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Antiphase synchronization of electrically shaken conducting beads
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(Received 21 December 2010; revised manuscript received 20 October 2011; published 1 December 2011)

When a spherical conducting bead is placed in an electrode, it experiences an electric force. In a plane
capacitor, it can undergo a periodic bouncing between the electrodes. Using a fast video camera, we measured
the acceleration of the bead and the period of its motion as a function of the applied voltage. A mathematical
model based on the hypothesis of electrostatic equilibrium is proposed to describe the dynamics of the system.
We observe a stabilization of the trajectories: A bead bouncing between two electrodes tends to oscillate on a
quasivertical trajectory, whatever its initial horizontal velocity. When two identical beads are placed together in
a capacitor, they oscillate at the same frequency and an antiphase synchronization effect occurs. We propose a
simple mechanism based on a Kuramoto-like model to explain it.
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I. INTRODUCTION

When micrometer- or millimeter-sized objects are placed
in contact with an electrode, they can experience forces
greater than their weight. The dynamics of a conducting bead
immersed in a poorly conducting liquid inside a horizontal
plane capacitor submitted to a dc voltage was studied by
Khayari et al. [1]. When charged on the bottom plate, the
ball is pushed upward. After its discharge through the liquid,
it goes back down to the bottom electrode because of gravity.
The system exhibits a periodic dynamics. The same experiment
was conducted with an additional alternating electric field [2].
When increasing the amplitude of the alternating electric field,
the system exhibits a period-doubling bifurcation analogous to
the one observed for a ball mechanically shaken on a horizontal
plate.

For a larger number of particles, the mutual interactions are
responsible for some fascinating collective behaviors. Saint
Jean and co-workers studied the diffusion of millimeter-sized
spherical conducting particles placed between electrodes of
different geometries and submitted to a mechanical shaking.
They used this system to study the structure and the melting
of small Wigner crystals in two dimensions [3–7]. They also
studied the single-file diffusion problem within this system
[8–10]. Aranson and co-workers [11–19] studied some col-
lective behaviors of large assemblies of conducting beads and
glass beads of various diameters enclosed in plane capacitors.
They studied the formation dynamics of clusters and could
apply the attachment-detachment-controlled Ostwald ripening
theory to describe it [11–15]. They studied the velocity
distributions of this far from equilibrium system [16] as well
as some pattern formation when micrometer-sized conducting
spheres are immersed in a poorly conducting liquids in the
presence of a dc electric field [17–19]. Zhang and Liu studied
the effect of an alternating electric field on a very similar
experiment [20].

In this work we focus our attention on a minimalist version
of the experiment of Aranson and co-workers. We study the
behavior of a single, two, or three spherical conducting beads
submitted to a constant and homogeneous electric field. In
Sec. II we describe our experimental setup. Section III is
dedicated to the problem of a single bead. In Sec. IV we
discuss the dynamics of two interacting beads.

II. EXPERIMENTAL SETUP

A sketch of our experimental setup is shown in Fig. 1.
One, two, or three spherical beads are placed between two
horizontal plane electrodes. For the experiments conducted
with a single bead, we used two glass beads with respective
diameters d = 400 and 488 μm coated with a conducting
layer as well as a steel bead of diameter d = 500 μm. For the
experiment with two or three beads we used two stainless steel
beads with a diameter d = 2 mm. The plates of the capacitor
are two parallel squares with an edge D = 60 mm separated
by a fixed gap h = 3 mm. A dc voltage V comprised between
0 and 5000 V is applied to the electrodes. The cell is open in an
atmosphere of controlled humidity (43% relative humidity) at
ambient pressure and temperature. The choice of this humidity
is motivated by a recent work [21] demonstrating a minimum
of bead-bead cohesion induced by capillary condensation
when relative humidity is approximately equal to 40–50%.
A fast CCD camera records the trajectory from the side at a
frame rate ranging between 500 and 6000 fps.

III. DYNAMICS OF A SINGLE BEAD

A. Experimental results

At the beginning of the experiment, the bead is placed in
contact with the bottom electrode. If the applied electric field
is large enough, the particle can detach and accelerate in the
direction of the upper electrode. It collides with this electrode.
During the bouncing, the bead charges with the opposite sign
and it further accelerates in the opposite direction. A periodic
motion with a limit cycle is thus reached. Figure 2 represents
the vertical coordinate z of a 488-μm coated glass bead as a
function of time t . The applied voltage V is 2000 V and the
frame rate is 6000 fps. The limit cycle is reached after about
ten collisions, which correspond to 50 ms.

We recorded the trajectories of a single 400-μm coated
glass bead. We measured its acceleration for different voltage
values. We obtained the acceleration a due to the electric force
by subtracting the gravitational acceleration g = 9.81 m s−2.
Figure 3 shows the acceleration a as a function of the applied
voltage V . Each dot is an average of five samples. The
acceleration increases with the voltage V in a quadratic way
(see the model in Sec. III B). The acceleration a reaches values
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FIG. 1. Sketch of the experimental setup. One or two spherical
conducting beads are placed between two horizontal plane electrodes
plugged into a high-voltage power supply. A fast CCD camera and a
tracking algorithm are used to record the trajectory of the beads.

up to 25 g. Three regions denoted I, II, and III correspond to
three dynamical regimes described in Sec. III B.

We measured the period T of the limit cycle of a 488-μm
coated glass bead. Figure 4 presents the period T as a function
of the applied voltage V . Each dot is an average computed over
20–50 oscillations. As expected from the above observations,
the period decreases with increasing voltage.

When a horizontal velocity is given to a bead bouncing
on the bottom plate, it keeps a finite horizontal velocity for
a long time. In contrast, when a bead bounces alternatively
on both plates, it rapidly reaches a quasivertical oscillation.
A horizontal stabilization effect occurs for a bead bouncing
alternatively on two facing plates (see Fig. 5). The mechanism
for this stabilization is not trivial. However, we can understand
that when a bead is bouncing between two plates, the moment
of the friction force can change the sign at each bounce and
tend to reduce the rotation of the bead. This is not the case for
a bead bouncing only on the bottom plate.

By drawing a mark on the beads, we could observe their
rotation. When a bead is bouncing between two plates with a
nonzero horizontal component of velocity, its angular rotation
speed is initially on the order of 15 rad/s. During the collisions,
the sign of angular rotation can change. After a few collisions,
the angular velocity vanishes rapidly. However, when the bead
is bouncing on the bottom plate only, the sign of the angular
rotation remains unchanged and the angular velocity slowly
vanishes.

This effect was already reported by Leconte et al. [22] for
a bead mechanically shaken between two parallel plates. They
took advantage of this to make precise measurements of the
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FIG. 2. Temporal evolution of the vertical coordinate z of a single
coated glass bead of 488 μm under 2000 V. The vertical coordinate z

is normalized by h − d in order to obtain values in the interval [0,1].
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FIG. 3. Measured acceleration a of a coated glass bead of
400 μm. The solid curve represents Eq. (4) without any fitting
parameter. Three regions I, II, and III represent three dynamical
regimes described in Sec. III B.

normal restitution coefficient of a steel bead. It also plays a
crucial role for the experiment described in Sec. IV of this
paper.

B. Mathematical description

In the following we will suppose that the charging time
of the conducting bead is shorter than the time of contact
with an electrode. This means that the electrostatic equilibrium
is reached during each contact. The damping due to viscous
friction with air is negligible.

First let us calculate the force Fc that acts on a bead when
it is in contact with an electrode. If the diameter d of the bead
is small compared to the gap h between the electrodes, we can
refer to the problem of a sphere in contact with a plane placed
at the same electric potential. According to Maxwell [23], Fc

reads

Fc = πcε0d
2E2

0 , (1)

where ε0 is the vacuum permittivity, E0 = V/h is the applied
electric field, ρ is the density of the bead, d is its diameter, and
c ≈ 1.36 is an integration constant. If this force is larger than
the weight of the bead, it cannot stay on the bottom plate and
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FIG. 4. Measured period T of the limit cycle of a coated glass
bead of 488 μm. The solid curve represents Eq. (6) without any
fitting parameter. Three regions I, II, and III represent three dynamical
regimes described in Sec. III B.
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FIG. 5. Horizontal stabilization of a bouncing bead. The hori-
zontal velocity of a bead bouncing on the bottom plate is slowly
reduced (top). The horizontal velocity of a bead bouncing between
two plates is rapidly reduced and the trajectory becomes quasivertical
(bottom). Both pictures correspond to the same bead, to the same
applied voltage, and the same video length.

it reaches the limit cycle. The critical electric field E2 for this
force balance is given by

E2 =
(

ρgd

6cε0

)1/2

. (2)

This expression was used by Aranson and co-workers and
it appears as a critical value on the phase diagrams of
several experiments conducted with a large number of particles
[11–14]. When the bead accelerates between the electrodes, it
experiences an electric force Fa . This force is no longer given
by Eq. (1). If the diameter d is small compared to the gap h, we
can consider that during the trajectory between the electrodes,
the bead is submitted to a force of the form

Fa = qE0,

where q is the total charge on the bead. The exact expression
of this charge has been calculated in Ref. [23]. We use it to
express Fa as

Fa = π3ε0d
2E2

0

6
= π2

6c
Fc. (3)

A more accurate expression of the force acting on a conducting
sphere close to a plane electrode can be found in Ref. [24].
The forces Fa and Fc are sketched in Fig. 6. When the bead is
going upward, it is submitted to an acceleration a − g, where

FIG. 6. When a bead is in contact with an electrode, it experiences
its weight and a force Fc given by Eq. (1). When it is far from the
electrodes, it experiences its weight and an electric force Fa given by
Eq. (3).

g is the gravitational acceleration. When it goes downward,
it is submitted to an acceleration −a − g. The acceleration a

due to the force Fa reads

a = π2ε0E
2
0

ρd
. (4)

After several collisions, the bead reaches a periodic limit cycle.
During one period of this limit cycle, the energy given by the
work of the electric force is counterbalanced by the energy
dissipated during the collisions. The period T of the limit
cycle can therefore be expressed as

T =
( √

2

a + g
− e

√
2

a − g

) (
(h − d)(a + g + ae2 − ge2)

1 − e4

)1/2

+
( √

2

a − g
− e

√
2

a + g

)(
(h − d)(a − g + ae2 + ge2)

1 − e4

)1/2

.

(5)

If a � g, T can be expressed as

T ≈
√

8

π

(
1 − e

1 + e

ρd(h − d)

ε0E
2
0

)1/2

. (6)

The limit cycle can still be stable if Fc < mg. There is another
critical field E1 below which the limit cycle becomes unstable.
This critical electric field is written

E1 =
(

1 − e2

1 + e2

ρgd

π2ε0

)1/2

=
(

1 − e2

1 + e2

6c

π2

)1/2

E2. (7)

The dynamics of the system is therefore determined by three
regimes.

In region I (E0 < E1), the only stable attractor is a fixed
point: The bead stays on the bottom plate.

In region II (E1 < E0 < E2), there are two stable attractors:
a periodic limit cycle and a fixed point.

In region III (E0 > E2), the fixed point loses its stability
and the limit cycle is the only stable attractor.

The predictions of this model are respectively plotted
in Figs. 3 and 4. The acceleration a [Eq. (4)], the period
T [Eq. (6)], and the critical electric fields E1 and E2

[Eqs. (7) and (2)] are predicted without fitting parameters.
We use ρ = 2500 kg m−3, d = 400 μm, and d = 488 μm.
The normal restitution coefficient e = 0.905 is measured
independently. The values E1 and E2 are measured for a steel
bead of diameter d = 500 μm. The value of E2 is correctly
predicted by Eq. (2). The experimental value of E1, however,
is larger than the one predicted by Eq. (7). When decreasing the
electric field above E1, small fluctuations of the bead velocity
may cause the loss of stability of the oscillations. Experiments
and theory are in agreement. The small deviations of the master
curve in Fig. 4 are probably due to the effect of projection due
to the position of the camera.

The dynamics of a single bead electrically shaken is
more simple than the dynamics of a bead mechanically
shaken between two oscillating plates. Only two attractors are
observed for electrical shaking, whereas a bifurcation cascade
and chaotic orbits are expected for mechanical shaking [25,26].
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FIG. 7. Temporal evolution of the vertical coordinate of two
interacting steel beads of 2 mm diameter under a voltage of 2000 V.
The beads oscillate at the same frequency and their phases are in
opposition.

IV. DYNAMICS OF SEVERAL INTERACTING BEADS

A. Two beads

In this section we describe the experiment of two neighbor-
ing identical beads in a capacitor. The beads are stainless steel
beads with a diameter of d = 2 mm. The applied voltage V is
2000 V. The frame rate of the video camera is 2000 fps.

Figure 7 shows a typical evolution of the height z of
two neighboring beads. The beads oscillate with the same
frequency and after few collisions with the plates their phases
are in opposition. The horizontal stabilization effect described
in Sec. III A is crucial for this experiment: Both beads need
to keep a constant frequency and stay close to each other to
become antisynchronized.

In order the measure a phase shift between the experimental
trajectories of the beads, we defined the following parameter:

φ(t) = cos−1

(
〈[z1(t) − z1][z2(t) − z2]〉T√

〈[z1(t) − z1]2〉T 〈[z2(t) − z2]2〉T

)
,

where zi designates the vertical coordinate of the bead i,
i ∈ {1,2}, zi is the average of zi over the total length of the
video, and the bracket 〈f (t)〉T denotes the mobile average

∫ T

0
f (t + τ )dτ of the function f over one period T .

Figure 8 illustrates the temporal evolution of the phase shift
φ and the horizontal separation x1 − x2 between the beads.
The total time of the sample shown in this picture (1050 ms)
corresponds to 75 oscillations. After some time, φ reaches a
horizontal plateau, indicating a phase locking at a phase shift
of π . When the beads are synchronized, they are attracted to
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FIG. 8. Typical temporal evolution of the phase shift φ (solid
line) and horizontal separation (x1 − x2)/d (dashed line) for two
neighboring beads. A phase synchronization is shown for φ = π ,
during which the beads are attracted to each other. After some time,
the beads collide and are stabilized horizontally. The corresponding
vertical coordinates z are illustrated in Fig. 7 for the time interval
t ∈ [400,650].

FIG. 9. The local electric field during the charging of a bead is
modified by the presence of the other bead. The acquired charge and
the further acceleration of this bead depend on the phase of the other
bead.

each other and they undergo a collision. After the collision,
the separation between the beads is rapidly stabilized and they
undergo a second collision. This is the sign of the stabilization
effect described in Sec. III A. This behavior is typical for a
system of two identical beads. We repeat the measurements
of φ several times; the horizontal plateau of φ is reproducible
and it always appears for a phase shift of π .

B. Mathematical description

We propose a simple mechanism for the antiphase synchro-
nization described in the preceding section. Let us consider
two beads 1 and 2 and define two phases θ1 and θ2 by
cos θi = 1 − 2zi

h−d
, i ∈ {1,2}. Let us suppose that, without

interaction, we have θ̇1 = θ̇2 = ω. When the beads are close
to each other, they interact electrostatically. We know that
the charge acquired by a bead in contact with an electrode
is proportional to the electric field. We also know that after
the detachment, the acceleration of the bead is proportional to
its charge. When two beads are close to each other, the local
electric field is modified by the presence of the other bead. The
charge acquired by a bead during contact therefore depends
on the phase of the other bead. This mechanism is illustrated
in Fig. 9.

By considering the sign of the variation of the local electric
field for several values of θ1 and θ2, we can write an expression
that qualitatively describes the evolution of the phase of the
interacting beads. This gives the following Kuramoto-like
equations:

θ̇1 = ω + K(β − cos θ1 sin θ2)
(8)

θ̇2 = ω + K(β − cos θ2 sin θ1),

where K and β are two positive coupling constants. From this
expression, we can deduce an equation of evolution for the
phase shift φ = θ1 − θ2:

φ̇ = K sin (φ). (9)

The only stable stationary solution of this equation implies

φ = (2k + 1)π, (10)

where k is an integer. This minimalist Kuramoto-like model
predicts some synchronization effect. Only an antiphase
situation is predicted, as observed experimentally.

C. Three beads

We perform experiments on a set of three beads aligned
or arranged in a triangle. Only a partial synchronization is
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FIG. 10. Temporal evolution of the phase shifts φ between the
pairs of beads in a configuration of three aligned beads. One could
observe a partial synchronization for φ = π for a pair of beads (solid
curve) while the other beads (dashed curves) are not synchronized.

observed: Two beads could synchronize with a phase shift of
π , similarly to Sec. IV A, while the phase shift between the
other couples of beads fluctuates (see Fig. 10).

Experiments with more than two beads are not obvious
since the interdistance should be finely controlled in order
to induce interactions between the bodies. When more than
two beads are present, synchronization appears only for
couples of neighboring objects. Since beads are freely moving,
reorganization destroys any ordered pattern. This effect could
play a major role in the collective motion of beads in between
two plates. The investigation of these collective effects for
many beads, however, is beyond the scope of the present
paper.

V. CONCLUSION

We performed several experiments concerning the dynam-
ics of spherical conducting particles in a plane capacitor. For
a single bead, there are two stable attractors: The bead can
stay on the bottom electrode or bounce periodically between
both electrodes. The acceleration of the bead and the period
of its limit cycle were measured as a function of the applied
voltage. We propose a zero-fitting parameter model that is
in agreement with the experiments. This model also predicts
the stability limits for both attractors. Moreover, a horizontal
stabilization effect is observed: A bead bouncing between two
electrodes tends to reach a quasivertical trajectory, whatever
its initial horizontal velocity. Thanks to this effect, when
two identical beads are placed together in a capacitor, an
antiphase synchronization can be observed. We suggest that
this synchronization is due to the modification of the local
electric field during the charging of the beads. A Kuramoto-
like model is proposed, which represents a basis for further
studies.
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