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Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems

Itay Hen and A. P. Young
Department of Physics, University of California, Santa Cruz, California 95064, USA

(Received 1 October 2011; published 29 December 2011)

We determine the complexity of several constraint satisfaction problems using the quantum adiabatic algorithm
in its simplest implementation. We do so by studying the size dependence of the gap to the first excited state of
“typical” instances. We find that, at large sizes N , the complexity increases exponentially for all models that we
study. We also compare our results against the complexity of the analogous classical algorithm WalkSAT and
show that the harder the problem is for the classical algorithm, the harder it is also for the quantum adiabatic
algorithm.
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I. INTRODUCTION

Theoretical research on quantum computing is motivated
by the exciting possibility that quantum computers are in-
herently more efficient than classical computers due to the
advantages that the laws of quantum mechanics provide, such
as superposition, interference, and entanglement. Besides the
great effort of research toward the physical realization of these
devices, a lot of activity has been devoted to the development of
algorithms that could use quantum properties to achieve better
efficiency in performing computational tasks with respect to
classical devices.

Perhaps the best example to date for the superiority of
quantum computers over classical ones is given by Shor’s al-
gorithm [1] for integer factorization, which solves the problem
in polynomial time, whereas the best classical algorithm takes
a time which is exponential in (a fractional power of) the
problem size.

A rather general approach to solve a broad range of hard
optimization problems using a quantum computer has been
proposed by Farhi et al. [2]. Within the framework of this new
approach, which was given the name the quantum adiabatic
algorithm (QAA), the solution to an optimization problem is
encoded in the ground state of a Hamiltonian Ĥp. To find the
solution, the QAA prescribes the following course of action.
As a first step, the system is prepared in the ground state of
another Hamiltonian Ĥd , commonly referred to as the driver
Hamiltonian. The driver Hamiltonian is chosen such that it
does not commute with the problem Hamiltonian and has a
ground state that is fairly easy to prepare. As a next step, the
Hamiltonian of the system is slowly modified from Ĥd to Ĥp,
using the linear interpolation, i.e.,

Ĥ (s) = sĤp + (1 − s)Ĥd, (1)

where s(t) is a parameter varying smoothly with time, from
0 at t = 0 to 1 at the end of the algorithm, t = T . If this
process is done slowly enough, the adiabatic theorem of
quantum mechanics (see, e.g., Refs. [3] and [4]) ensures
that the system will stay close to the ground state of the
instantaneous Hamiltonian throughout the evolution, so that
one finally obtains a state close to the ground state of Ĥp. At
this point, measuring the state will give the solution of the
original problem with high probability.

The running time T of the algorithm determines the
efficiency, or complexity, of the QAA. An upper bound for

the complexity can be given in terms of the eigenstates {|n〉}
and eigenvalues {En} of the Hamiltonian by [5,6]

T � h̄
|maxsV10(s)|

(�Emin)2
, (2)

where �Emin is the minimum of the first excitation
gap �Emin = mins�E with �E = E1 − E0, and Vn0 =
〈0|dĤ/ds|n〉.

Typically, matrix elements of Ĥ scale as a low polynomial
of the system size N , and the question of whether the
complexity depends polynomially or exponentially with N

therefore depends on how the minimum gap �Emin scales with
N . This means that if the gap becomes exponentially small at
any point in the evolution, then the computation requires an
exponential amount of time, rendering the QAA inefficient.
The dependence of the minimum gap on the system size for a
given problem is therefore a central issue in determining the
complexity of the QAA.

The most interesting unknown about the QAA to date is
thus whether or not it could solve in polynomial time “hard”
sets of problems—those that belong to a particularly hard class
known as NP-complete [7] and for which all known algorithms
take an exponential amount of time (exponential complexity),
at least in the worst case. While early studies of the QAA
done on very small systems (N � 24) [2,8] provided some
preliminary numerical evidence that the time required to solve
one such NP-complete problem does scale only polynomially,
roughly as N2, several later studies gave evidence that this
may not be the case.

References [6,9] show that adiabatic algorithms can fail if
one does not choose the initial Hamiltonian carefully by taking
into account the structure of the problem. Altshuler, Krovi, and
Roland [10] also argued that adiabatic quantum optimization
will fail in general for random instances of NP-complete
problems. However, the arguments of Altshuler, Krovi, and
Roland have been criticized by Knysh and Smelyanskiy [11].

In addition, Young, Knysh, and Smelyanskiy [12,13]
recently examined the 1-in-3 “constraint satisfaction,” or SAT,
problem (to be explained in the next section) and showed
that very small gaps could appear in the spectrum of the
Hamiltonian due to an avoided crossing between the ground
state and another level corresponding to a local minimum of the
optimization problem. This “bottleneck” was shown to appear
in a larger and larger fraction of the instances as the problem
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size N increases, indicating the existence of a first-order
quantum phase transition. This leads to an exponentially small
gap of a typical instance, and therefore also to the failure of
adiabatic quantum optimization. Other studies that considered
this model have found an exponential complexity [14,15] for
particularly hard instances of small size.

It is not yet clear, however, to what extent the above
behavior found for 1-in-3 SAT is general and whether it is
a feature inherent to the QAA that will plague most, if not
all, problems fed into the algorithm or something far more
restricted than this. Previous work [16–18] had argued that a
first-order quantum phase transition occurs for a broad class
of random optimization models. To gain further insight into
this matter, we study here three optimization problems that
had previously been suggested [17,19,20] as good potential
candidates for detailed investigation.

The problems we study are of the constraint satisfaction
type. For these, one asks a questions for which there is a “yes”
or “no” answer, namely whether there is an assignment of
N bits that satisfies all of M logical conditions (clauses). An
energy is assigned to each clause such that it is zero if the
clause is satisfied and positive if it is not.

The first two problems we focus on in this paper are
“locked” problems—a term first introduced by Zdeborová
and Mézard [19,20] for problems with instances having the
following two properties: (i) every variable is in at least two
clauses and (ii) one cannot get from one satisfying assignment
to another by flipping a single bit. In fact, it was argued that
typically order ln N bits need to be flipped to go from one
solution to another. These locked problems have several prop-
erties that make them eminently suitable as benchmarks. They
are analytically “simple” (or at least simpler than previously
studied models, such as random K-SAT), but are computa-
tionally hard. Also, fluctuations between instances are smaller
than with “unlocked” problems. Specifically, we study here the
complexity of the QAA for the locked 1-in-3 SAT and locked 2-
in-4 SAT models, which belong to the NP-complete category.

In addition, we also compare our results with those of a third
model, 3-regular 3-XORSAT, already considered by Jörg et al.
[17], and Farhi et al. [21]. As we shall see, this model, while
belonging to the P complexity class (i.e., it could be solved
in polynomial time), is very hard to solve computationally by
general purpose algorithms.

We study these models by analyzing the size dependence
of the typical gap by means of quantum Monte Carlo (QMC)
simulations. The plan of this paper is as follows. Section II
describes the three models that will be studied. In Sec. III, we
discuss the manner in which we obtain our results. These
results are presented in Sec. IV and our conclusions are
summarized in Sec. V.

II. MODELS

We consider problems of the constraint satisfaction type,
in which there are N bits (or equivalently, Ising spins) and M

“clauses,” where each clause is a logical condition on a small
number of randomly chosen bits. A configuration of the bits
(spins) is a “satisfying assignment” if it satisfies all the clauses.

In encoding this type of problem as a quantum Hamiltonian,
each bit variable is represented in the Hamiltonian by the

z component of a Pauli matrix, σ z
i , where i labels the spin. Each

clause is thus converted to an energy function that depends on
the spins associated with the clause, such that the energy is
zero if the clause is satisfied and is positive (in our case, one)
if it is not. The general structure of the problem Hamiltonian
Ĥp is therefore

Ĥp =
M∑

a=1

Ĥa, (3)

where a is the clause index and Ĥa is the energy associated
with the clause and involves the spins belonging to it.

Clearly, it is easy to satisfy all clauses if the ratio α ≡ M/N

is small enough. In fact, one expects an exponentially large
number of satisfying assignments in this region. Conversely, if
M/N is very large with high probability, there will be a conflict
between different clauses. Hence there is a “satisfiability
transition” at some value αs , where the number of satisfying
assignments goes to zero. It is particularly hard to solve
satisfiability problems close to the transition [22], so we will
work in this region.

Furthermore, when studying the efficiency of the QAA nu-
merically [2,12,13], it is convenient to consider instances with
a unique satisfying assignment (USA), which, of course, forces
the system to be close to the transition. Considering instances
with a USA is particularly advantageous for locked problems.
While for unlocked problems the entropy of solutions at the
satisfiability threshold is positive [23], for locked problems it
approaches zero continuously [19,20]. This means that while
solutions with USA are rare for unlocked problems, they
are expected to be among the “typical” instances for locked
problems and therefore locked problems have the advantage
that instances with a USA should be a good representation
of randomly chosen instances. Indeed, this is supported by a
recent numerical study [24] that found that the probability of
a USA only decreases slowly with N and appears to tend to a
nonzero value as N → ∞.

We now discuss the different models that will be investi-
gated in this paper.

A. Locked 1-in-3 SAT

In the 1-in-3 SAT problem, each clause consists of three bits
chosen randomly, and the clause is satisfied if one of the bits
is one and the others are zero. Here we fix the ratio M/N to
be the critical value for the satisfiability transition. According
to Table I of Ref. [20], this is equal to αs = 0.789. Since M

has to be an integer, we take M to be the nearest integer to
αsN ; see Table I. Note that, if the sites are chosen at random to
form the clauses, the distribution of the degree of the sites (i.e.,
the number of clauses involving a site) would be Poissonian.
However, locked instances have a minimum degree of 2, so
instead we use a truncated Poissonian distribution [20], which
is Poissonian except that the probabilities for zero and one are
set to zero.

We study instances with a unique satisfying assignment
(USA). For these instances, the gap to the first excited state is
of order unity at s = 1 (and also of order unity at s = 0), so the
gap has a minimum whose value is related to the complexity.
For instances with many satisfying assignments, the ground
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TABLE I. Values of M and N for the locked instances.

locked 1-in-3 locked 2-in-4
N M M

16 13 11
24 – 17
32 25 23
40 – 28
48 38 34
64 51 –
96 76 –

state of the problem Hamiltonian is degenerate and so the gap
to the first excited state decreases to zero as s → 1. Hence
this gap would give no information about the computer time
needed to determine whether there is a state with zero energy.

The energy of a clause for the locked 1-in-3 problem is
given by

Ĥa = 1
8

(
5 − σ z

a1
− σ z

a2
− σ z

a3
+ σ z

a1
σ z

a2
+ σ z

a2
σ z

a3

+ σ z
a3

σ z
a1

+ 3σ z
a1

σ z
a2

σ z
a3

)
, (4)

where a denotes the index of the clause and the ai (i = 1,2,3)
label the participating spins. With this Hamiltonian, the energy
is zero if the clause is satisfied and is one otherwise.

B. Locked 2-in-4 SAT

We also consider locked 2-in-4 instances, in which a clause
has four bits, and is satisfied if two are zero and two are one.
Unlike the locked 1-in-3 SAT model discussed above, this
model has a symmetry under flipping all the bits.

We fix the ratio M/N to be the critical value for the
satisfiability transition. According to Table I of Ref. [20], this
is equal to αs = 0.707. Again, since M has to be an integer,
we take M to be the nearest integer to αsN ; see Table I.

In this problem, the energy of a clause is given by

Ĥa = 1
8

(
5 + σ z

a1
σ z

a2
+ σ z

a1
σ z

a3
+ σ z

a1
σ z

a4
+ σ z

a2
σ z

a3

+ σ z
a2

σ z
a4

+ σ z
a3

σ z
a4

− 3σ z
a1

σ z
a2

σ z
a3

σ z
a4

)
, (5)

where, as before, a denotes the index of the clause and the
ai (i = 1,2,3,4) label the participating spins. For this energy
term, a satisfied clause has zero energy and an unsatisfied one
has energy one.

Because of bit-flip symmetry, the energy of a state of the
problem Hamiltonian is the same as that of the state obtained
by flipping all the bits. Hence, when we refer to an instance
with a “unique” satisfying assignment (USA) for the locked
2-in-4 problem, we will ignore states related by symmetry (so
the true ground-state degeneracy is actually two, not one).

C. 3-regular 3-XORSAT

Another problem we discuss here is the 3-regular
3-XORSAT problem, already considered by Jörg et al. [17]
and Farhi et al. [21]. In the 3-XORSAT problem, three bits are
chosen to form a clause and the clause is satisfied if their sum
(mod 2) is a specified value (either 0 or 1). Alternatively, in
terms of spins, the clause is satisfied if the product of the three
σ z

i ’s is a specified value (either −1 or 1).

We will consider here the “3-regular” case, where every
bit is in exactly three clauses—a model that turns out to be
precisely at the satisfiability threshold. Note that this implies
M = N . Again, the problem to be solved is whether there
is an assignment of the bits that satisfies all the clauses.
Interestingly, since this problem just involves linear algebra
(mod 2), the satisfiability problem can be solved in polynomial
time using, for example, Gaussian elimination. However, as is
already well known (see, e.g., [25,26]) and will also become
evident soon, the problem is very hard for general purpose
algorithms. Furthermore, if there is no satisfying assignment,
no known polynomial time algorithm will determine the
minimal number of unsatisfied clauses, a problem known as
MAX-XORSAT.

As usual, we consider instances with a USA. Fortunately,
these are a nonzero fraction, about 0.285 [17], of the total,
so the USA instances should be a good representation of
randomly chosen ones. For XORSAT instances with a USA,
it is not difficult to show that one can gauge transform any
instance into one in which the sum of the bits of every clause is
equal to zero (mod 2). The USA is then all bits equal to zero (a
“ferromagnetic” ground state in statistical physics language).
Although this ground state is “trivial,” we shall see that it is
very hard to find using general purpose algorithms including
the QAA.

The energy of a clause in this model is

Ĥa = 1
2

(
1 − σ z

a1
σ z

a2
σ z

a3

)
, (6)

where again a denotes the index of the clause and the ai

(i = 1,2,3) label the participating spins.

D. Driver Hamiltonian

Before moving on, we note that the driver Hamiltonian we
choose here is perhaps the simplest possible choice,

Ĥd = 1

2

∑

i

(
1 − σx

i

)
, (7)

where σx
i is the x-component Pauli matrix acting on spin i.

This corresponds to a transverse field of equal size on all sites.
Its ground state is a uniform superposition of all 2N states of
the computational (i.e., σ z) basis.

III. METHOD

As was already mentioned, the complexity of the QAA
algorithm is determined by the size dependence of the typical
minimum gap of the problem. Following Refs. [12,13], we
analyze the size dependence of these gaps for each of the
problems discussed in the previous section by considering
typically 50 instances for each size, and then extracting the
minimum gap for each of them. As a next step, we take
the median value of the minimum gap among the different
instances for a given size to obtain the typical minimum gap.

To find the minimum gap for a specific instance of a specific
problem, we perform quantum Monte Carlo simulations for a
range of s values that bracket the minimum gap. For each of
the studied s values, we extract the gap and interpolate the
minimum value using a simple quadratic fit. An illustrative
example of this is given in Fig. 1.

061152-3



ITAY HEN AND A. P. YOUNG PHYSICAL REVIEW E 84, 061152 (2011)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.505  0.51  0.515  0.52  0.525  0.53  0.535

ΔE

s

parabolic fit

FIG. 1. (Color online) Gap to the first excited state as a function
of s for one instance of the locked 1-in-3 SAT problem. The line is
a quadratic fit to the data points from which the location, s = 0.523,
and value, �Emin = 0.207, of the minimum gap are obtained. Here,
N = 64 and β = 1024.

In cases where we find that the mesh of s values is either too
crude or does not bracket the minimum gap, a second round
of simulations, with a more appropriate mesh of s values, is
launched.

A. Quantum Monte Carlo technique

To study the behavior of the typical minimum gap for
large (N > 24) system sizes for which exact diagonalization
routines are unfeasible, we employ a continuous-time quantum
Monte Carlo technique. As the name indicates, this technique
is based on sampling the 2N states of the Hilbert space, so
there are therefore statistical errors stemming from the nature
of the procedure. However, Monte Carlo methods provide the
only numerical method available for investigating large system
sizes.

The specific method we use in this study is known as
the stochastic series expansion (SSE) algorithm [27,28],
which involves a Taylor series expansion of the partition
function Tr[e−βĤ ] and uses a discrete representation of
continuous imaginary time. This discretization, however, does
not introduce errors into the algorithm as is the case in
the alternative path-integral formulation, where one usually
performs a Trotter-type discretization of imaginary time;
see, e.g., Refs. [12,13], though formulations in continuous
imaginary time also exist [29,30]. Here β is the inverse
temperature 1/T (in our units, kB = 1).

The SSE algorithm has several properties that are very
useful in addressing the problems we focus on in this study.
First, it works in continuous imaginary time as discussed
above. Second, it allows not only local updates of system
configurations but also global cluster updates, which in
most cases prove to be more efficient than single-spin-flip
updates. These global updates are achieved by dividing the
configurations of the system produced by the QMC into
clusters and then flipping a fraction of them within each sweep
of the simulation [31]. An important bonus of cluster updates

is the existence of “improved estimators” for determining
time-dependent correlation functions, for which the signal to
noise is much better than with conventional measurements.

In addition, we speed up equilibration by implementing
“parallel tempering” [32], where simulations for different val-
ues of s are run in parallel and spin configurations with adjacent
values of s are swapped with a probability satisfying the
detailed balance condition. Traditionally, parallel tempering
is performed for systems at different temperatures, but here
the parameter s plays the role of (inverse) temperature.

We extract the gap from imaginary time-dependent corre-
lation functions. However, in the locked 2-in-4 case, where the
problem has bit-flip symmetry, this is tricky using the standard
SSE algorithm and, as discussed next, we will use a different
approach.

The difficulty arises for the following reason. Eigenstates of
the Hamiltonian are either even or odd under bit-flip symmetry
(in particular, the ground state is even). In the s → 1 limit,
states occur in even-odd pairs with an exponentially small
gap (see Fig. 2 for an illustration). Therefore, the quantity of
interest is the gap to the first even state. We consider correlation
functions of even quantities, so there are only matrix elements
between states of the same parity. However, the lowest odd
level becomes very close to the ground state near where the
gap to the first even excited state has a minimum; see Fig. 2.
Hence this lowest odd state becomes thermally populated, with
the result that odd-odd gaps are present in the data as well.

0
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 0.3
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 0.5
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 0.7

 0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6

ΔE

s

even

odd

QMC

T

FIG. 2. (Color online) Energy gaps to even (solid, red) and odd
(dashed, blue) excited states for an N = 16 instance of the locked
2-in-4 problem, which has bit-flip symmetry as discussed in the text.
The dotted line shows a characteristic value of another important
energy scale in the problem—temperature. In the region where the
gap to the first even state has a minimum, the gap to the first odd state
becomes very small and is inevitably thermally populated. Hence
odd-odd gaps appear in this region as well as even-even gaps. This
is the reason why we use a nonstandard Monte Carlo algorithm for
this problem, which projects out the symmetric subspace, so only
even-even gaps are present in the data. The figure also shows the gap
obtained from the even-subspace projected QMC in the vicinity of
the minimum. It agrees with exact diagonalization within the error
bars.
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We have eliminated these undesired contributions by
projecting out the symmetric subspace of the Hamiltonian. A
way of doing this projection at zero temperature was proposed
independently by Eddie Farhi [33] and Anders Sandvik [34].
In standard quantum Monte Carlo simulations, one imposes
periodic boundary conditions in imaginary time τ at τ = 0
and β. To project out the symmetric subspace one imposes,
instead, free boundary conditions [35–38] at τ = 0 and β. The
properties of the symmetric subspace can then be obtained,
for β → ∞, by measurements far from the boundaries. We
have incorporated this idea into the SSE scheme, and use this
modified algorithm in the simulations of the locked 2-in-4
problem.

To verify that our implementations of the SSE methods are
accurate, we have compared their results with corresponding
exact diagonalization results on small system sizes. The results
agree within the error bars. A comparison of the gap is shown
in Fig. 2. The careful reader will note that the QMC data is
slightly but consistently above the diagonalization results. This
is due to contributions from higher excited states at short times,
which increase the value of the time-dependent correlation
function used to extract the gap in this limit; see Fig. 2 and
Sec. III B. The effect is small even for the N = 16 data shown
in Fig. 2, and we expect it to be smaller still for larger sizes
near the minimum gap, since the gap is smaller so there is a
larger region with straight-line behavior in plots like Fig. 3.

B. Extraction of the system gap

The gap of the system for a given instance and a given s

value is extracted by analyzing measurements of (imaginary)
time-dependent correlation functions of the type

CA(τ ) = 〈Â(τ )Â(0)〉 − 〈A〉2, (8)

where the operator Â is some measurable physical quantity. In
practice, we found it useful to construct superpositions of such
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FIG. 3. (Color online) Log-linear plot of a time-dependent corre-
lation function for an instance of the locked 1-in-3 SAT problem with
N = 64 spins, β = 1024, near the minimum gap at s = 0.54. The
energy gap is the negative of the slope at large values of imaginary
time τ . A fit gives �E = 0.037.

correlation functions. Typically, we use linear combinations of
correlation functions of the operators σ z

i or σ z
i σ z

j , where i and
j run from 1 to N and label the spins. The evaluation of 〈A〉2 in
the above equation is computed from the product 〈A〉(1)〈A〉(2),
where the two indices correspond to different independent
simulations of the same system. This eliminates the bias
stemming from straightforward squaring of the expectation
value.

In the low-temperature limit, �E � T , where �E = E1 −
E0, the system is in its ground state, so the imaginary-time
correlation function is given by

CA(τ ) =
∑

m=1

|〈0|Â|m〉|2(e−�Emτ + e−�Em(β−τ )), (9)

where �Em = Em − E0. At long times, τ , the correlation
function, is dominated by the smallest gap, �E ≡ �E1 (as
long as the matrix element |〈0|Â|1〉|2 is nonzero). On a
log-linear plot, CA(τ ) then has a region where it is a straight
line whose slope is the negative of the gap. This can therefore
be easily extracted by simple linear fitting.

An illustration of the above procedure is depicted in
Fig. 3 showing one of the correlation functions measured and
analyzed for the locked 1-in-3 problem for N = 64, β = 1024,
and s = 0.54. The gap in this case is �E = 0.037.

IV. RESULTS

A. Results from the QAA

We show results for the median minimum gap as a function
of size for the locked 1-in-3 problem in Fig. 4 (log-lin) and
Fig. 5 (log-log). A straight line fit works very well for the
log-lin plot (goodness of fit parameter Q = 0.26), but very
poorly for the log-log plot (Q = 3.8 × 10−12). This provides
strong evidence that the minimum gap is exponentially
small in the system size, and so the complexity of the QAA (at
least in the simplest version considered here) is exponentially
large in the system size.
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χ2 / ndf =  1.35
Q = 0.26

0.16 exp(-0.042 N )

FIG. 4. (Color online) Median minimum gap on a log-linear scale
for the locked 1-in-3 problem. The straight-line fit is good, indicating
the exponential complexity of the QAA for this problem.
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FIG. 5. (Color online) Median minimum gap on a log-log scale
for the locked 1-in-3 problem. The straight-line fit is extremely poor,
indicating that the minimum gap for this problem is not polynomial
in the system size.

The corresponding results for the locked 2-in-4 problem are
shown in Fig. 6 (log-lin) and Fig. 7 (log-log). A straight line
fit works very well for the log-lin plot (Q = 0.19), but poorly
for the log-log plot (Q = 5.9 × 10−4). This provides strong
evidence that the minimum gap is exponentially small in the
system size.

The 3-regular 3-XORSAT problem has been studied by
Jörg et al. [17], who determined the minimum gap for sizes
up to N = 24 by diagonalization, and Farhi et al. [21]
who extended the range of sizes up to N = 40 by quantum
Monte Carlo simulations. The two sets of results agree and
provide compelling evidence for an exponential minimum
gap. Below we will compare the coefficient in the exponent
found by Jörg et al. and Farhi et al. with that for the
other models studied here and with results from a classical
algorithm.
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FIG. 6. (Color online) Median gap on a log-linear scale for the
locked 2-in-4 problem. The straight-line fit is good, indicating the
exponential complexity for this problem.
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FIG. 7. (Color online) Median gap on a log-log scale for the
locked 2-in-4 problem. The straight-line fit is poor, indicating that
the complexity for this problem is not polynomial.

B. Comparison with a classical algorithm

Since the QAA is designed to serve as an efficient tool
for solving hard optimization problems, it is interesting to
compare its efficiency with that of a classical algorithm.

In Ref. [24], it was argued that a reasonable classical
algorithm to compare with QAA is the heuristic local search
algorithm known as WalkSAT [39], which is similar in spirit
to simulated annealing in that both make moves that reduce
the “energy,” but also sometimes make moves that increase it
to avoid being trapped in the nearest local minimum.

As discussed in Sec. I, Landau-Zener theory states that, for
the QAA, the computation time is proportional to 1/�E2

min
(neglecting N dependence of matrix elements) and, since we
find that �Emin ∼ e−c N , the complexity can be written as

T ∝ eμN, (10)

where μ = 2c.
In the WalkSAT algorithm, the running time is proportional

to the number of “bit flips” the algorithm makes (for more
details, the reader is referred to Ref. [24]). Writing the median
number of flips as

Nflips ∝ eμN, (11)

we can now compare the exponent coefficients of the QAA
versus those of WalkSAT. The latter were measured in
Ref. [24]. For the convenience of the reader, the values of
μ for both the QAA and WalkSAT are summarized in Table II.

TABLE II. Values of μ, the coefficient of N in the exponential
complexity of the quantum adiabatic algorithm (QAA), Eq. (10),
versus that of the analogous classical algorithm WalkSAT, Eq. (11),
and the ratios between them, for the three problems studied here. The
data is taken from the references shown.

Model μ(QAA) μ(WalkSAT) Ratio

locked 1-in-3 SAT 0.084(3) (this work) 0.0505(5) [24] 1.66
locked 2-in-4 SAT 0.126(5) (this work) 0.0858(8) [24] 1.47
3-reg 3-XORSAT 0.159(2) [21] 0.1198(20) [24] 1.32
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As the table indicates, the exponent coefficients obtained
with WalkSAT are somewhat smaller than those of the QAA,
suggesting that the latter algorithm, in the specific way it was
implemented in this paper, is slightly less efficient than its
corresponding classical one for these three problems, although
a problem-by-problem comparison shows that the coefficients
are fairly similar. It is also evident from the table that the harder
the problem is for WalkSAT, the harder it also is for QAA.

V. SUMMARY AND CONCLUSIONS

Using quantum Monte Carlo (QMC) simulations, we
studied the complexity of the quantum adiabatic algorithm
(QAA) for three constraint satisfaction problems, two of
them in the NP complexity class—locked 1-in-3 SAT and
locked 2-in-4 SAT—and one in the P complexity class—
3-regular 3-XORSAT. All three problems show exponential
complexity (albeit with somewhat different coefficients), i.e.,
the computation time required by the QAA to reach the
solution of the problem Hamiltonian with high probability
increases exponentially with the system size N .

We have also compared the QAA complexities against these
of an analogous classical algorithm, WalkSAT, and show the
results in Table II. Perhaps not surprisingly, we find that the
harder the problem is for WalkSAT, the harder it also is for
the QAA. Moreover, it seems that the coefficients of N in the
exponential in the expression for the complexity of the QAA,
Eq. (10), are somewhat larger than those of WalkSAT, Eq. (11)
(with ratios ranging between about 1.3 and 1.7).

Several interesting questions arise upon examining the
results of this study and which we believe would be interesting
to study in future work. The first one has to do with
the possibility of avoiding the exponentially small gap by
repeatedly running the algorithm with different random values
for the transverse fields (and clause costs) [29]. It would
also be interesting to look, more generally, for better paths
in Hamiltonian space, perhaps by adding additional terms in
the Hamiltonian for intermediate values of s, which would
increase the minimum gap. In particular, can we find a clever
way to optimize the path in Hamiltonian space “on the fly”
during the simulation?

While the study reported here used instances with a unique
satisfying assignment (USA), in which case the gap to the first
excited state has a minimum that is related to the complexity, it
would be interesting to also consider random instances to see
if those too have exponential complexity in QAA. However,
this is numerically more challenging.
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[25] S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weight, and

R. Zecchina, Europhys. Lett. 55, 465 (2001).
[26] F. Ricci-Tersenghi, Science 330, 1639 (2011).
[27] A. W. Sandvik, Phys. Rev. B 59, R14157 (1999).
[28] A. W. Sandvik, J. Phys. A 25, 3667 (1992).
[29] E. Farhi, J. Goldstone, D. Gosset, S. Gutmann, H. B. Meyer, and

P. Shor, e-print arXiv:0909.4766.
[30] F. Krzakala, A. Rosso, G. Semerjian, and F. Zamponi, Phys. Rev.

B 78, 134428 (2008).

061152-7

http://dx.doi.org/10.1126/science.1057726
http://arXiv.org/abs/arXiv:quant-ph/0104129
http://dx.doi.org/10.1143/JPSJ.5.435
http://arXiv.org/abs/arXiv:quant-ph/0201031
http://dx.doi.org/10.1103/PhysRevA.67.022314
http://dx.doi.org/10.1142/S021974990800358X
http://dx.doi.org/10.1142/S021974990800358X
http://arXiv.org/abs/arXiv:0908.2782v2
http://arXiv.org/abs/arXiv:1005.3011
http://dx.doi.org/10.1103/PhysRevLett.101.170503
http://dx.doi.org/10.1103/PhysRevLett.101.170503
http://dx.doi.org/10.1103/PhysRevLett.104.020502
http://dx.doi.org/10.1103/PhysRevLett.104.020502
http://dx.doi.org/10.1103/PhysRevA.71.062305
http://dx.doi.org/10.1103/PhysRevA.73.022329
http://dx.doi.org/10.1103/PhysRevA.73.022329
http://dx.doi.org/10.1103/PhysRevLett.101.147204
http://dx.doi.org/10.1103/PhysRevLett.101.147204
http://dx.doi.org/10.1103/PhysRevLett.104.207206
http://dx.doi.org/10.1103/PhysRevLett.104.207206
http://dx.doi.org/10.1209/0295-5075/89/40004
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1088/1742-5468/2008/12/P12004
http://dx.doi.org/10.1126/science.264.5163.1297
http://dx.doi.org/10.1103/PhysRevLett.76.3881
http://dx.doi.org/10.1103/PhysRevLett.76.3881
http://dx.doi.org/10.1103/PhysRevE.84.011102
http://dx.doi.org/10.1103/PhysRevE.84.011102
http://dx.doi.org/10.1209/epl/i2001-00438-4
http://dx.doi.org/10.1126/science.1189804
http://dx.doi.org/10.1103/PhysRevB.59.R14157
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://arXiv.org/abs/arXiv:0909.4766
http://dx.doi.org/10.1103/PhysRevB.78.134428
http://dx.doi.org/10.1103/PhysRevB.78.134428


ITAY HEN AND A. P. YOUNG PHYSICAL REVIEW E 84, 061152 (2011)

[31] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
[32] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604

(1996).
[33] E. Farhi (private communication).
[34] A. Sandvik (private communication).
[35] Free boundary conditions in the time direction are used in the

path integral ground state (PIGS) Monte Carlo method; see, e.g.,
Ref. [36], though its capability to project out states of a particular
symmetry does not seem to have been emphasized. Similar ideas

can also be used to project out states with other attributes; see,
for example, Refs. [37,38] in which states of a particular total
spin are projected out.

[36] A. Sarsa, K. Schmidt, and W. Magro, J. Chem. Phys. 113, 1366
(2000).

[37] A. W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).
[38] A. W. Sandvik and H. G. Evertz, Phys. Rev. B 82, 024407 (2010).
[39] For information about WalkSAT, see http://www.cs.rochester.

edu/∼kautz/walksat/.

061152-8

http://dx.doi.org/10.1103/PhysRevE.68.056701
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1103/PhysRevLett.95.207203
http://dx.doi.org/10.1103/PhysRevB.82.024407
http://www.cs.rochester.edu/E7kautz/walksat/
http://www.cs.rochester.edu/E7kautz/walksat/

