity than the
upflow value. This fact alone indicates that the numerical net
lift should be lower than its theoretical prediction. Aside from
reducing the incoming flow velocity, the shock wave forms a
dense region around the obstacle through which grains should
go through in order to reach it. This could affect the collision
rate and, in turn, the net lift. Both effects must play a role
in order to explain the faster growth of the lift force with the
obstacle size for stronger inelasticity flow compared to that of
a lower inelasticity one.

The results for the collision profiles show that, for e =
0.608, the shock wave is more localized around point A
(where, for the k = 0.80 obstacles the peak of the profiles
is located) and that the overall collision number is greatly
increased compared to the number when e = 0.952. This is a
consequence of the aggregation that grains suffer due to the
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FIG. 9. Angular collision profiles for a = 10, e = 0.608: (a) k =
0.80 and (b) k = 0.20, for three distinct tilt angles (shown in the
legend box). The horizontal scales are the same for both plots.

inelastic interactions and is common to all cases studied. This
fact implies that the force on the obstacle should increase due
to this increase in the collision rate and could compensate, in
part, for the decrease in the force due to the reduced incoming
velocity.

The collision profiles are changed, in a very different way,
for obstacles with distinct eccentricities, k. Figure 9 has results
that illustrate this effect. The most striking feature of these
curves is that the profiles for k = 0.20 develop two peaks,
instead of the more familiar one around point A, which is
still present, but it moves away from this point as the ellipse
is oriented vertically. The other one develops around point D
and is seen at tilt angles as high as φ = −π/10. Such features
are also seen in the k = 0.50 results, although with smaller
peaks. These results can be explained by the fact that in some
cases, for stream velocities below a critical value, there is the
appearance of a gap, filled with a hot granular gas, between

X

Y

D
ensity

0
0

100

100

1.3

 0

FIG. 10. Density field for a = 10, e = 0.608, k = 0.20 and φ =
−π/2. The gap is located right in front of the ellipse (not shown),
just above the zero density region and below the dense arch (black).

the obstacle and the shock wave [11]. In the present case, the
appearance of the gap is a function of k alone, since the stream
velocity is the same for all simulations. Figure 10 has a result
for the density field that indicates the presence of the gap.
Notice the denser arc formed right in front of the ellipse, the
region limited by this arc, and the obstacle is the gap.

As a last note, the collision rate increases faster with φ for
k = 0.20 than for k = 0.80. Figure 11 has two configuration
snapshots that illustrate the shock wave for two obstacles with
distinct eccentricities.

One can infer from these pictures the reason behind the
asymmetrical peaks in the collision profiles when φ = −π/4
and k = 0.20. There is a very small concentration of particles
in front of AC, which certainly allows for more collisions to
occur.

These considerations still left unanswered the question
about the faster growth of 〈L〉 with a for stronger inelasticity
compared to those at lower inelasticity. Since the net lift is
the difference of the forces exerted in AC and AD, one should
seek a relative measure of the speeds in each of them in order
to account for the size of the contributions each has in the
net value. This is done by calculating the ratio between the
average horizontal disk velocities in AD and AC. If this ratio

X

Y

0
0

100

100(a)

X

Y

0 100

100(b)

0

FIG. 11. Two packing configurations for a = 10, φ = −π/4, and
e = 0.608: (a) k = 0.80 and (b) k = 0.20.
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FIG. 12. Ratio between the average horizontal velocity compo-
nents in AD and AC for obstacles with k = 0.80. Full lines correspond
to packings with e = 0.952, while dashed lines correspond to e =
0.608. Scales in all plots are the same.

is greater than 1, the collisions on AD exert, on average, a
stronger force than those on AC. These averages are evaluated
directly from the simulations. The results, for all tilt angles
and obstacle sizes, are given in Fig. 12.

First it can be seen that except in a few cases, markedly
at small obstacles, all ratios are larger than 1, and those for
e = 0.608 cases are larger than those for 0.952. It is possible
to identify a trend in these graphs, despite the noise: the ratio
grows with obstacle size. This is consistent with the results in
Fig. 6, where the net lift grows faster with a for the e = 0.608
flows compared to those with e = 0.952. Figure 13 has the
data for the same quantity measured for obstacles with distinct
eccentricities.

It is seen that the ratio increases as k decreases (it reaches
a factor of 2 for k = 0.20). These data, together with those for
the collision profiles, show that the large lift observed for low
k obstacles is a consequence not only of a larger number of
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FIG. 13. Ratio between the average horizontal velocity compo-
nents in AD and AC for obstacles with (a) k = 0.80, (b) k = 0.50,
and (c) k = 0.20. Full lines correspond to packings with e = 0.952,
while dashed lines correspond to e = 0.608.

collisions at AD, but also due to collisions with larger speeds
than those at AC.

B. Oblique impacts

The last piece of this analysis is the role of the vertical
velocity component in the lift value. Before proceeding, the
collision argument of Sec. II is reviewed by allowing the
incoming disks to have a vertical velocity, V , and calculating
the new momentum change in each collision. This will
elucidate the effect of the vertical velocity on the lift value.

The velocity of a disk which collides with the obstacle
is v0 = −U i + V j. The final disk velocity for an inelastic,
frictionless collision is obtained as

vx = U (e cos2 θ − sin2 θ ) − 1
2V (1 + e) sin 2θ (13)

and

vy = 1
2U (1 + e) sin 2θ + V (cos2 θ − e sin2 θ ). (14)

The vertical momentum change due to this collision is given
by

�Py = m(vy − V ),

using the result for vy [Eq. (14)], and performing some algebra,
the new momentum change is

�Py = m(1 + e)
[

1
2U sin 2θ − V sin2 θ

]
, (15)

where U > 0.
By looking at Eq. (15) one can see that a collision that

happens in the range −π/2 < θ < 0, which corresponds
to AC, will produce a lower momentum change if V < 0.
Similarly, for collisions that take place in the range 0 < θ <

π/2, which is AD, a lower momentum change will occur if
V > 0. From the velocity field data (Fig. 8), it is clear that
the average vertical velocities in AD and AC are positive
and negative, respectively. The oblique impacts decrease the
positive lift exerted by the flow in AC, but also decrease the
negative lift in AD. Therefore, it is not obvious if both effects
combined increase or decrease the net lift. In order for this
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|

a = 5 a  = 10 a = 20 a = 30 a = 40

FIG. 14. Ratio between the average vertical velocity components
in AD and AC. Full lines correspond to packings with e = 0.952,
while dashed lines correspond to e = 0.608. Scales in all plots are
the same.
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FIG. 15. Ratio between the average vertical velocity components
in AD and AC. Full lines correspond to packings with e = 0.952,
while dashed lines, to e = 0.608. Panel (a) is for k = 0.80, (b) for
k = 0.50 and (c), for k = 0.20.

combination of effects to increase the net lift, the vertical
velocity in AD should be lower than the corresponding velocity
in AC. In Figs. 14 and 15, the absolute value of the ratio of
the average vertical velocities in both segments is shown for
distinct obstacle size eccentricities, respectively.

It is seen that the ratio for e = 0.608 depends little on
the obstacle size and restitution coefficient, and that those for
e = 0.952 grow with a. It varies strongly with the tile angle
and eccentricity. Despite a few cases, the ratio is larger than 1,
which implies that the net lift decreases due to oblique impacts,
as provided by the existence of the shock wave.

V. CONCLUSIONS

A theoretical argument and numerical results on the net lift
force exerted by a granular stream of equal disks on an ellipse
were presented. The argument used to obtain a theoretical
expression for the lift relied on inelastic, frictionless collisions
of a very dilute granular flow, in the horizontal direction,
and the ellipse. The expression obtained Eq. (10), nicely
captures the qualitative features of the numerical results. It
does not, however, reproduce the results quantitatively, nor
does it reproduce the difference in the lift force for e = 0.952
and e = 0.608.

The numerical data, shown in Figs. 5 and 6, are lower than
the theoretical prediction by a factor that depends mostly on
the obstacle size (for a = 40, Eq. (10) is about four times larger
than the measured results).

Additional analyses of the flow properties showed that,
from the assumptions drawn in the text, the dilute flow one
is the most problematic. The existence of the granular shock
wave [6–8,11,12] invalidates this hypothesis. This structure
directly affects the velocity components of the disks at contact
with the obstacle as well as the collision rate. The horizontal
velocity at contact decreases due to dissipative collisions that
occur before the disks reach the shock wave. Also, some of the
horizontal momentum is deviated by the shock wave around
the obstacle, introducing a vertical component whose net effect
is to decrease the lift.

Perspectives to this work include a deeper analysis of dense
packing effects on the lift. This would answer questions about
the scaling of the lift with obstacle size, flow speed, and density.
Such analysis would also allow for a better understanding of
the mechanism behind the appearance of the net lift, since
an obvious consequence of the presence of the shock wave is
that any collisions that occur on its edge should transmit some
linear momentum through the dense region until pushing the
disks closest to the obstacle, and that is when the actual force
is made. Force transmission models, such as those in [20,21]
can be good starting points for this analysis. Moreover, the
effect of eccentricity on the shock wave is something worth
investigating since, as seen here, for a constant flow speed,
there should be some eccentricity value that allows for the
appearance of the gap between the shock wave and the
obstacle. Finally, the hydrodynamical approach to granular
flow could also be tested in such a situation. As argued in
the text, ignoring the disk size does not affect the results for
large obstacles. Hence, if the obstacle is much larger than the
disks, the predictions of such theory should be realized in
simulations, since scale separation could be achieved, at least
approximately.
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