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By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum
entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a
comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within
a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and
nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange
multipliers can be expanded in powers of h̄2. In particular, by using an arbitrary number of moments, we prove
that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to
high-order spatial derivatives, both of the numerical density n and of the effective temperature T ; (2) the results
available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi
gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels
of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations
are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical
limit, when h̄ → 0.
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I. INTRODUCTION

Hydrodynamical (HD) models consist of a coupled set
of partial differential equations for the relevant physical
variables of a particle ensemble and are essential for a
physical-mathematical description of the space-time evolution
of any kind of fluid. A rigorous derivation of an HD model
stems from the construction of a given number of moments
of the particle distribution function defined in phase space.
In this derivation, the main difficulty is identified in the
closure problem associated with the constraint that to solve
a set of N moment equations it is necessary the knowledge of
higher-order moments [1–6]. In classical mechanics, the theory
of extended thermodynamics [1,7,8] is a very fruitful approach
to study nonequilibrium phenomena using the HD moment
equations. This theory provides a systematic method to
obtain the constitutive relations present in the hierarchy of
moments by using, to any degree of approximation, the
maximum entropy principle (MEP) [1,2,7]. Apart from some
partial attempts [9–11] this is no longer the case in quantum
mechanics. Here the main difficulties are concerned with
(1) the definition of a proper quantum entropy that includes
particle indistinguishability and (2) the formulation of a global
quantum MEP (QMEP) that allows one to obtain a quantum
distribution function both for thermodynamic equilibrium and
nonequilibrium configurations. Furthermore, in the framework
of a nonlocal quantum theory, the generalization of the
corresponding Lagrange multipliers is also an open problem.
On the other hand, the rigorous formulation of quantum HD
(QHD) closed models is a demanding issue for many kinds
of problems in quantum systems, like interacting fermionic
and bosonic gases [12], quantum turbulence [13], quantum
fluids [14], quantized vortices [15], nuclear physics [16],
confined carrier transport in semiconductor heterostrucures
[17], phonon and electron transport in nanostructures [18,19],
and nanowires and thin layers [20–22].

Recently, in a series of two papers [5,6] we have presented a
set of results addressing this problem by emphasizing the role
played by a proper definition of a quantum entropy principle
to close quantum hydrodynamic models. Here, by further
elaborating previous findings, we provide a comprehensive
theoretical formulation of quantum hydrodynamic transport
by reporting in explicit form the QHD equations for the cases
of a Fermi and Bose gas at different levels of degeneracy.
Accordingly, the main objective of the paper is to give an
advanced theoretical framework on the application of the
maximum entropy principle in quantum statistics. A novel
aspect of the present paper concerns the treatment of nonlocal
effects, which are here captured not only in terms of spatial
derivatives of the density, as already suggested in Ref. [6], but
also in terms of spatial derivatives of the temperature.

Starting from the derivation of a generalized Wigner equa-
tion, we construct a complete set of quantum balance equations
and develop a global QMEP to solve the corresponding closure
problem. In this way, within the framework of nonequilibrium
Wigner theory, we generalize all the results known in literature
both in terms of the statistical effects and in terms of a
nonlocal description. Then, on a macroscopic scale, we prove
that all nonlocal effects of quantum mechanics on a quantum
gas are due to high-order spatial derivatives, both of the
numerical density n and of an effective temperature T . In
particular, if all the terms associated with the temperature
gradient are negligible with respect to the terms connected
with the density gradient (DG), then we reobtain all the
well-known results determined for a quantum Boltzmann
gas [23,24], for a completely degenerate Fermi gas [25–27],
and, more generally, some recent results [6] concerning Fermi
and/or Bose gases for any level of degeneracy. We remark
that, in the case of isothermal conditions (or analogously,
for small spatial variations of the temperature), the DG
method captures many of the important quantum effects, as
confinement and tunneling quantum processes, for physical
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systems in the deca-nanometer regime, by offering an approach
complementary to existing kinetic methods [18,19]. However,
the recent literature has reported on some physical systems
in which the mean-free path of the particles is long compared
with the scale length of temperature gradients, and hence other
nonlocal phenomena should be considered. In these cases,
different theoretical models [20] of energy transport have
been actively explored, introducing (as new thermodynamic
forces) nonlinear products of the temperature gradient, to
describe heat transport properties in (1) nanoscale electronic
devices, (2) nanowires, (3) thin layers materials, (4) plasma
physics, etc. In particular, experiments and simulations of heat
transport along these devices have showed results that differ
significantly from those predicted by the classic Fourier law
[21]. Indeed, on a small scale length even a small difference in
temperature can generate very high gradients, whose nonlocal
effects cannot be neglected [21,22]. In the framework of
Wigner formalism, the QMEP procedure incorporates in a
natural way these temperature gradient corrections that, in
turn, are of great relevance for the analysis of engineering-
oriented devices under quantum nanometer regimes. Finally,
we stress that, within the present approach, a proper nonlocal
formulation of QMEP is developed in both thermodynamic
equilibrium and nonequilibrium conditions. As a consequence,
all Lagrange multipliers and the constitutive relations have
been explicitly determined in terms of quantum corrections
that take into account the nonlocal effects in both equilibrium
and nonequilibrium conditions.

To achieve the above objectives, the work is organized
as follows. In Sec. II, within a second-quantized formalism,
we introduce the reduced density matrix of a single particle
and develop the corresponding Wigner dynamics. Section III
constructs the extended hydrodynamic system of equations
associated with the appropriate Wigner function. In Sec. IV
we assert a maximum entropy principle, and, to explicitly
incorporate particle indistinguishability, a proper global quan-
tum entropy is analyzed in terms of the reduced density
matrix. Section V reports the Moyal expansion of the Wigner
function. By using an arbitrary number of scalar and vectorial
moments, the expansion of the Wigner function around local
equilibrium is investigated in Sec. VI. Sections VII and VIII
report the determination of the Lagrange multipliers and the
closure relations for different quantum regimes of Fermi and
Bose gases, respectively. The case of the first three quantum
hydrodynamic systems obtained for a limited set of scalar and
vectorial moments of the distribution is illustrated explicitly
in Sec. IX. Major conclusions are drawn in Sec. X.

The derivation of analytical results is summarized in an
Appendix where we collect mathematical details for the exact
determination of (1) the QHD system to all orders of h̄, (2) the
Wigner transform for the QMEP reduced density operator, and
(3) the nonlocal expansion, in differential form, both for the
Lagrange multipliers and for the closure relations. Throughout
this paper the tensor index notation is used; thus for a generic
tensor A of rank n, Ai1...in denotes its components, A(i1...in)

the symmetric part, and A〈i1...in〉 the traceless symmetric part.
Overall, there are (2n + 1) independent components and the
following constraints:

A〈i1...k...l...in〉 = A〈i1...l...k...in〉, A〈i1...k...k...in〉 = 0.

II. THE WIGNER DYNAMICS

Following Refs. [5,6] we consider a fixed number N

of identical particles, and we introduce in Fock space the
statistical density matrix ρ for the whole system, with Tr(ρ) =
1 (we suppress the symbol ̂ to refer to operators acting in
Fock space) and the general Hamiltonian

H =
∫

d3r �†(r)

[
− h̄2

2 m
∇2 + U (r)

]
�(r)

+
L∑

k=2

1

k!

∫
d3r1 · · ·

∫
d3rk�

†(r1) · · · �†(rk)

×Vk(r1, . . . ,rk) �(rk) · · ·�(r1), (1)

where m is the particle effective mass, U (r) is the one-body
external potential, Vk(r1, . . . ,rk) is a symmetric function
describing k-body interactions potential, and, by neglect-
ing the spin degree of freedom, �(r) and �†(r) are the
quantized wave field operators [28] satisfying the usual
relations

[�(r),�(r′)]± = [�†(r),�†(r′)]± = 0,
(2)

[�(r),�†(r′)]± = δ(r − r′),

where the ± signs refer to fermions and bosons, respectively.
Analogously, in coordinate space representation, we define

the reduced density matrix [29] of a single particle (henceforth
we use the symbol̂ for single-particle operators):

〈r|̂�|r′〉 = 〈�†(r′)�(r)〉 = Tr(ρ�†(r′)�(r)), (3)

which in an arbitrary representation takes the usual form:

〈ν |̂�|ν ′〉 = 〈a†
ν ′aν〉 = Tr(ρ a

†
ν ′aν), (4)

where ν, ν ′ are single-particle states, aν,a
†
ν ′ the annihilation

and creation operators for these states, and 〈· · ·〉 the statistical
mean value. In particular, in momentum space it is

〈p|̂�|p′〉 = 〈a†
p′ap〉, and

〈r|̂�|r′〉 = 1

(2 π h̄)3

∫ ∫
d3p d3p′e

i
h̄

p·r e− i
h̄

p′ ·r′ 〈a†
p′ap〉.

Accordingly, for a one-particle observable L̂ we obtain as
expectation value

Tr(̂�L̂) =
∫ ∫

d3r d3r ′ 〈�†(r′) �(r)〉 〈r′|L̂|r〉

=
∫ ∫

d3p d3p′ 〈a†
p′ap〉 〈p′|L̂|p〉, (5)

i.e., an ensemble average over many experimental realizations
with a fixed number N of particles.

By using this formalism [29], we can define the reduced
Wigner function in terms of the reduced density matrix (3)

FW = 1

(2πh̄)3

∫
d3τ 〈�†(r − τ/2)�(r + τ/2)〉 e− i

h̄
τ ·p, (6)
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determining, for the momentum distribution function and for
its dual expression, the relations∫

d3r FW (r,p) = 〈a†
pap〉 = 〈Np〉,

(7)∫
d3pFW (r,p) = 〈�†(r) �(r)〉 = n(r),

where 〈Np〉 is the mean occupation number, n(r) is the
quasiparticle (numerical) density, and

Tr(̂�) =
∫ ∫

d3r d3pFW (r,p) =
∫

d3p 〈a†
pap〉

=
∫

d3r 〈�†(r) �(r)〉 = N. (8)

Accordingly, for an arbitrary single-particle operator L̂(̂r,̂p)
that is a function of both operator r̂ and operator p̂, we can find
a phase function [30], L̃(r,p), that corresponds unambiguously
to operator L̂, by introducing the Weyl-Wigner transform
W. In more detail, L̃(r,p) is defined by first regarding L̂
as an integral operator with kernel 〈r|L̂|r′〉 in the coordinate
representation, and then setting

L̃(r,p) = W(L̂) =
∫

d3τ 〈r + τ/2 | L̂ | r − τ/2〉 e− i
h̄

τ ·p.

(9)

Analogously, it is possible to define the inverse Weyl-
Wigner transform W−1 (Weyl quantization), which maps the
function L̃ on phase space into operator L̂ on Hilbert space,
so that we obtain

〈r|L̂|r′〉 = W−1(L̃)

= 1

(2πh̄)3

∫
d3p L̃

(
r + r′

2
,p
)

e
i
h̄

p·(r−r′). (10)

This equation defines the kernel of L̂, and hence L̂ itself, in
terms of L̃. In particular, by relations (3), (6), (9), and (10) we
obtain �̃(r,p) = (2πh̄)3 FW (r,p) and 〈r|̂�|r′〉 = W−1(̃�).

By considering the equation of motion in the Heisenberg
picture for the operator �(r), the Hamiltonian (1), the relations
(2), and the symmetry property of the terms Vk(r1, . . . ,rk), we
obtain

ih̄
∂

∂t
�(r) = H(r)�(r), − ih̄

∂

∂t
�†(r) = �†(r)H(r) (11)

with

H(r) = − h̄2

2m
∇2 + U (r)

+
L−1∑
k=1

1

k!

∫
d3r1 · · ·

∫
d3rk�

†(r1) · · · �†(rk)

×Vk+1(r,r1, . . . ,rk)�(rk) · · · �(r1). (12)

Starting from these relations, we determine the equation
of motion for the quantity �†(r′)�(r), and by performing
its statistical average we have, in the generalized Hartree
approximation [31,32], the usual evolution equation for the

reduced density matrix of a single particle

ih̄
∂

∂t
〈r|̂�|r′〉

=
∫

d3r ′′{〈r|Ĥ|r′′〉〈r′′ |̂�|r′〉 − 〈r|̂�|r′′〉〈r′′|Ĥ|r′〉}, (13)

where Ĥ = 〈H〉 is the single particle Hamilton operator.
Accordingly, by applying the Fourier transform (9) to the

different terms of Eq. (13) and using the inverse relation (10)
to introduce the Fourier transform of Ĥ and �̂, we obtain

ih̄
∂

∂t
FW (r,p)

= 1

(2πh̄)6

∫ ∫ ∫ ∫
d3r ′ d3p′ d3τ d3φ e

i
h̄

τ ·(p′−p) e
i
h̄

φ·(r−r′)

×
[
p′

α

m
φα + Veff

(
r′ + τ

2

)
− Veff

(
r′ − τ

2

)]
FW (r′,p′),

(14)

where

Veff(r) = U (r) +
L−1∑
k=1

1

k!

∫
d3r1 · · ·

∫
d3rkg

(k)(r1, . . . ,rk)

× n(r1) · · · n(rk) Vk+1(r,r1, . . . ,rk), (15)

where g(k)(r1, . . . rk) is the k-order correlation function
[33,34],

g(k)(r1, . . . ,rk) = 〈�†(r1) · · · �†(rk)�(rk) · · · �(r1)〉
n(r1) · · · n(rk)

, (16)

and, by construction, g(1)(r1) = 1. Then, by expanding the
term Veff(r′ + τ/2) − Veff(r′ − τ/2) around τ = 0, we obtain
(see Appendix 2) the full expansion to all orders in h̄

of the reduced Wigner equation in the generalized Hartree
approximation [35],

∂FW
∂t

+ pk

m

∂FW
∂xk

=
∞∑
l=0

(i h̄/2)2l

(2l + 1)!

[
∂2l+1Veff

∂xk1 · · · ∂xk2l+1

] [
∂2l+1FW

∂pk1 · · · ∂pk2l+1

]
,

(17)

where Einstein convention is assumed on the saturated indices
k,k1, . . . ,k2l+1, and all effects of interactions are included in
the definition (15) of an effective potential. We remark that if
we consider only the first term in the sum of expression (15)
(i.e., L = 2), then we obtain the usual Hartree approximation
[36] with the two-body interactions potential

Veff,2(r) = U (r) +
∫

d3r1 n(r1) V2(r,r1). (18)

On the other hand, by considering the remaining terms
contained in Eq. (15) (i.e., L > 2), we include in Veff(r) other
correction terms that are imputable to many-body interactions
of higher order. Within this level of approximation, the above
results can be formulated by including explicitly the spin
degrees of freedom, and Eqs. (14) and (17) can be supple-
mented by other interaction terms. In this way the theory can
be applied to a variety of physical systems, including metals,
Fermi liquids [29,31], nonideal gases, and plasmas [37].
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We finally note that the previous formulation describes
the interactions between particles in the generalized Hartree
approximation where each particle moves in the generalized
average field Veff produced by all the particles. Thus, the kinetic
equation (17) is the exact consequence of the Heisenberg
equation of motion (13) for the reduced density matrix, with
Ĥ = 〈H〉 expressed by means of (12).

We notice that, by considering more carefully the interac-
tion phenomena and, in particular, by including higher-order
terms to describe the correlations between an increasing
number of particles, no set of exact kinetic equations can be
obtained any longer. Thus, due to the many-body nature of the
problem, an infinite hierarchy of high-order density matrices
(the quantum analog of the semiclassical BBGKY hierarchy
[38]) can be obtained. In general, the equation of motion for
an N -particle density matrix involves the (N + 1)-particle
density matrices, and the resulting set of kinetic equations
of motion is not closed. To make the problem tractable, the
central approximation stems in the truncation of the hierarchy.
The truncation should occur on some level, and the succes-
sive treatment should be based on different approximation
schemes, as was studied extensively for systems leading, e.g.,
to a semiclassical or quantum kinetic description of scattering
processes [37,39,40]. Thus, taking, for example, the case of a
Bose gas with contact interactions [3,41], a treatment obtained
in the framework of Hartree approximation leads to Eqs. (15)–
(17) and can replace the same approximations governed by
a generalized Gross-Pitaevskii equation [3,5]. Analogously,
to a higher order of approximation, for the same case of a
Bose gas, the treatment can be generalized by introducing the
quantum Boltzmann-Nordheim kinetic equation through the
BBGKY hierarchy for the density matrix when the dynamical
correlations caused by collisions are supposed to be very well
localized both in space and time [40].

III. DEVELOPMENT OF THE QUANTUM
HYDRODYNAMIC SYSTEM IN POWERS OF h̄

In this section we determine the relationship between the
reduced Wigner function dynamics and a quantum hydrody-
namic (QHD) formulation of this dynamics where one can
readily derive a chain of equations of motion for an arbitrary
number of macroscopic variables. Similar hydrodynamic
expansions have been carried out in literature for a one-
dimensional case [3,35,42]. Analogously, in the recent past,
the derivation of three-dimensional QHD models, obtained by
first-moments expansion [11,23,24] of the Wigner equation,
has attracted considerable attention for the growing field of
nanotechnology applications.

The objective of this section is to determine, in a systematic
way, an extended three-dimensional QHD model, which de-
scribes the full dynamics of the generalized Wigner equation,
with their classical (HD) counterpart obtained through the
h̄ → 0 limit. We also aim at finding the corrections to these
classical models when all nonlocal effects are given not only
in terms of spatial derivatives of the density, as suggested
in Ref. [6], but also in terms of spatial derivatives of the
temperature. In this way we determine an extended quantum
hydrodynamic model that is evaluated exactly to all orders
of h̄.

A. The moments of the reduced Wigner function

By considering an arbitrary operator L̂(̂r,̂p), and the
corresponding phase-space function L̃(r,p), the macroscopic
expectation value of L̂(̂r,̂p) is given by the global quantity

〈L̂(̂r,̂p)〉 = Tr(̂� L̂) =
∫ ∫

d3p d3r L̃(r,p)FW (r,p,t). (19)

Analogously, we can define the macroscopic local moment
F (r,t) of L̂(̂r,̂p) by means of the local relation

F (r,t) =
∫

d3p L̃(r,p) FW (r,p,t); (20)

in this way the Wigner function acts like a joint probability
distribution over position and momentum. In particular, by
introducing the quantity ε = p2/(2m) and considering the
group velocity ui = pi/m as set of phase-space functions we
can define the following set of traceless kinetic fields:

L̃A = {
εs, εsui1 , ε

su〈i1 ui2〉, . . . , ε
su〈i1 ui2 . . . uir 〉

}
, (21)

and, by using Eq. (20), we obtain the corresponding set of
local moments:

FA(r,t) = {
F(s), F(s)|i1 , F(s)|〈i1i2〉, . . . , F(s)|〈i1···ir 〉

}
, (22)

where s = 0,1, . . . ,N and r = 1,2, . . . ,M with N , M inte-
gers labeling the maximum number of moments considered.

As in the classic extended thermodynamics approach [1],
it is possible to decompose the local moments into their
convective and central parts, respectively. To this purpose,
we introduce the mean velocity

vi = 1

n

∫
d3p ui FW (r,p,t), (23)

the peculiar velocity ũi = ui − vi , and the quantity ε̃ =
p̃2/2m. Thus, we consider the new set of kinetic fields

M̃A = {̃
εs, ε̃s ũi1 , ε̃

s ũ〈i1 ũi2〉, . . . , ε̃
s ũ〈i1 ũi2 . . . ũir 〉

}
, (24)

and, in correspondence, the new set of central moments

MA(r,t) = {
M(s), M(s)|i1 , M(s)|〈i1i2〉, . . . , M(s)|〈i1···ir 〉

}
, (25)

where, by construction,

M(0)|i1 = 0, M(s)|〈i1i2···ir 〉 =
∫

d3p ε̃s ũ〈i1 ũi2 . . . ũir 〉 FW .

(26)

Since the vectorial moment M(0)|i is zero, it is replaced by
the velocity vi ; in this way there is a one-to-one correspondence
between the moments FA and the quantities {vi,MA} that can
be considered as the set of independent macroscopic variables.
Accordingly, the total moments FA and the central moments
MA are related by

F(s)|〈i1···ir 〉 =
s∑

k=0

k∑
l=0

r∑
q=0

(
s

k

)(
k

l

)(
r

q

)
ms−l

2k−l

× v2(k−l) vj1 . . . vjs−k
M(l)|j1...js−k〈i1...iq viq+1 . . . vir 〉.

In particular, by using only an arbitrary number of scalar
and vectorial kinetic fields M̃A = {̃εs, ε̃s ũi} we obtain in
correspondence the set of scalar and vectorial central moments
MA = {M(s),M(s)|i}, with s = 0, . . . ,N . Thus, for N = 0 as
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set of physical quantities we obtain the usual macroscopic
variables such as the numerical density n = M(0) and the
velocity vi. Analogously, forN = 1 we obtain the macroscopic
variables {n, vi,M(1),M(1)|i}, which admit a direct physical in-
terpretation being M(1) = 3/2 P and M(1)|i = qi , respectively,
the internal energy density (with P the pressure) and the
heat flux density. By contrast, for N > 1 we consider, as
macroscopic variables, also some scalar and vectorial moments
of higher order.

B. Quantum balance equations for the central moments

By multiplying Eq. (17) by M̃A, and integrating over the p
space, we determine the corresponding set of quantum balance
equations (see Appendix 3) to all orders of h̄. Thus, the balance
equations for an arbitrary number of scalar and vectorial
moments of the Wigner function can be expressed explicitly in
the exact form as reported in Ref. [6]. In general, the closure
problem of a set of balance equations can be tackled using
a quantum maximum entropy formalism (QMEF) [5,6,9–11]
that is formulated in its more general form in the next
section.

IV. QUANTUM MAXIMUM ENTROPY PRINCIPLE

The QMEP provides the most rigorous constraint in order
to select the physical constitutive equations. The maximum
entropy formalism was generalized to the density-matrix
formalism of quantum mechanics in a pioneer work by
Jaynes [9]. In subsequent works, other authors [10] have
applied the QMEP in the framework of information theory
[43] and by using the Non-Equilibrium Statistical Operator
Mechanics [44]. Recently the problem has been developed by
considering the Weyl-Wigner formalism [5,6,11], and in this
context the second-quantized formalism, in the representation
of occupation numbers, is a useful starting point [45] for the
incorporation of statistics into problems involving a system of
identical particles.

A. Including statistics in quantum entropy

The most used definition of quantum entropy is due to Von
Neumann [46] and is expressed in the form

S = −kB Tr(ρ ln ρ), (27)

where kB is the Boltzmann constant and ρ is the statistical
density matrix operator appropriate to the physical system
under study.

Although the relation (27) does not refer to any special
structure of the system, there are some particular features
that must be satisfied for a system of identical particles.
Indeed, a main drawback of the above definition, as well
as of others [11,47,48], stems from the fact that it does
not include the indistinguishability principle of a system of
identical particles. To account for the effects of statistics in
Eq. (27), it is mandatory to consider an additional information
specifying whether the density operator ρ, defined in Fock
space, is associated with a fermions or bosons system.

In order to take into account ab initio the statistics for a
system of identical particles, we can follow the Landau strategy
[49] by evaluating the quantum entropy as the logarithm of the

statistical weight for the whole system. For this purpose, as
shown in Refs. [5,6], for a noninteracting system of fermions
or bosons in nonequilibrium conditions, the quantum entropy
can be determined in terms of the functional of the reduced
density matrix

S (̂�) = −kBTr[̂(̂�)], (28)

where for the Fermi or Bose gases, ̂(̂�) is given by

̂(̂�) = �̂

[
ln

(
�̂

y

)
± y �̂−1

(
Î ∓ �̂

y

)
ln

(
Î ∓ �̂

y

)]
, (29)

where Î is the identity. Analogously, under nondegenerate
conditions Bose and Fermi statistics tend to Boltzmann
statistics as limit case, and the general expression (29) reduces
to

̂(̂�) = �̂

[
ln

(
�̂

y

)
− Î

]
(30)

for the Boltzmann gas.

B. General formulation of QMEP in phase space

Let us consider the operator L̂A (̂r,̂p) with L̃A(r,p), 〈L̂A〉,
and FA(r,t), the phase function, the expectation value, and
the corresponding local moment, expressed, respectively, by
relations (9), (19), and (20). In order to formulate the QMEP
approach in phase space, we introduce the phase function
̃(r,p) = W(̂(̂�)), rewriting Eq. (28) in the form

S (̂�) = − kB

(2πh̄)3

∫ ∫
d3p d3r W[̂(̂�)], (31)

and we search the extremal value of the global entropy subject
to the constraint that the information on the physical system
is described by a set of local moments {FA(r,t)} with A =
1, . . . ,N. To this purpose, we define the new global functional
[5,6,9–11]

S̃ = S −
∫

d3r

[
N∑

A=1

λ̃A

(∫
d3p L̃A FW − FA

)]
, (32)

where λ̃A = λ̃A(r,t) the Lagrange multipliers to be deter-
mined. It is easy to show that the solution of the constraint
δS̃ = 0 implies

̂′(̂�) = W−1

(
−

N∑
A=1

λA L̃A

)
, (33)

with λA = λ̃A/kB . In particular, if we use the set (24) as kinetic
fields, the corresponding central moments (25) as constraints,
and the explicit expressions (29) and (30) for the function
̂(̂�), then, by relation (33), we obtain the following:

(i) In the case of Fermi and Bose statistics, the functional
form [5,6]

�̂ = y

(
exp

{
W−1

[
N∑

A=1

λA(r,t)M̃A

]}
± Î

)−1

. (34)
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(ii) In the case of Boltzmann statistics, the simplified
expression

�̂ = y exp

{
W−1

[
−

N∑
A=1

λA(r,t)M̃A

]}
. (35)

Thus, by applying the Fourier transform (9), the reduced
Wigner function takes the form

FW = 1

(2πh̄)3
W (̂�[λA(r, t),M̃A]). (36)

We stress that, in the set of quantum hydrodynamic
equations (A19) and (A20) reported in Appendix 3, the effects
of interactions are entirely contained in Veff(r).

Accordingly, to take into account the detailed kinetics of the
interactions, we consider the above approach in a dynamical
context. Indeed, by itself the QMEP does not provide any
information about the dynamical evolution of the system, but
it offers only a definite procedure to construct a sequence
of approximations for the nonequilibrium Wigner function.
To obtain a dynamical description, it is necessary (i) to
know a set of evolution equations for the constraints that
includes the microscopic kinetic details and (ii) to determine
the Lagrange multipliers in terms of these constraints. In this
way, the QMEP approach implicitly includes all the kinetic
details of the microscopic interactions among particles. Thus,
by knowing the functional form (34)–(36) of the reduced
Wigner function, we use Eq. (17) to obtain a set of evolution
equations for the constraints. This set completely represents
the QHD model (A19) and (A20) reported in the Appendix,
in which all the constitutive functions are determined starting
from their kinetic expressions. Thus, for a given number of
moments MA, we can consider a consistent expansion around
h̄ of the Wigner function. In this way we separate classical
from quantum dynamics and obtain order-by-order corrections
terms.

V. MOYAL EXPANSION OF THE WIGNER FUNCTION

By using the Moyal formalism [50] one can prove
[45,51,52] that the Wigner function, and consequently the
central moments, can be expanded in even powers of h̄ as

FW =
∞∑

k=0

h̄2k F (2k)
W , MA =

∞∑
k=0

h̄2k M
(2k)
A . (37)

With this approach, we obtain a system in which the
dynamical evolution is described by resolving, order by order, a
closed hydrodynamic set of balance equations for the moments
MA(r,t). To this end, the Lagrange multipliers λA must be
determined by inverting, order by order, the constraints

MA = 1

(2πh̄)3

∫
d3p M̃A W (̂�[λA(r, t),M̃A]). (38)

The inversion problem can be solved only by assuming that
also the Lagrange multipliers can be expanded in even powers
of h̄. Thus, we search λA in the form [5,6]

λA(r,t) =
∞∑

r=0

h̄2r λ
(2r)
A (r,t), (39)

with the condition that for h̄ → 0 we determine the usual
expressions for both the Lagrange multipliers and the dis-
tribution function obtained in the framework of the classic
MEP approach [1,7]. In particular, under local equilib-
rium conditions we obtain the usual Maxwell-Boltzmann
distribution function for nondegenerate gases, and the
usual Bose or Fermi distribution functions for degenerate
gases.

In the next sections, the Moyal formalism is applied to
develop a nonlocal theory for the Fermi and Bose gases, which
is evaluated explicitly, up to the first quantum correction.
However, it is worth noting that, hereafter, all the results
concerning Boltzmann statistics will be determined as a limit
case of Fermi and Bose statistics.

A. Moyal and quasi-Moyal approximations
for the Fermi and Bose gases

By following the approach reported in Appendix 5, we
consider the Weyl-Wigner transform of the density operator
(34). Thus, in the framework of Fermi and Bose statistics, we
obtain for the Wigner function the expansion [6]

FW = ỹ

e� ± 1

(
1 +

∞∑
r=1

h̄2rP ±
2r

)
, with

(40)

� =
N∑

A=1

λA M̃A,

where ỹ and the quantities P ±
2r are explicitly expressed in

Appendix 5.
We remark that the present strategy generalizes all the

results reported in literature for a quantum gas [23–27]. In
particular, by considering the different terms P ±

2r of expansion
(40) we generalize some recent results reported in Ref. [6]
by obtaining a sequence of approximate solutions (quasi-
Moyal approximations), where, on a macroscopic scale, all
the nonlocal effects are captured not only in terms of spatial
derivatives of the density but also in terms of spatial derivatives
of the temperature.

At this stage, the Lagrange multipliers λA can be determined
using an iterative procedure and inverting the relations (38)
evaluated up to a given order in power of h̄2.

Accordingly, in the zero-order approximation, we assume

FW ≈ ỹ

e� ± 1
, with MA + O(h̄2) =

∫
d3p M̃A FW ,

(41)

where the moments MA are the classic macroscopic variables,
and, consequently, the Lagrange multipliers λA must be
determined as solutions of relations (41)2. In this way, we
obtain the classic nonequilibrium relations

λA = λA(MB) + O(h̄2),

FW = FW (MA, p̃) + O(h̄2), (42)

HA = HA(MB) + O(h̄2).

Analogously, the first-order quantum approximation is
obtained by considering the successive term of the series (40),
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i.e., the quasi-Moyal expression

FW ≈ ỹ

e� ± 1
(1 + h̄2P ±

2 ), with � =
N∑

A=1

λA M̃A, (43)

where, by using the previous iteration, the term P ±
2 is

expressed in the form

P ±
2 = P ±

2

(
MB,

∂MB

∂xk

,
∂2MB

∂xi∂xk

, p̃
)

+ O(h̄2). (44)

By following this approach, the first quantum approxima-
tion for λA, is obtained by inverting the relations

MA + O(h̄4) =
∫

d3p M̃A FW , (45)

where, in the course of this computation, we assume that
the quantities MA are evaluated up to the first-order quantum
correction. Then we formally obtain

λA = λA

(
MB,

∂MB

∂xk

,
∂2MB

∂xi∂xk

)
+ O(h̄4), (46)

and, consequently, both the Wigner function and the consti-
tutive functions HA are estimated, by means of expressions
(43)–(46) and (A24), in the form

FW = FW

(
MA,

∂MA

∂xk

,
∂2MA

∂xi∂xk

, p̃
)

+ O(h̄4), (47)

HA = HA

(
MB,

∂MB

∂xk

,
∂2MB

∂xi∂xk

)
+ O(h̄4). (48)

The advantage of this approach is that, to every quantum
approximation, we obtain the Lagrange multipliers using the
previous iterations and by inverting order by order the relations
(38). Thus, both the Lagrange multipliers and the constitutive
relations are determined as functions both of moments and
their spatial derivatives up to the prefixed order in power of
h̄2. We conclude by remarking that, formally, Eq. (43)1 should
be considered as a quasi-Moyal approximation of the Wigner
function, since to obtain an effective Moyal-approximation up
to terms of order h̄2, also an expansion of term [e� ± 1]−1

should be explicitly considered.
In the following we adopt the above strategy by using the

set (24) of kinetic fields and the set (26) of corresponding
moments. Generally, the inversion of relations (45) is a rather
complicate procedure owing to the nonlinearity of F with
respect to the Lagrange multipliers. However, the inversion
can be performed by using a more affordable series expansion
around some local equilibrium configuration. In the next
section we consider this approach and develop, explicitly, the
series expansion by using only an arbitrary set of scalar and
vectorial moments of the distribution function.

VI. EXPANSION OF THE WIGNER FUNCTION
AROUND LOCAL EQUILIBRIUM

To determine an analytical expression of the Wigner
function, through the relations (43)1, it is necessary to obtain
an explicit representation of λA. To this purpose, we consider
only the kinetic fields M̃A = {ε̃l , ε̃l ũi } and decompose the
Lagrange multipliers in the equilibrium and nonequilibrium
local parts [6] were {α(r,t), β(r,t)} are the nonvanishing
Lagrange multipliers of local equilibrium, while �A(r,t) =
{�(l),�(l)|i} are the nonequilibrium Lagrange multipliers with

α =
∞∑

k=0

h̄2k α(2k), β =
∞∑

k=0

h̄2k β(2k), �A =
∞∑

k=0

h̄2k �
(2k)
A .

(49)

With this procedure, we can consider an expansion [6] of
the relation (43)1 up to first order with respect to the deviations
from the local equilibrium configuration FW |E

FW ≈ FW |E +
N∑

A=1

(
∂ FW
∂ �A

)
E

�A, (50)

by assuming, in the course of this computation, that all
the terms associated with the spatial variations of �

(0)
A are

negligible with respect to the terms connected with the
spatial variations of the equilibrium quantity α(0) and β(0).

With this assumption, the analytical computation becomes
significantly simpler, and the nonlocal effects expressed by
the quantum correction of the Wigner function should be
ascribed essentially to the spatial derivatives of both density
n and effective temperature T .

A. Nonlocal expansion for Fermi and Bose gases

By expanding the quasi-Moyal approximation (43)1 in
terms of the nonequilibrium Lagrange multipliers �A, we
obtain the equilibrium and the linear nonequilibrium contribu-
tions of FW (see Appendix 6)

FW |E = ỹ
(
L±

(0) + h̄2 P
±(0)
2

)
, (51)

FW |NE = ỹ
(
L±

(1) + h̄2 P
±(1)
2

)
×

( N∑
l=0

�(l) ε̃
l +

N∑
l=0

�(l)|i ε̃l ũi

)
, (52)

where ỹ = (2 s̃ + 1)/(2 πh̄)3 (with s̃ h̄ the particle spin), the
functions L±

(n) are given by

L±
(n) = dn

dαn

(
1

eα+β ε̃ ± 1

)
, (53)

and the quantum correction terms {P ±(0)
2 ,P

±(1)
2 } will be

expressed in the following form:

P
±(r)
2 = 1

12 m

1

kB T

{[
L±

(3+r) Q(1,1) + L±
(2+r) Q(2,1)

] + m

kB T

[
L±

(3+r) Q(1,2) + L±
(2+r) Q(2,2)

]
ũ2 +

(
m

kB T

)2

L±
(3+r) Q(1,3) ũ4

+ m

kB T

[
L±

(3+r) Q
(1,4)
〈ij〉 + L±

(2+r) Q
(2,4)
〈ij〉

]
ũ〈i ũj〉 +

(
m

kB T

)2

L±
(3+r) Q

(1,5)
〈ij〉 ũ2 ũ〈i ũj〉

}
+ O(h̄2) for r = 0, 1, (54)
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where the nonlocal quantities {Q(k,l)} and {Q(k,l)
〈ij〉 } are explicitly

reported in Eqs. (A70)–(A77) of the Appendix in terms of
{n, T , ∂n

∂xk
, ∂T

∂xk
, ∂2n

∂xi∂xk
, ∂2T

∂xi∂xk
} and of Fermi and Bose integral

functions I±
n (α) defined in Eqs. (A68) and (A69).

1. The density-gradient approximation

It should be noted that, in general, if the spatial derivatives
of the effective temperature T (r,t) are very large in the
regions where also the numerical density n(r,t) varies very
quickly, then nonlocal effects imputable to the temperature
cannot be neglected. By contrast, if all the terms associated
with temperature gradient are negligible with respect to terms
connected with the density gradient, then we obtain the usual
nonlocal effects [5,6,23–27] imputable only to the spatial
derivatives of the numerical density [53]. In this case the
quantities {Q(2,2),Q(1,3),Q(2,4)

〈ij〉 ,Q
(1,5)
〈ij〉 } can be neglected in

Eq. (54), and the remaining terms will admit for a simplified
expression. Consequently, we reobtain some recent results
reported in Ref. [6], and the quantum correction terms P

±(r)
2

take the simplified form

P
±(r)
2 = 1

12 m

1

kB T

{[
L±

(3+r) Q
(1) + 9 L±

(2+r) Q
(2)
]

+ m

kB T
L±

(3+r)

[
Q(2) ũ2 + Q〈ij〉 ũ〈i ũj〉

]} + O(h̄2)

for r = 0, 1, (55)

where the nonlocal quantities {Q(k),Q〈ij〉} can be ob-
tained, by using the relations (A78), only as functions of
{n, T , ∂n

∂xk
, ∂2n

∂xi∂xk
}.

B. Nonlocal expansion for a Boltzmann gas

We remark that for α 
 1 both Bose and Fermi statistics
tend to Boltzmann statistic. As a consequence, from expres-
sions (51)–(54) we obtain (see Appendix 7) the following
explicit equilibrium and linear nonequilibrium contributions
for a Boltzmann gas:

FW |E = ỹ e−α e−β ε̃ {1 + h̄2 Q̃2}, (56)

FW |NE = −ỹ e−αe−β ε̃{1 + h̄2 Q̃2}

×
{ N∑

l=0

�(l) ε̃
l +

N∑
l=0

�(l)|i ε̃l ũi

}
, (57)

where the quantum correction term Q̃2 is expressed in the form

Q̃2 = 1

12 m

1

kB T

{
Q(1) + m

kB T
Q(2)ũ2 +

(
m

kB T

)2

Q(3) ũ4

+ m

kB T
Q(4)

〈ij〉ũ〈i ũj〉+
(

m

kBT

)2

Q(5)
〈ij〉ũ

2ũ〈i ũj〉

}
+O(h̄2),

(58)

and the quantities {Q(1),Q(2),Q(3),Q(4)
〈ij〉,Q

(5)
〈ij〉} are nonlocal

functions of {n, T , ∂n
∂xk

, ∂T
∂xk

, ∂2n
∂xi∂xk

, ∂2T
∂xi∂xk

} that can be
obtained by using of relations (A91) and (A92).

Also in this case, if we consider the density-gradient
approximation, then it is possible to neglect all terms con-
taining the spatial derivatives of temperature in Eq. (58). In

particular,Q(3) andQ(5)
〈ij〉 can be neglected, while the remaining

quantities {Q(1),Q(2),Q(4)
〈ij〉} are expressed only as function of

{n, ∂n
∂xk

, ∂2n
∂xi∂xk

}, and the quantum correction term Q̃2 takes the
simplified explicit form

Q̃2 = 1

24 m

1

kB T

{[
3

∂2ln n

∂xk∂xk

+
(

∂ln n

∂xk

)2]
− m

kB T

∂2ln n

∂xi∂xj

ũi ũj

}
+ O(h̄2). (59)

VII. LAGRANGE MULTIPLIERS AND CLOSURE
RELATIONS IN EQUILIBRIUM CONDITIONS

By inserting the quasi-Moyal approximation (51) into the
definition of the macroscopic quantities (45), we can determine
the equilibrium Lagrange multipliers. As a consequence,
through Eq. (26)2, also the constitutive functions (A24) can
be obtained in equilibrium conditions up to the first quantum
correction with respect to the classic expressions.

A. Quantum chemical potential and quantum equation of state

By using the approximation (51), we can calculate the
variables of local equilibrium n(r,t) = M(0)(r,t) and P (r,t) =
2/3 M(1)(r,t) through the relations

n(r,t) + O(h̄4) =
∫

d3p FW |E, (60)

P (r,t) + O(h̄4) = 2

3

∫
d3p ε̃FW |E, (61)

where {n(r,t), P (r,t)} are evaluated up to the first-order
quantum correction. In particular, by assuming β = (kBT )−1

and introducing the dimensionless quantities

η
(s)
ij = 2j−1 (−1)i

�
(
s + j + 1

2

)
�
(
s + j + i − 7

2

) I±
2(s+j+i−4)

I±
2(s+1)

(62)

with s,i,j integer, we determine the following generalized
differential constraints for the QHD system:

I±
2 (α) = γ

n

T 3/2

{
1 − h̄2

12 m

1

kB T

[
3∑

p=1

η
(0)
1pQ(1,p)

+
2∑

q=1

η
(0)
2q Q(2,q)

]}
+ O(h̄4), (63)

P = 2

3
n kB T

I±
4

I±
2

{
1 + h̄2

12m

1

kBT

[
3∑

p=1

(
η

(1)
1p − η

(0)
1p

)
Q(1,p)

+
2∑

q=1

(
η

(1)
2q − η

(0)
2q

)
Q(2,q)

]}
+ O(h̄4), (64)

where γ −1 = [4(2s̃ + 1)/
√

π ] (mkB/2πh̄2)3/2.
Accordingly, by solving the relation (63) with respect to α,

we determine the quantum chemical potential μ = −α kB T ,
while by using Eq. (64) we obtain the generalized quantum
equation of state for the system under interest. We remark that,
in general, the differential constraints (63) and (64) should
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be solved numerically step by step with every set of closed
QHD equations. In this way, it is possible to determine both
the Lagrange multiplier α and the pressure P as numerical
nonlocal functions of variables n and T .

In this section we generalize the procedure reported
in Ref. [6] by assuming that the nonlocal effect are im-
putable to the spatial derivatives of both density n and
temperature T . Thus, for various degeneracy levels of Fermi
and Bose gases, some simplified analytical cases can be
analyzed.

1. Completely nondegenerate Fermi and Bose gases

For the case α 
 1, we use only the first term of a
suitable expansion in series for the Fermi an Bose integral
functions [6,54]. Accordingly, we take I±

n (α) ≈ (1/2)�[(n +
1)/2] exp (−α), and by using Eqs. (62)–(64) and (A70)–(A74)
obtain the following relations:

μ = kBT ln [χ (0)] + QI
B

3
+ O(h̄4),

(65)
P = n kB T + nQI

C + O(h̄4),

where χ (0) = (4γ /
√

π ) n/T 3/2 � 1 and the quantum correc-
tions terms are expressed in the form

QI
B = − h̄2

8 m

{
2

∂2 ln n

∂xr ∂xr

+
(

∂ln n

∂xr

)2

− ∂2 ln T

∂xr ∂xr

+ 1

2

(
∂ln T

∂xr

)2

− 2
∂ln n

∂xr

∂ln T

∂xr

}
, (66)

QI
C = − h̄2

36 m

{
∂2 ln n

∂xr∂xr

− ∂2 ln T

∂xr ∂xr

+ 1

2

(
∂ln T

∂xr

)2

− ∂ln n

∂xr

∂ln T

∂xr

}
. (67)

We remark that the relations (65)–(67) generalize all the
results known in literature in the framework of Wigner theory
for a Boltzmann gas [6]. In particular, if we assume that the
nonlocal effects are imputable to both the spatial derivatives
of density n and temperature T , then the terms QI

B and QI
C

represent, respectively, the natural generalization of the usual
Bohm quantum potential QB = −(h̄2/2m

√
n) √

n, and of
the usual quantum correction for the pressure P. Indeed if,
for the sake of simplicity, we consider the usual density-
gradient approximation [5,6,23,24,53], we find QI

B ≈ QB and
QI

C ≈ −(h̄2/36m)  ln n. Consequently, by using Eqs. (65) we
recover the well-known results for the chemical potential [23]
and for the pressure [24] in the case of the quantum Boltzmann
gas [6].

2. Weakly degenerate Fermi and Bose gases

In the case α > 1, the statistics corresponds to that of
a weakly degenerate gas. Thus, by using the first two
terms in a series expansion [6,54] I±

n (α) ≈ (1/2)�[(n + 1)/2]
exp(−α){1 ∓ exp(−α)/2(n+1)/2}, and by considering the usual
iterative procedure [6,49,54], we use Eqs. (62)–(64) and

(A70)–(A74) up to order h̄2, to obtain the first statistical
corrections in terms of quantity χ (0) � 1, where

μ = kBT ln

[(
1 ± χ (0)

23/2

)
χ (0)

]
+ 1

3

(
QI

B ± χ (0)

23/2
QII

B

)
+ O(h̄4), (68)

P = n kB T

(
1 ± χ (0)

25/2

)
+ n

(
QI

C ∓ χ (0)

25/2
QII

C

)
+ O(h̄4),

(69)

where the quantum statistical corrections QII
B ,QII

C are ex-
pressed in the form

QII
B = − h̄2

8 m

{
−2

∂2 ln n

∂xr ∂xr

− 2

(
∂ln n

∂xr

)2

+ 3
∂2 ln T

∂xr ∂xr

− 3

(
∂ln T

∂xr

)2

+ 5
∂ln n

∂xr

∂ln T

∂xr

}
, (70)

QII
C = − h̄2

36 m

{
6

∂2 ln n

∂xr∂xr

+ 7

(
∂ln n

∂xr

)2

− 9
∂2 ln T

∂xr ∂xr

+ 45

4

(
∂ln T

∂xr

)2

− 18
∂ln n

∂xr

∂ln T

∂xr

}
. (71)

Also in this case, if we assume that nonlocal effects are
imputable only to the spatial derivatives of density n (i.e.,
the density-gradient approximation), then we can neglect all
terms containing the spatial derivatives of temperature, and
we reobtain, for μ and P, the results explicitly reported in
Ref. [6] in the weakly degenerate case.

3. Completely degenerate Fermi gases

For the Fermi statistics under strong degeneracy we can
use the asymptotic Sommerfeld expansion [49,54–56] for the
functions I+

n (α). In particular, for α � −1 the degeneracy
becomes complete, and we can use the approximation I+

n (α) ≈
(−α)(n+1)/2/(n + 1). In this case, we assume that T → 0
and ∂T /∂xk → 0; consequently the nonlocal effect can be
imputable only to the spatial derivatives of density n, and we
obtain [6] for μ and P

μ = 5

2
νF n2/3 + QB

9
+ O(h̄4),

(72)

P = νF n5/3 + h̄2

36

n

m

{
∂2 ln n

∂xr∂xr

+ 4

3

(
∂ln n

∂xr

)2}
+ O(h̄4),

where νF = (h̄2/5m)[6π2/(2s̃ + 1)]2/3. Also in this case, we
recover the well-known results obtained, using the density-
gradient functional formalism for the Fermi gas [57], when
T → 0.

4. Strongly degenerate Fermi gases

For α � −1 and T > 0 we can use the first two terms of
the asymptotic Sommerfeld expansion obtaining for I+

n (α) ≈
[(−α)(n+1)/2/(n + 1)]{1 + (π2/24) (n2 − 1)(−α)−2}. Accord-
ingly, by considering the usual iterative procedure [6], we
define μ(0) = (5νF /2) n2/3 and, using Eqs. (62)–(64) and
(A70)–(A74) up to order h̄2, we determine the quantum
statistical corrections in terms of quantities (kBT /μ(0))2 � 1.
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In this case we assume that, in general for T > 0, the nonlocal
effects can be imputable to both the spatial derivatives of
density n and of temperature T . Thus, we obtain

μ = μ(0)

[
1 − π2

12

(
kBT

μ(0)

)2]
+ 1

9

[
QI

D + π2

12

(
kBT

μ(0)

)2

QII
D

]
+ O(h̄4), (73)

P = νF n5/3

[
1 + 5

12
π2

(
kBT

μ(0)

)2]

+ n

[
QI

E + π2

3

(
kBT

μ(0)

)2

QII
E

]
+ O(h̄4), (74)

where

QI
D = − h̄2

8 m

{
2

∂2 ln n

∂xr ∂xr

+
(

∂ln n

∂xr

)2

+ 3
∂2 ln T

∂xr ∂xr

− 2
∂ln n

∂xr

∂ln T

∂xr

}
, (75)

QII
D = − h̄2

8m

{
8

∂2 ln n

∂xr ∂xr

− 4

3

(
∂ln n

∂xr

)2

− 18
∂2 ln T

∂xr ∂xr

− 9

(
∂ln T

∂xr

)2

+ 12
∂ln n

∂xr

∂ln T

∂xr

}
, (76)

QI
E = h̄2

36m

{
∂2 ln n

∂xr ∂xr

+ 4

3

(
∂ln n

∂xr

)2

− 2
∂2 ln T

∂xr ∂xr

+
(

∂ln T

∂xr

)2

− 2
∂ln n

∂xr

∂ln T

∂xr

}
, (77)

QII
E = h̄2

36m

{
− ∂2 ln n

∂xr ∂xr

+ 9

5

∂2 ln T

∂xr ∂xr

+ 3

4

(
∂ln T

∂xr

)2

− 7

10

∂ln n

∂xr

∂ln T

∂xr

}
. (78)

Also in this case, by assuming the density-gradient ap-
proximation we can neglect all terms containing the spatial
derivatives of temperature in the previous relations, and we re-
obtain the results reported in Ref. [6] for the chemical potential
μ and for the pressure P in the strongly degenerate case.

B. Moments and closure relations in equilibrium conditions

From equation (60), we calculate the remaining moments
in the equilibrium conditions, through the following relation-
ships:

M(s)|E =
∫

d3p ε̃s FW |E + O(h̄4), s � 2, (79)

M(s)|〈i1i2···ir 〉|E =
∫

d3p ε̃s ũ〈i1 ũi2 · · · ũir 〉 FW |E
+O(h̄4), s � 0. (80)

Thus, we obtain

M(s)|E = n
I±

2(s+1)

I±
2

(kB T )s
{

1 + h̄2

12 m

1

kB T

[
3∑

p=1

(
η

(s)
1p − η

(0)
1p

)
Q(1,p) +

2∑
q=1

(
η

(s)
2q − η

(0)
2q

)
Q(2,q)

]}
+ O(h̄4), s � 2, (81)

M(s)|〈ij〉|E = h̄2 2

45

n

m2
(kB T )s

{
− �

(
s + 7

2

)
�
(
s + 1

2

) I±
2s

I±
2

Q(1,4)
〈ij〉 + �

(
s + 7

2

)
�
(
s + 3

2

) I±
2(s+1)

I±
2

Q(2,4)
〈ij〉 − 2

�
(
s + 9

2

)
�
(
s + 3

2

) I±
2(s+1)

I±
2

Q(1,5)
〈ij〉

}
+ O(h̄4),

s � 0, (82)

and analogously

M(s)|i |E = 0 + O(h̄4), M(s)|〈i1i2···ir 〉|E = 0 + O(h̄4) with s � 0 and r � 3. (83)

It should be noted that, having considered the relations (60)
and (61) to determine both α and the equation of state, then
two degrees of freedom for the remaining system are lost.
Consequently, the scalar moments M(s) have been evaluated
only for s � 2 because, using the relations (81) with s = 0,1,
we reobtain, respectively, the density n and the quantum
expression (64) for pressure P. Finally, by assuming as
further condition the density-gradient approximation, then
all quantities {Q(1,3),Q(2,2),Q(2,4)

〈ij〉 ,Q(1,5)
〈ij〉 } can be neglected in

Eqs. (81) and (82), and, by considering the relations (A78), a
simplified expression for {M(s)|E,M(s)|〈ij〉|E} is determined.

1. Boltzmann statistics as limit case

Being expressed in terms of Fermi and Bose integral
functions, the previous relations are valid for arbitrary values
of α. Thus, for different values of α, it is possible to explore

the different analytical cases reported in Sec. VII A. However,
for the sake of simplicity, we consider explicitly only the
results obtained in the framework of the Boltzmann statistics
by reporting the following simplified relations for a completely
nondegenerate gas:

M(s)|E = n (2s + 1)!!

(
kB T

2

)s

×
{

1 + h̄2

6m

s

kB T
[Q(2) + 2(s + 4)Q(3)]

}
+ O(h̄4),

s � 2, (84)

M(s)|〈ij〉|E = h̄2

90

n

m2
(2 s + 5)!!

(
kB T

2

)s

× {
Q(4)

〈ij〉 + (2 s + 7)Q(5)
〈ij〉

} + O(h̄4), s � 0,

(85)
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M(s)|i |E = 0 + O(h̄4), M(s)|〈i1i2···ir 〉|E = 0 + O(h̄4)
(86)

with s � 0 and r � 3,

where {Q(2),Q(3),Q(4)
〈ij〉,Q

(5)
〈ij〉} expressed by means of the

relations (A91) and (A92) in the Appendix.
Also in this case, by using the relations (65)–(67), two

degrees of freedom for the remaining system are lost. Indeed,
by considering the scalar moments (84) with s = 0,1, we
reobtain the relations for the density n and for the quantum
pressure (65)2. Analogously, if we consider the density-
gradient approximation, then the moments {M(s)|E,M(s)|〈ij〉|E}
are found to take a simplified form.

2. Equilibrium closure relations

The constitutive relations for the balance equations (A19)
and (A20) are represented by the central moments of higher
order HA expressed in Eq. (A24) of the Appendix. Accord-
ingly, to calculate the equilibrium part HA|E we can use
Eqs. (81)–(83) [or equivalently Eqs. (84)–(86) for a Boltzmann
gas]. In particular, for the scalar moments we obtain M(N+1)|E
from Eq. (81) evaluated for s = N + 1.

VIII. LAGRANGE MULTIPLIERS AND CLOSURE
RELATIONS IN NONEQUILIBRIUM CONDITIONS

By inserting the quasi-Moyal approximation (52) into
the moments (45) we determine the analytic expression of
Lagrange multipliers in nonequilibrium conditions. Conse-

quently, by means of Eq. (26)2, the constitutive functions
(A24) are also obtained in nonequilibrium conditions up to the
first quantum correction with respect to the classic expressions.

A. Lagrange multipliers and closure relations
for the Fermi and Bose gases

To obtain the nonequilibrium part of the Lagrange multi-
pliers �A all the scalar moments M(s) are separated into the
equilibrium and nonequilibrium parts through the relationship
�(s) = M(s) − M(s)|E, with �(0) = �(1) = 0. Thus, by consid-
ering only an arbitrary set of scalar and vectorial moments we
find

�(s) + O(h̄4) =
∫

d3p ε̃s FW |NE,

(87)
M(s)|i + O(h̄4) =

∫
d3p ε̃s ũi FW |NE,

where the moments {�(s),M(s)|i} are evaluated up to the
first quantum correction. Following this procedure, we
obtain a linear system in the nonequilibrium variables
{�(l),�(l)|k}. This system can be solved analytically, and, as
reported in the Appendix, the expression of the Lagrange
multipliers is determined explicitly by means of relations
(A85)–(A87).

From the knowledge of the nonequilibrium Lagrange mul-
tipliers and by introducing the expansion (52) in the integrals
(26)2, we obtain the nonequilibrium parts of the constitutive
relations (A24). Accordingly, for the scalar moments we find

M(N+1)|NE =
N∑

s=2

{
ζ(N+1) s + h̄2

12m

1

kB T

[
3∑

p=1

ζ
(1,p)
(N+1) s Q(1,p) +

2∑
q=1

ζ
(2,q)
(N+1) s Q(2,q)

]}
(kB T )N+1−s�(s) + O(h̄4), (88)

with N � 2.

For the tensorial moments of second order we obtain

M(s)|〈ij〉|NE = h̄2

18

1

m2

{[ N∑
r=2

ξ (1,4)
sr �(r)

]
Q(1,4)

〈ij〉 +
[ N∑

r=2

ξ (2,4)
sr �(r)

]
Q(2,4)

〈ij〉 +
[ N∑

r=2

ξ (1,5)
sr �(r)

]
Q(1,5)

〈ij〉

}
+ O(h̄4), (89)

with s = 0, . . . ,N and N � 2.

Analogously, for the tensorial moments of third order we have only the nonequilibrium parts:

M(s)|〈ijk〉|NE = h̄2

14

1

m2

{ N∑
r=1

(1,4)
sr M(r)|〈i Q(1,4)

〈jk〉〉 +
N∑

r=1

(2,4)
sr M(r)|〈i Q(2,4)

〈jk〉〉 +
N∑

r=1

(1,5)
sr M(r)|〈i Q(1,5)

〈jk〉〉

}
+ O(h̄4), (90)

obtained for s = 0, . . . ,N and N � 1.

All moments of higher tensorial order vanish, where

M(s)|〈i1i2···ir 〉 = 0 + O(h̄4), for s = 0, . . .N , and r � 4, (91)

where all the coefficients {ζ(N+1) s , ζ
(i,j )
(N+1) s , ξ

(p,q)
sr , 

(p,q)
sr } that are present in the above relations are functions explicitly determined

through the relations (A88) and (A89) in the Appendix.
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B. Boltzmann statistic as limit for α � 1

We note that the previous relations are valid for various degeneracy levels of Fermi and/or Bose gases, and, for different α

values, we can explore all cases explained in Sec. VII A. For the sake of simplicity, here we analyze explicitly only the results
obtained for a Boltzmann gas. In this case, α 
 1, we determine explicitly the Lagrange multipliers {�(l),�(l)|k} as reported
in Eqs. (A99) and (A100) of the Appendix. Analogously, by using the relations (88)–(91) and (A88) and (A89) for α 
 1,
all constitutive functions can be estimated under nondegenerate conditions. Thus, for the scalar moments in nonequilibrium
conditions, we find for N � 2:

M(N+1)|NE =
N∑

s=2

{
χ(N+1) s + h̄2

12m

1

kB T

3∑
j=2

[
χ

(j )
(N+1) sQ(j )

]}
(kB T )N+1−s�(s) + O(h̄4). (92)

For the tensorial moments of second order we find, for s = 0, . . . ,N and N � 2:

M(s)|〈ij〉|NE = h̄2

18

1

m2

{[ N∑
r=2

ξ (4)
sr �(r)

]
Q(4)

〈ij〉 +
[ N∑

r=2

ξ (5)
sr �(r)

]
Q(5)

〈ij〉

}
+ O(h̄4). (93)

Analogously, for the tensorial moments of third order, we obtain for s = 0, . . . ,N and N � 1:

M(s)|〈ijk〉|NE = h̄2

14

1

m2

{ N∑
r=1

(4)
sr M(r)|〈i Q(4)

〈jk〉〉 +
N∑

r=1

(5)
sr M(r)|〈i Q(5)

〈jk〉〉

}
+ O(h̄4). (94)

Finally, all moments of higher tensorial order vanish, being

M(s)|〈i1i2···ir 〉 = 0 + O(h̄4), for s = 0, . . .N , and r � 4, (95)

where all the coefficients of previous relations {χ(N+1) s , χ
(j )
(N+1) s , ξ

(p)
sr , 

(p)
sr } are known functions determined explicitly by means

of Eqs. (A93)–(A96), (A101), and (A102) in the Appendix.

1. Simplified model for the density-gradient approximation

We conclude this section by assuming that the nonlocal effects are imputable only to the spatial derivatives of density n. Thus,
summarizing the previous results, we obtain the differential constraints (65) [with QI

B ≈ QB and QI
C ≈ −(h̄2/36m)  ln n]

for the chemical potential and pressure and, analogously, the following simplified closure relations in both equilibrium and
nonequilibrium conditions:

M(N+1)|E = (2N + 3)!!

2N+1
n (kB T )N+1

{
1 − h̄2

36 m

(N + 1)

kB T

∂2 ln n

∂xk ∂xk

}
+ O(h̄4), N � 1,

M(N+1)|NE =
N∑

s=2

{
χ(N+1) s − h̄2

72 m

χ
(2)
(N+1) s

kB T

∂2 ln n

∂xk ∂xk

}
(kBT )N+1−s�(s) + O(h̄4), N � 2,

M(s)|〈ij〉|E = − h̄2

180

(2 s + 5)!!

2s

n

m2
(kB T )s

∂2 ln n

∂x〈i ∂xj〉
+ O(h̄4), N � 0,

M(s)|〈ij〉|NE = − h̄2

36

1

m2

[ N∑
r=2

ξ (4)
sr �(r)

]
∂2 ln n

∂x〈i ∂xj〉
+ O(h̄4), N � 2,

M(s)|〈ijk〉|NE = − h̄2

28

1

m2

N∑
r=1

(4)
sr M(r)|〈i

∂2 ln n

∂x〈j ∂xk〉〉
+ O(h̄4), N � 1,

with s = 0, . . . ,N and {χ(N+1)s , χ
(2)
(N+1)s , ξ

(4)
sr , (4)

sr } expressed by (A101) and (A102) in the Appendix.

IX. EXAMPLES AND APPLICATIONS FOR SOME RELEVANT QHD SYSTEM

In the previous sections a complete set of QHD system, to all orders of h̄, has been constructed. To this purpose, an
arbitrary number of scalar and vectorial moments of the Wigner function has been considered as relevant variables, and, by
using a QMEP formulation, both the Lagrange multipliers and the closure relations have been determined, up to the first-order
quantum approximation, in the algebraic forms (62)–(64), (A85)–(A87), (81)–(83), (88)–(91), (A70)–(A77), (A79)–(A82), and
(A88)–(A89). Accordingly, quantum contributions have been determined in powers of h̄2, and, by generalizing the results known
in the literature, all the nonlocal effects have been expressed in terms of the spatial derivatives of both the density n and
temperature T for the Fermi and/or Bose gases.
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In this section we analyze some examples of closed QHD systems, by determining explicitly the constitutive relations, for the
correspondent set of equations, up to the first-order quantum correction.

A. Closed QHD system for N = 0

For N = 0 we recover the usual quantum drift-diffusion system (A22) and (A23) for the numerical density n and for the
velocity vi, where it is necessary to assume that the effective temperature is constant (i.e., T = T0) and, consequently, that all
nonlocal effects are imputable only to the spatial derivatives of density n. Thus, we find β = (kBT0)−1, while α and P are given
by means of the differential constraints (63) and (64) evaluated, up to the first-order quantum correction, with T = T0. In this
case, for the closure relations we reobtain the results of Ref. [6], being

∂M(0)|ik
∂xk

= 1

m

{
∂P (c)

∂xi

+ n
∂μ(q)

∂xi

}
+ O(h̄4), (96)

where P (c) and μ(q) represent, respectively, the classical and the quantum parts of the pressure and chemical potential, which can
be evaluated explicitly for different regimes of Fermi and/or Bose gases (see Sec. III A of Ref. [6]).

B. Closed QHD system for N = 1

For N = 1 we consider the set of moments {n, vi, P , qi} where P = 2/3 M(1) and qi = M(1)|i are, respectively, the pressure
and the heat flux density. Thus, by considering Eqs. (A19) and (A20) we obtain the explicit exact QHD system:

∂n

∂t
+ ∂n vk

∂xk

= 0, (97)

∂vi

∂t
+ vk

∂vi

∂xk

+ 1

n

∂

∂xk

{
M(0)|〈ik〉 + P

m
δik

}
+ 1

m

∂Veff

∂xi

= 0, (98)

∂P

∂t
+ ∂

∂xk

{
P vk + 2

3
qk

}
+ 2

3
P

∂vk

∂xk

+ 2

3
m M(0)|〈ik〉

∂vi

∂xk

= 0, (99)

∂qi

∂t
+ ∂

∂xk

{
qi vk + M(1)|〈ik〉 + 2

3

1

m
M(2) δik

}
+ m M(0)|〈ijk〉

∂vj

∂xk

+ 2

5
qi

∂vk

∂xk

+ 2

5
qk

∂vk

∂xi

+ 7

5
qk

∂vi

∂xk

− 5

2

P

n

∂

∂xk

{
M(0)|〈ik〉 + P

m
δik

}
− m

n
M(0)|〈ij〉

∂

∂xk

{
M(0)|〈jk〉 + P

m
δjk

}
= h̄2

8 m2
n

∂3Veff

∂x2
k ∂xi

, (100)

with the quantities HA = {M(0)|〈ik〉, M(1)|〈ik〉, M(2),M(0)|〈ijk〉} as constitutive relations.
In this case we have an effective local and instantaneous temperature T (r,t), and, in general, the nonlocal effects are

imputable to the spatial derivatives of both density and temperature. Accordingly, it is β(r,t) = [kBT (r,t)]−1 while the system
(97)–(100), must be supplemented by the general differential constraints (63) and (64) for α and P .

Analogously, we determine the quantum nonequilibrium Lagrange multipliers by evaluating explicitly the relations
(A85)–(A87) for N = 1. Finally, if we know the Lagrange multipliers, then we obtain the Wigner functions up to the first-order
quantum correction, and consequently, through the relations (81)–(83), (88)–(91), (A88) and (A89), the explicit closure relations:

M(0)|〈ik〉|E = − 1

12

h̄2

m2
n

{
I±

0

I±
2

Q(1,4)
〈ik〉 − 2Q(2,4)

〈ik〉 + 14Q(1,5)
〈ik〉

}
+ O(h̄4), (101)

M(1)|〈ik〉|E = − 7

36

h̄2

m2
n kB T

{
3Q(1,4)

〈ik〉 − 2
I±

4

I±
2

Q(2,4)
〈ik〉 + 18

I±
4

I±
2

Q(1,5)
〈ik〉

}
+ O(h̄4), (102)

M(2)|E = n
I±

6

I±
2

(kB T )2

{
1 + h̄2

12 m

1

kB T

[
3∑

p=1

ζ
(2)
1p Q(1,p) +

2∑
q=1

ζ
(2)
2q Q(2,q)

]}
+ O(h̄4), (103)

M(0)|〈ijk〉|NE = 3

4

h̄2

m2

1

kB T

{
̃(1,4)q〈i Q(1,4)

〈jk〉〉 + ̃(2,4)q〈i Q(2,4)
〈jk〉〉 + ̃(1,5)q〈i Q(1,5)

〈jk〉〉
} + O(h̄4), (104)

where all the coefficients are given, in terms of integral functions I±
n (α), in the form

̃(1,4) = 27(I±
2 )2 − 5 I±

0 I±
4

25(I±
4 )2 − 21I±

2 I±
6

, ̃(2,4) = − 8 I±
2 I±

4

25(I±
4 )2 − 21I±

2 I±
6

, ̃(1,5) = −27

2
̃(2,4),

ζ
(2)
11 = 3

8

[
I±
−4

I±
2

− 5
I±

0

I±
6

]
, ζ

(2)
12 = −3

4

[
I±
−2

I±
2

+ 35
I±

2

I±
6

]
, ζ

(2)
13 = 15

2

[
I±

0

I±
2

− 21
I±

4

I±
6

]
,
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ζ
(2)
21 = 1

4

[
15

I±
2

I±
6

+ I±
−2

I±
2

]
, ζ

(2)
22 = 1

2

[
35

I±
4

I±
6

− 3
I±

0

I±
2

]
,

while the nonlocal effects are expressed by terms {Q(q,p),Q(q,p)
〈ik〉 } in Eqs. (A70)–(A77).

As a simplified approximation, if we consider the density-gradient approximation, then we can neglect all spatial
derivatives of temperature in Eqs. (101)–(104). Thus, we find Q(1,3) = Q(2,2) = Q(1,5)

〈ik〉 = Q(2,4)
〈ik〉 ≈ 0, while the remaining terms

{Q(1,1),Q(1,2),Q(2,1),Q(1,4)
〈ik〉 } can be expressed by using Eqs. (A78), and we reobtain, as particular case, the simplified closure

relations reported in Sec. IIIB of Ref. [6].

1. Boltzmann statistics

Under nondegenerate conditions (α 
 1) both the Fermi and Bose statistics tend to Boltzmann statistic. In particular we obtain
the quantum state equation and the quantum chemical potential by (65)–(67), while, using the relations (84)–(86), (92)–(94), and
(A102) for N = 1, the constitutive functions are expressed in the form

M(0)|〈ik〉|E = 1

6

h̄2

m2
n
{
Q(4)

〈ik〉 + 7Q(5)
〈ik〉

} + O(h̄4), (105)

M(1)|〈ik〉|E = 7

12

h̄2

m2
n kB T

{
Q(4)

〈ik〉 + 9Q(5)
〈ik〉

} + O(h̄4), (106)

M(2)|E = 15

4
n (kB T )2

{
1 + h̄2

3 m

1

kB T
[Q(2) + 12Q(3)]

}
+ O(h̄4), (107)

M(0)|〈ijk〉|NE = 1

5

h̄2

m2

1

kB T

{
2 q〈i Q(4)

〈jk〉〉 + 27 q〈i Q(5)
〈jk〉〉

} + O(h̄4), (108)

with the nonlocal terms {Q(j ),Q(p)
〈ik〉} given by means of relations (A91) and (A92).

Also in this case, by considering the density-gradient approximation, we can neglect all spatial derivatives of temperature in
Eqs. (105)–(108), and we reobtain, as particular case, the simplified relations reported in Ref. [6] for a quantum Boltzmann gas.

C. Closed QHD system for N = 2

ForN = 2 we consider the exact QHD system in Eqs. (A19) and (A20) for the macroscopic variables {n, vi, P , qi,M(2),M(2)|i}
where, by decomposing the scalar moments M(2) = M(2)|E + (2), the equilibrium part M(2)|E becomes a new differential
constraint for the system, while (2) represents the new nonequilibrium scalar field variable.

Accordingly, we obtain the previous QHD system (97)–(100) for the moments {n, vi, P , qi} plus the following set of exact
quantum balance equations for the variables {M(2),M(2)|i}:

∂M(2)

∂t
+ ∂

∂xk

{M(2) vk + M(2)|k} + 4

3
M(2)

∂vk

∂xk

+ 2 m M(1)|〈ik〉
∂vi

∂xk

− 2
m

n
qi

∂

∂xk

{
M(0)|〈ik〉 + P

m
δik

}
= 0, (109)

∂M(2)|i
∂t

+ ∂

∂xk

{
M(2)|i vk + M(2)|〈ik〉 + 2

3

1

m
M(3) δik

}
+ 2 m M(1)|〈ijk〉

∂vj

∂xk

+ 4

5
M(2)|i

∂vk

∂xk

+ 4

5
M(2)|k

∂vk

∂xi

+ 9

5
M(2)|k

∂vi

∂xk

− 7

3

M(2)

n

∂

∂xk

{
M(0)|〈ik〉 + P

m
δik

}
− 2

m

n
M(1)|〈ij〉

∂

∂xk

{
M(0)|〈jk〉 + P

m
δjk

}
= h̄2

4 m

{
∂3Veff

∂x2
k ∂xr

M(0)|〈ri〉 + ∂3Veff

∂x〈k∂xr〉∂xi

M(0)|〈kr〉 + 7

2

P

m

∂3Veff

∂x2
k ∂xi

}
− h̄4

64 m3
n

∂5Veff

∂x2
k ∂x2

r ∂xi

, (110)

where the quantities HA = {M(0)|〈ik〉, M(1)|〈ik〉, M(2)|〈ik〉, M(3), M(0)|〈ijk〉, M(1)|〈ijk〉} represent the set of constitutive relations for the
system.

In this case, the exact QHD equations (97)–(100), (109) and (110) must be supplemented by the differential constraints in
Eqs. (63), (64), and (103) to determine, respectively, α, P, and M(2)|E up to the first-order quantum correction. The equilibrium
parts of the constitutive functions HA|E = {M(0)|〈ik〉|E, M(1)|〈ik〉|E, M(2)|〈ik〉|E, M(3)|E} are given by (101) and (102) and by means
of equations

M(2)|〈ik〉|E = − 7

20

h̄2

m2
n (kB T )2

{
5

I±
4

I±
2

Q(1,4)
〈ik〉 − 2

I±
6

I±
2

Q(2,4)
〈ik〉 + 22

I±
6

I±
2

Q(1,5)
〈ik〉

}
+ O(h̄4), (111)

M(3)|E = n
I±

8

I±
2

(kB T )3

{
1 + h̄2

12 m

1

kB T

[
3∑

p=1

ζ
(3)
1p Q(1,p) +

2∑
q=1

ζ
(3)
2q Q(2,q)

]}
+ O(h̄4), (112)
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where

ζ
(3)
11 = 3

8

[
I±
−4

I±
2

− 35
I±

2

I±
8

]
, ζ

(3)
12 = −3

4

[
I±
−2

I±
2

+ 105
I±

4

I±
8

]
, ζ

(3)
13 = 3

2

[
5

I±
0

I±
2

− 231
I±

6

I±
8

]
,

ζ
(3)
21 = 1

4

[
35

I±
4

I±
8

+ I±
−2

I±
2

]
, ζ

(3)
22 = 3

2

[
21

I±
6

I±
8

− I±
0

I±
2

]
.

Analogously, for s = 0,1,2 and r = 0,1, the nonequilibrium parts of the constitutive functions HA are expressed up to the
first-order quantum correction in the compact form

M(s)|〈ij〉|NE = h̄2

18 m2

{
ξ

(1,4)
s2 Q(1,4)

〈ij〉 + ξ
(2,4)
s2 Q(2,4)

〈ij〉 + ξ
(1,5)
s2 Q(1,5)

〈ij〉
}
�(2) + O(h̄4), (113)

M(3)|NE =
{

ζ32 (kB T ) + h̄2

12 m

[
3∑

p=1

ζ
(1,p)
32 Q(1,p) +

2∑
q=1

ζ
(2,q)
32 Q(2,q)

]}
�(2) + O(h̄4), (114)

M(r)|〈ijk〉|NE = h̄2

14 m2

{


(1,4)
r1 q〈i Q(1,4)

〈jk〉〉 + 
(2,4)
r1 q〈i Q(2,4)

〈jk〉〉 + 
(1,5)
r1 q〈i Q(1,5)

〈jk〉〉

+
(1,4)
r2 M(2)|〈i Q(1,4)

〈jk〉〉 + 
(2,4)
r2 M(2)|〈i Q(2,4)

〈jk〉〉 + 
(1,5)
r2 M(2)|〈i Q(1,5)

〈jk〉〉
} + O(h̄4), (115)

where all the coefficients {ξ (l,n)
s2 , ζ32, ζ

(1,p)
32 , ζ

(2,q)
32 ,(l,n)

rq } can be obtained explicitly through the algebraic relations (A88) and

(A89) evaluated for N = 2, while the nonlocal terms {Q(q,p),Q(l,n)
〈jk〉 } are given in Eqs. (A70)–(A77).

Finally, if we consider the density-gradient approximation, then we can neglect the spatial derivatives of temperature in
all previous relations, and using Eqs. (A78), it is possible to determine the simplified expressions for the first-order quantum
correction terms.

1. Boltzmann statistics

In the framework of Boltzman statistics (i.e., for α 
 1), the system (97)–(100) plus Eqs. (109) and (110), for the variables
{n, vi, P , qi,(2),M(2)|i}, are supplemented by Eqs. (65)–(67) and (107), respectively, for μ, P and M(2)|E. Therefore, in
equilibrium conditions, for the constitutive functions we obtain M(0)|〈ik〉|E and M(1)|〈ik〉|E by Eqs. (105) and (106) and {M(2)|〈ik〉|E,

M(3)|E} by means of relations

M(2)|〈ik〉|E = 21

8

h̄2

m2
n (kB T )2

{
Q(4)

〈ik〉 + 11Q(5)
〈ik〉

} + O(h̄4), (116)

M(3)|E = 105

8
n (kB T )3

{
1 + h̄2

2 m

1

kB T
[Q(2) + 14Q(3)]

}
+ O(h̄4). (117)

Analogously, in nonequilibrium conditions, for the constitutive functions we obtain

M(0)|〈ik〉|NE = 2

45

h̄2

m2

1

(kB T )2

{
Q(4)

〈ik〉 + 21Q(5)
〈ik〉

}(2) + O(h̄4), (118)

M(1)|〈ik〉|NE = 7

15

h̄2

m2

1

kB T

{
Q(4)

〈ik〉 + 18Q(5)
〈ik〉

}(2) + O(h̄4), (119)

M(2)|〈ik〉|NE = 7

5

h̄2

m2

{
3Q(4)

〈ik〉 + 55Q(5)
〈ik〉

}(2) + O(h̄4), (120)

M(3)|NE = 21

2
kB T

{
1 + h̄2

6 m

1

kB T
[Q(2) + 26Q(3)]

}
(2) + O(h̄4), (121)

M(0)|〈ijk〉|NE = − 1

35

h̄2

m2

1

(kB T )2

{
189 kB T q〈i Q(5)

〈jk〉〉 − 2
[
M(2)|〈i Q(4)

〈jk〉〉 + 27 M(2)|〈i Q(5)
〈jk〉〉

]} + O(h̄4), (122)

M(1)|〈ijk〉|NE = − 9

70

h̄2

m2

1

kB T

{
7 kB T

[
3 q〈i Q(4)

〈jk〉〉 + 88 q〈i Q(5)
〈jk〉〉

] − 6
[
M(2)|〈i Q(4)

〈jk〉〉 + 22 M(2)|〈i Q(5)
〈jk〉〉

]} + O(h̄4), (123)

with the nonlocal terms {Q(j ),Q(p)
〈ik〉} given in Eqs. (A91) and (A92).
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Finally, if we assume the density-gradient approximation, then we introduce the Bohm quantum potential QB, and we obtain
for μ,P, and M(2)|E the simplified explicit quantities

μ = kBT ln

[
n

2s̃ + 1

(
2πh̄2

mkBT

) 3
2
]

+ QB

3
+ O(h̄4), P = nkBT − h̄2

36

n

m

∂2 ln n

∂xr∂xr

+ O(h̄4), (124)

M(2)|E = 15

4
n (kB T )2

{
1 − h̄2

18 m

1

kB T

∂2 ln n

∂xr∂xr

}
+ O(h̄4). (125)

Analogously, for the equilibrium constitutive functions we find the relations

M(r)|〈ij〉|E = − h̄2

180

(2 r + 5)!!

2r

n

m2
(kB T )r

∂2 ln n

∂x〈i ∂xj〉
+ O(h̄4) with r = 0,1, 2, (126)

M(3)|E = 105

8
n (kB T )3

{
1 − h̄2

12 m

1

kB T

∂2 ln n

∂xr∂xr

}
+ O(h̄4), (127)

while, in nonequilibrium conditions, we obtain the simplified explicit expressions

M(0)|〈ik〉|NE = − 1

45

h̄2

m2

1

(kB T )2

∂2ln n

∂x〈i∂xk〉
(2) + O(h̄4), (128)

M(1)|〈ik〉|NE = − 7

30

h̄2

m2

1

kB T

∂2ln n

∂x〈i∂xk〉
(2) + O(h̄4), (129)

M(2)|〈ik〉|NE = −21

10

h̄2

m2

∂2ln n

∂x〈i∂xk〉
(2) + O(h̄4), (130)

M(3)|NE = 21

2
kB T

{
1 − h̄2

36 m

1

kB T

∂2 ln n

∂xr∂xr

}
(2) + O(h̄4), (131)

M(0)|〈ijk〉|NE = − 1

35

h̄2

m2

1

(kB T )2
M(2)|〈i

∂2ln n

∂x〈j ∂xk〉〉
+ O(h̄4), (132)

M(1)|〈ijk〉|NE = 27

140

h̄2

m2

1

kB T

{
7 kB T q〈i

∂2ln n

∂x〈j ∂xk〉〉
− 2 M(2)|〈i

∂2ln n

∂x〈j ∂xk〉〉

}
+ O(h̄4). (133)

X. CONCLUSIONS

The quantum maximum entropy principle (QMEP) is here asserted as the fundamental principle of quantum statistical
mechanics when it becomes necessary to treat systems in partially specified quantum mechanical states. To this purpose, we have
presented a rigorous nonlocal formulation of QMEP by using a quantum entropy that includes indistinguishability for a system
of identical particles [6]. Accordingly, we have provided a general framework for the development of quantum hydrodynamic
models, which allows a systematic analysis of quantum effects in powers of h̄2 to be carried out.

Relevant results reported in the paper are the following:
(i) The development of a proper nonlocal formulation of QMEP, in both thermodynamic equilibrium and nonequilibrium

conditions, by determining an explicit functional form in Eq. (34) of the reduced density operator, which requires the consistent
introduction of nonlocal quantum Lagrange multipliers within a Moyal expansion, as given in Eqs. (63), (A70)–(A77), (A79)–
(A81), and (A85)–(A87).

(ii) The inclusion of statistics effects in the formulation of the QMEP for any degeneracy levels of Fermi and Bose gases.
(iii) The determination of some systematic recursive relations that close rigorously a QHD system for an arbitrary number

of scalar and vectorial central moments, in both thermodynamic equilibrium and nonequilibrium conditions. Examples of this
procedure are developed explicitly for the first three set of QHD systems.

We stress that quantum transport equations far more general than standard ones, incorporating nonlocal and nonlinear terms,
are a demanding issue in current frontiers of technology. The present theory provides an answer to this issue by generalizing
most of the results available in the literature since all nonlocal effects are expressed taking into account both the density and
temperature high-order spatial derivatives, and obtaining an expansion of the corresponding Lagrange multipliers in terms of
powers of the Planck constant, in both equilibrium and nonequilibrium conditions. In particular, when the spatial derivatives of
the effective temperature are very large in the regions where the numerical density also varies very quickly, and these regions
are comparable with the mean-free path of particles, then nonlocal effects due to the effective temperature gradients cannot be
neglected [20]. By contrast, in the density gradient approximation all nonlocal effects are imputable only to spatial derivatives
of the numerical density, and we recover well-known results for a quantum Boltzmann gas [23,24], for a completely degenerate
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Fermi gas [25–27,57] and, more generally, for Fermi and Bose gases [6]. Here QMEP allows one to describe the thermodynamic
evolution of a nonequilibrium system in the framework of a nonlocal theory compatibly with the kind of statistics and the
uncertainty principle.

We finally remark that the character of some variational principles shows some formal analogies between the apparatus of
nonequilibrium thermodynamics and mechanics [58]. To this purpose, all the above results point us to consider the principle
of maximum entropy as a fundamental postulate of statistical mechanics in close analogy with the least action principle of
mechanics [59].
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APPENDIX

This appendix collects the mathematical details associated with the formulation of the quantum hydrodynamic models
developed in the main text. The objective is to provide the major clues for the reader to reproduce the analytical results presented
here within an affordable effort.

1. General relationships

(I) For any couple of analytical functions V = V (r,t) and ψ = ψ(r,p,t), this holds the property

∂2l+1V

∂xk1 · · · ∂xk2l+1

∫
d3p

∂2l+1FW
∂pk1 · · · ∂pk2l+1

ψ = − ∂2l+1V

∂xk1 · · · ∂xk2l+1

∫
d3p

∂2l+1ψ

∂pk1 · · · ∂pk2l+1

FW , (A1)

where the Einstein convention is here and henceforth assumed on the saturated indices. For the proof we use the identity

∂2l+1V

∂xk1 · · · ∂xk2l+1

∫
d3p

∂2l+1FW
∂pk1 · · · ∂pk2l+1

ψ = − ∂2l+1V

∂xk1 · · · ∂xk2l+1

∫
d3p

∂2l+1ψ

∂pk1 · · · ∂pk2l+1

FW

+ ∂2l+1V

∂xr ∂xk1 · · · ∂xk2l

∫
d3p

∂

∂pr

⎧⎨⎩
2l∑

j=0

(−1)j
∂2l−jFW

∂pk1 · · · ∂pk2l−j

∂jψ

∂pk2l−j+1 · · · ∂pk2l

⎫⎬⎭ ,

and, with V = V (r,t), we apply the Gauss theorem in the last term of the above identity. In this case the surface integral should
be taken over the momentum shell for p → ∞, where it vanishes since the Wigner function and its derivatives FW |p→∞ =

∂rFW
∂pk1 ···∂pkr

|p→∞ = 0 ∀r > 0.

(II) We consider two arbitrary operators Â(̂r,̂p) and B̂ (̂r,̂p) being A(r,p) and B(r,p) the corresponding space-phase functions.
By using the Moyal formalism [50], the Weyl-Wigner transform of the product of these operators reads

W(Â B̂) = Â � B̂ =
+∞∑
s=0

h̄s A(r,p) �s B(r,p), (A2)

where, for convenience, the general term is expressed in the form

A(r,p) �s B(r,p) =
(

i

2

)s 1

s!

s∑
k=0

(−1)k
s!

(s − k)! k!

[
∂s−k

∂xi1 · · · ∂xis−k

∂kA(r,p)

∂pj1 · · · ∂pjk

][
∂k

∂xj1 · · · ∂xjk

∂s−kB(r,p)

∂pi1 · · · ∂pis−k

]
, (A3)

with the Einstein convention on the saturated indices, where

A(r,p) �s B(r,p) = (−1)s B(r,p) �s A(r,p). (A4)

In particular, it is easy to show that, if [Â,B̂] = 0, then

W(Â B̂) = Â � B̂ =
+∞∑
s=0

h̄2s A(r,p) �2s B(r,p). (A5)

(III) By assuming that A(r,p) is expressed by an expansion in an even power of h̄ as

A(r,p) =
∞∑

r=0

h̄2r A2r (r,p), (A6)
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it is possible to define the functions

H±
2s (τ,r,p) =

∑ (±τ )m

i1!i2! · · · il! (A2)i1 (A4)i2 · · · (A2l)
il ∀ s � 0, (A7)

where τ is an arbitrary scalar parameter, and
∑

indicates summation over all the solutions in non-negative integers of the
equations i1 + 2 i2 + · · · + l il = s and i1 + i2 + · · · + il = m. Analogously, we can define the recursive functions

G±
0 = 1, and G±

2s(τ,r,p) = − eτA0

eτA0 ± 1

s−1∑
k=0

G±
2k H+

2(s−k) for ∀ s � 1, (A8)

and obtain the following expansions in an even power of h̄:

eτA(r,p) = eτA0

∞∑
r=0

h̄2r H+
2r (τ,r,p),

1

eτA(r,p) ± 1
= 1

eτA0 ± 1

∞∑
r=0

h̄2r G±
2r (τ,r,p). (A9)

By introducing the integral functions

V +
2s (τ,r,p) =

∫ τ

0
H+

2s (ξ,r,p) dξ, (A10)

and a set of arbitrary functions {L2k} (with k a positive integer), one can verify the following algebraic recurrence relations:

r∑
s=1

A2s V +
2(r−s) = H+

2r , (A11)

r∑
s=1

L2s H+
2(r+1−s) =

r∑
m=1

A2m

r+1−m∑
k=1

L2k V +
2(r+1−m−k), (A12)

r∑
s=1

L2s H−
2(r−s) = L2r −

r−1∑
m=1

A2m

r−m∑
k=1

V +
2(r−m−k)

k∑
q=1

L2q H−
2(k−q), (A13)

r∑
s=1

G±
2s L2(r+1−s) = − eτA0

eτA0 ± 1

r∑
m=1

H+
2(r+1−m)

m−1∑
k=0

G±
2k L2(m−k), (A14)

for ∀ r � 1.

2. Full gradient expansion of the Wigner equation

By introducing in Eq. (14) the identity

φk e− i
h̄

φ·r′ = −h̄

i

∂e− i
h̄

φ·r′

∂x ′
k

and where FW |r→∞ = 0, we obtain

∂FW
∂t

= −pk

m

∂FW
∂xk

− i/h̄

(2πh̄)3

∫
d3τ e− i

h̄
τ ·p[Veff(r + τ/2) − Veff(r − τ/2)]

∫
d3p′e

i
h̄

τ ·p′FW .

By expanding the term Veff(r + τ/2) − Veff(r − τ/2) in the McLaurin series around τ = 0, and using the identity

τk1 τk2 · · · τk2l+1 e
i
h̄

τ ·p′ =
(

h̄

i

)2l+1
∂2l+1e

i
h̄

τ ·p′

∂p′
k1

∂p′
k2

· · · ∂p′
k2l+1

, (A15)

we obtain

∂FW
∂t

+ pk

m

∂FW
∂xk

= − 1

(2πh̄)3

∞∑
l=0

(ih̄/2)2l

(2l + 1)!

∫
d3τe− i

h̄
τ ·p

{
∂2l+1Veff

∂xk1 · · · ∂xk2l+1

∫
d3p′ ∂2l+1e

i
h̄

τ ·p′

∂p′
k1

· · · ∂p′
k2l+1

FW

}
, (A16)

where the Einstein convention is assumed on the saturated indices k1, . . . ,k2l+1.

Finally, by using Eq. (A1) and the Fourier integral theorem, the full expansion of the generalized Wigner equation to all order
of h̄ takes the form reported in Eq. (17).
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3. Quantum corrections to all orders of h̄ for the hydrodynamic equations

In general, the balance equations are obtained through multiplication of the Wigner equations (17) by an arbitrary function
ψ(r,p,t) and integration over p. Accordingly, it is

∂

∂t

∫
d3p ψ FW + ∂

∂xk

∫
d3p ψ (̃uk + vk)FW −

∫
d3p

[
∂ψ

∂t
+ (̃uk + vk)

∂ψ

∂xk

]
FW

= −
∞∑
l=0

(i h̄/2)2l

(2l + 1)!

∂2l+1Veff

∂xk1 · · · ∂xk2l+1

∫
d3p

∂2l+1ψ

∂pk1 · · · ∂pk2l+1

FW , (A17)

where the quantity in the right-hand side of Eq. (A17) is obtained by using Eq. (A1). In particular, by considering as set of kinetic
fields the quantities ψA = {ε̃s , ε̃s ũi} we obtain

∂2l+1 ε̃s

∂pk1 · · · ∂pk2l+1

= 0 if l � s,
∂2l+1 ε̃s ũi

∂pk1 · · · ∂pk2l+1

= 0 if l � s + 1;

otherwise

∂2l+1 ε̃s

∂pk1 · · · ∂pk2l+1

=
l∑

r=q

B
(0)r
sl ε̃s+r−(2l+1) δ(k1k2 · · · δk2r−1k2r

ũk2r+1 · · · ũk2l+1), l ∈ [0,s − 1],

∂2l+1 ε̃s ũi

∂pk1 · · · ∂pk2l+1

=
l+1∑
r=q

B
(1)r
sl ε̃s+r−(2l+1) δ(k1k2 · · · δk2r−1k2r

ũk2r+1 · · · ũk2l+2) δk2l+2i , l ∈ [0,s],

where q = max{0,(2l + 1 − s)} and

B
(p)r
sl = s!

[s + r − (2l + 1)]!

[(2l + 1) + p]!

[2(l − r) + 1 + p]! (2r)!!

1

mr
for p = 0,1. (A18)

By inserting the above relations in Eq. (A17) and considering the traceless parts of the tensorial moments, we obtain the
quantum balance equations for the scalar and vectorial moments {M(s),M(s)|i} to all orders of h̄, with s = 0,1, . . .N :

Ṁ(s) + M(s)
∂vk

∂xk

+ ∂M(s)|k
∂xk

+ s m M(s−1)|ik
∂vi

∂xk

+ s m M(s−1)|i

[
v̇i + 1

m

∂Veff

∂xi

]

= −
s−1∑
l=1

(ih̄/2)2l

(2l + 1)!

l∑
r=q

B
(0)r
sl

{
∂2r

∂x2
β1

· · · ∂x2
βr

∂2(l−r)+1Veff

∂xk1 · · · ∂xk2(l−r)+1

M(s+r−2l−1)|〈k1···k2(l−r)+1〉

+
l−r∑
j=1

A
(0)j
lr

∂2(r+j )

∂x2
β1

· · · ∂x2
βr+j

∂2(l−r−j )+1Veff

∂xk1 · · · ∂xk2(l−r−j )+1

M(s+r+j−2l−1)|〈k1···k2(l−r−j )+1〉

}
, (A19)

Ṁ(s)|i + M(s)|i
∂vk

∂xk

+ ∂M(s)|ik
∂xk

+ s m M(s−1)|ipk

∂vp

∂xk

+ M(s)

[
v̇i + 1

m

∂Veff

∂xi

]
+ M(s)|k

∂vi

∂xk

+ s m M(s−1)|ik

[
v̇k + 1

m

∂Veff

∂xk

]
= −

s∑
l=1

(ih̄/2)2l

(2l + 1)!

∂2l+1Veff

∂xk1 · · · ∂xk2l+1

×
l+1∑
r=q

B
(1)r
sl

{
M(s+r−2l−1)|(〈k1···k2(l−r)+2〉 δk2(l−r)+3k2(l−r)+4 · · · δk2l+1i)

+
l−r+1∑
j=1

A
(1)j
lr M(s+r+j−2l−1)|(〈k1···k2(l−r−j )+2〉 δk2(l−r−j )+3k2(l−r−j )+4 · · · δk2l+1i)

}
, (A20)

where {B(0)r
sl , B

(1)r
sl } are expressed by Eq. (A18) and the quantities {A(0)j

lr , A
(1)j
lr } by

A
(p)j
lr = [2(l − r) + 1 + p]!

[2(l − r − j ) + 1 + p]!

[4(l − r − j ) + 2p + 3]!!

[4(l − r) − 2j + 2p + 3]!! (j )!

1

mj
for p = 0,1. (A21)
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Accordingly, by considering Eqs. (A19) and (A20) for s = 0 we find the usual balance equations for the density n = M(0) and
velocity vi :

ṅ + n
∂vk

∂xk

= 0, (A22)

v̇i + 1

n

∂M(0)|ik
∂xk

+ 1

m

∂Veff

∂xi

= 0 , (A23)

while the remaining equations (for s = 1, . . . ,N ) can be expressed by eliminating explicitly all time derivatives v̇i through
Eq. (A23). Thus we obtain all the balance equations rewritten explicitly in the form reported in Ref. [6], and, for h̄ → 0, we
recover the classic form of extended thermodynamics [1,7,60,61].

It should be noted that, by using the complete expansion in Eq. (17), it follows that in each QHD scalar and vectorial equation
only a finite number of terms in powers of h̄2 remains. Thus, for any fixed number of scalar and vectorial moments (i.e., for any
fixed value of N ) the set (A19) and (A20) describes an exact QHD system evaluated in correspondence with a complete Moyal
expansion of the kinetic Wigner equation.

By considering the left-hand side of equation system (A19) and (A20) we obtain the traceless moments

M(s)|〈ik〉 = M(s)|ik − 2

3

1

m
M(s+1)δik,

M(s−1)|〈ijk〉 = M(s−1)|ijk − 6

5

1

m
M(s)|(iδjk).

Analogously, for increasing values of N , in the right-hand side of Eqs. (A19) and (A20) we have also some traceless moments of
higher tensorial order M(l)|〈i1···ir 〉 with r � 4. Thus, the previous set of equations contains unknown constitutive functions HA that,
through Eq. (26)2, are represented by the central moments of higher order with respect to the scalar and vectorial macroscopic
variables, where

HA = {M(N+1),M(l)|〈ij〉,M(q)|〈ijk〉,M(s)|〈i1···ir 〉}. (A24)

4. Moyal expansion for the phase space function F(τ,r,p) = W(eτ ̂A)

Let us consider the operator Â(̂r,̂p) and the corresponding phase-space function A(r,p). By introducing an arbitrary scalar
parameter τ, we define a new operator F̂ (τ,̂r,̂p) = eτÂ(̂r,̂p) and the associated phase-space function F (τ,r,p) = W(eτÂ). Then
one can show that F satisfies the relation

dF

dτ
= W(Â F̂ ), (A25)

with the condition [Â,F̂ ] = 0 and F (τ,r,p)|τ=0 = W(Î ) = 1.

The determination of F (τ,r,p), as solution of Eq. (A25), can be obtained within different levels of approximation [11]. In
particular, by using the Moyal formalism one can prove [45,51,52] that the Wigner function can be expanded in an even power
of h̄. Furthermore, for a correct evaluation of the reduced Wigner function under equilibrium and nonequilibrium conditions in
terms of Lagrange multipliers, it is necessary to assume [6] that λA(r,p) can also be expanded in a power of h̄2. Thus, for a
correct evaluation of the phase space function F (τ,r,p) in powers of h̄ we must consider, as general solutions of Eq. (A25), the
solutions in which the phase-space function A(r,p) is expanded in an even power of h̄, where

A(r,p) =
∞∑

r=0

h̄2r A2r (r,p). (A26)

In this case, by searching the solutions of Eq. (A25) in the form F (τ,r,p) = ∑
h̄r Fr (τ,r,p), by using Eqs. (A26) and (A5) we

obtain

dFr

dτ
=

[r/2]∑
s=0

[(r−2s)/2]∑
l=0

A2s �2l Fr−2(s+l) with Fr |τ=0 = δr0 ∀r � 0, (A27)

where the symbol [r/2] indicates the greatest integer �r/2.

By induction, one can readily verify that all odd terms F2r+1 vanish. Indeed, by solving Eq. (A27) for r = 1, we obtain that
F1(τ,r,p) = 0. Analogously, if we formulate the inductive hypothesis that F2l+1(τ,r,p) = 0 for all 0 � l � r, then, by solving
Eq. (A27), it is easy to prove that F2r+3(τ,r,p) = 0. As a consequence, it is F2r+1(τ,r,p) = 0 ∀ r � 0. Analogously, one can
solve Eq. (A27) for the even terms F2r , obtaining the expansion

F (τ,r,p) =
∞∑

r=0

h̄2r F2r (τ,r,p) with F2r = C2r (τ,r,p) eτA0(r,p), (A28)

061147-20



QUANTUM MAXIMUM-ENTROPY PRINCIPLE FOR CLOSED . . . PHYSICAL REVIEW E 84, 061147 (2011)

where, for r = 0 it is C0 = 1, while for r � 1 the functions C2r are solutions of the equation

C ′
2r (τ,r,p) =

r−1∑
m=0

r−m∑
s=1

{A2m �2s F2(r−m−s)(τ,r,p)} e−τA0 +
r∑

m=1

A2m C2(r−m)(τ,r,p). (A29)

It is further possible to show that the quantities C2r are polynomial functions in the τ parameter with coefficients H(2r)
α (r,p),

being

C2r (τ,r,p) =
3r∑

α=0

τα H(2r)
α (r,p) with H(2r)

0 = δr0. (A30)

Thus, for r � 1, we obtain the general recurrence formula

C2r (τ,r,p) =
∫ τ

0
dξ g2r (ξ,r,p) +

r∑
m=1

A2m

∫ τ

0
dξ C2(r−m)(ξ,r,p), (A31)

where

g2r (ξ,r,p) =
r−1∑
m=0

r−m∑
s=1

{A2m �2s F2(r−m−s)(ξ,r,p)} e−ξA0 . (A32)

As an example, for r = 1 it is ∫ τ

0
dξg2(ξ,r,p) = Q2(τ,r,p) = H(2)

3 (r,p)τ 3 + H(2)
2 (r,p) τ 2, (A33)

with

H(2)
3 = − 1

24

[
∂2A0

∂xi∂xj

∂A0

∂pi

∂A0

∂pj

+ ∂2A0

∂pi∂pj

∂A0

∂xi

∂A0

∂xj

− 2
∂2A0

∂xi∂pj

∂A0

∂xj

∂A0

∂pi

]
, (A34)

H(2)
2 = −1

8

[
∂2A0

∂xi∂xj

∂2A0

∂pi∂pj

− ∂2A0

∂xi∂pj

∂2A0

∂xj ∂pi

]
, (A35)

and

C2 = Q2(τ,r,p) + A2(r,p) τ. (A36)

Therefore, by using cyclically Eqs. (A31) and (A32), we obtain the Moyal expansion

F (τ,r,p) = W(eτÂ) = eτA0(r,p)
+∞∑
r=0

h̄2r C2r (τ,r,p). (A37)

One can show that the expansion (A37) can be rewritten in the convenient form

F (τ,r,p) = W(eτÂ) = eτA(r,p)
+∞∑
r=0

h̄2r Q2r (τ,r,p), (A38)

where

Q0 = 1 and Q2s(τ,r,p) =
s∑

q=1

∫ τ

0
dξ g2q(ξ,r,p) H−

2(s−q)(ξ,r,p) ∀ s � 1, (A39)

with the quantities H−
2r and g2r expressed, respectively, by (A7) and (A32).

The relation (A38) can be proved by induction using two steps.
In a first step, the statement

C2r (τ,r,p) =
r∑

k=0

Q2k H+
2(r−k) (A40)
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is proven to be true for all r � 0, where H+
2r and Q2k are given by (A7) and (A39). In particular, by using Eqs. (A7), (A36), and

(A39), we verify that Eq. (A40) is true for r = 0,1. Thus, if we formulate the inductive hypothesis that the quantities C2l are
expressed by Eq. (A40) for all 0 � l � r, then we prove the relation

C2(r+1)(τ,r,p) =
r+1∑
k=0

Q2k H+
2(r+1−k). (A41)

Indeed, by using Eq. (A31) and the inductive hypothesis, we obtain

C2(r+1)(τ,r,p) =
∫ τ

0
dξ g2(r+1)(ξ,r,p) +

r+1∑
m=1

A2m

∫ τ

0
dξ H+

2(r+1−m)(ξ,r,p)

+
r∑

m=1

A2m

r+1−m∑
k=1

∫ τ

0
dξ Q2k(ξ,r,p) H+

2(r+1−m−k)(ξ,r,p) . (A42)

By introducing the functions V +
2s defined in Eq. (A10), it is

C2(r+1)(τ,r,p) =
∫ τ

0
dξ g2(r+1)(ξ,r,p) +

r+1∑
m=1

A2m V +
2(r+1−m)(τ,r,p)

+
r∑

m=1

A2m

r+1−m∑
k=1

∫ τ

0
dξ Q2k(ξ,r,p) [V +

2(r+1−m−k)(ξ,r,p)]′. (A43)

Thus, integrating by part the last term of Eq. (A43) and using Eq. (A39), we obtain

C2(r+1)(τ,r,p) =
∫ τ

0
dξ

[
g2(r+1) −

r∑
m=1

A2m

r+1−m∑
k=1

V +
2(r+1−m−k)

k∑
q=1

g2q H−
2(k−q)

]

+
r∑

m=1

A2m

r+1−m∑
k=1

Q2k(τ,r,p) V +
2(r+1−m−k)(τ,r,p) +

r+1∑
m=1

A2m V +
2(r+1−m)(τ,r,p) . (A44)

Finally, by using the algebraic recurrence relations (A11)–(A13) and (A39), it is

C2(r+1) =
r+1∑
k=1

∫ τ

0
dξ g2k(ξ,r,p) H−

2(r+1−k)(ξ,r,p) +
r∑

k=0

Q2k H+
2(r+1−k) =

r+1∑
k=0

Q2k H+
2(r+1−k).

Therefore, since the relation (A41) is proven, then Eq. (A40) is true for all r � 0.
In a second step, by means of Eq. (A40) we rewrite the expansion (A37) as a Cauchy product of power series, and by using

Eq. (A9)1 we conclude that F (τ,r,p) can be expressed in the form (A38).

a. Application to a Boltzmann gas

A straightforward application of previous results is the determination of the Wigner function in the case of a Boltzmann gas.
Indeed, by using the kinetic fields (24), the constraints (26), and the set of Lagrange multipliers λA in the form (39), we can
express A(r,̃p,t) by means of the expansion

A(r,̃p,t) =
∞∑

r=0

h̄2r A2r (r,̃p,t), with A2r = −
N∑

A=1

λ
(2r)
A (r,t)M̃A (̃p) . (A45)

Accordingly, where W (̂�) = (2 π h̄)3FW (r,p,t) and using the relations (35), (A37), and (A38) with τ = 1, for a Boltzmann
gas we determine the two equivalent expansions:

FW = ỹ exp

{
−

N∑
A=1

λ
(0)
A M̃A

}{
1 +

∞∑
r=1

h̄2r C̃2r

}
, (A46)

FW = ỹ exp

{
−

N∑
A=1

λA M̃A

}{
1 +

∞∑
r=1

h̄2r Q̃2r

}
, (A47)

where ỹ = y/(2πh̄)3, C̃2r = C2r (τ,r,p)|τ=1, and Q̃2r = Q2r (τ,r,p)|τ=1 where {C2r ,Q2r} are expressed, respectively, through
the general recurrence relations (A31), (A32), and (A39).
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We notice that in next sections all the results that can be obtained in the framework of Boltzmann statistics are more
conveniently determined as limit cases of the Fermi and Bose statistics.

5. Moyal expansion of the Wigner function for Fermi and Bose gases

By assuming τ = 1, we consider all the results of the previous section for the operators Â(̂r,̂p),F̂ (̂r,̂p) = eÂ(̂r,̂p) and for the
associated space-phase function A(r,p), F (r,p). By defining the new operator

�̂± (̂r,̂p) = y [F̂ (̂r,̂p) ± Î ]−1, (A48)

where y is a suitable dimensionless constant describing spin degeneracy and [̂�±,F̂ ] = 0.

To calculate the Moyal expansion for the corresponding phase-space function �±(r,p), we consider the Weyl-Wigner transform
of the product �̂± (F̂ ± Î ) by using Eq. (A5):

W (̂�± (F̂ ± Î )) =
∞∑

s=0

h̄2s �±(r,p) �2s (F (r,p) ± 1) = y. (A49)

Here F is expressed as expansion in an even power of h̄, and searching �± in the form

�±(r,p) = y

∞∑
r=0

h̄r �±
r (r,p), (A50)

by Eq. (A49) we obtain all the terms of expansion (A50). In particular, by considering only terms associated with odd powers of
h̄, we find

�±
2r+1 (F0 ± 1) +

r−1∑
m=0

r−m∑
s=0

�±
2m+1 �2s F2(r−m−s) = 0 ∀ r � 0, (A51)

and, by induction, one can prove that for all the odd terms �±
2r+1 = 0 ∀ r � 0. Indeed, for r = 0, by Eq. (A51) we obtain

�±
1 = 0. Thus, if we formulate the inductive hypothesis that �±

2l+1 = 0 for all 0 � l � r, then, by using Eq. (A51), it follows that
�±

2r+3 = 0. As a consequence, we find that all odd terms must satisfy the condition �±
2r+1 = 0 ∀ r � 0.

Analogously, by considering the even powers of h̄ we find

�±
2r (F0 ± 1) +

r−1∑
m=0

�±
2m F2(r−m) +

r−1∑
m=0

r−m∑
s=1

�±
2m �2s F2(r−m−s) = δr0 ∀ r � 0, (A52)

and the general solution of Eq. (A52) is given in the form

�±
2r = 1

eA0(r,p) ± 1
D±

2r (r,p), (A53)

where, for r = 0, it is D±
0 = 1, while for r � 1 the functions D±

2r are obtained by the general recurrence formula

D±
2r (r,p) = −

{
r−1∑
m=0

�±
2m F2(r−m) + L±

2r

}
with L±

2r =
r−1∑
m=0

r−m∑
s=1

�±
2m �2s F2(r−m−s). (A54)

In particular, for r = 1 we obtain the first-order quantum correction

D±
2 (r,p) = P ±

2 (r,p) −
(

eA0(r,p)

eA0(r,p) ± 1

)
A2(r,p), (A55)

where

P ±
2 = −

(
eA0

eA0 ± 1

) [
H(2)

3 + H(2)
2

] + 2

(
eA0

eA0 ± 1

)2[
3H(2)

3 + H(2)
2

] − 6

(
eA0

eA0 ± 1

)3

H(2)
3 , (A56)

and the functions H(2)
3 ,H(2)

2 are expressed by relations (A34) and (A35).
Thus, by cyclically using the approach above, we determine the Moyal expansion

�±(r,p) = W (̂�±) = y

eA0(r,p) ± 1

∞∑
r=0

h̄2r D±
2r (r,p). (A57)
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One can prove that this expansion can be rewritten in the convenient form

�±(r,p) = W (̂�±) = y

eA(r,p) ± 1

∞∑
r=0

h̄2r P ±
2r (r,p), (A58)

where

P ±
0 = 1 and P ±

2r = −
{

eA0(r,p)

[
r−1∑
m=0

�±
2m

r−m∑
q=1

Q2q H+
2(r−m−q)

]
+ L±

2r

}
∀ r � 1, (A59)

where the functions H+
2s and Q2s are expressed by Eqs. (A7) and (A39) evaluated for τ = 1.

Also in this case the equivalence of Eqs. (A57) and (A58) can be proved by induction in two steps.
In a first step we prove that the statement

D±
2r (r,p) =

r∑
k=0

G±
2k P ±

2(r−k) (A60)

is true for all r � 0, where the quantities G±
2r are defined in Eq. (A8) with τ = 1. Thus, we check that Eq. (A60) is true for

r = 0,1; we assume the inductive hypothesis that the functions D±
2l are expressed by Eq. (A60) for all 0 � l � r , and we prove

the relation

D±
2(r+1)(r,p) =

r+1∑
k=0

G±
2k P ±

2(r+1−k). (A61)

Indeed, by Eqs. (A28)2 and (A40) we can write

F2(r+1−m) = eA0(r,p)

{
r+1−m∑

q=1

Q2q H+
2(r+1−m−q) + H+

2(r+1−m)

}
,

and by inserting this result in Eq. (A54)1 and using Eq. (A59), we find

D±
2(r+1) = P ±

2(r+1) − eA0 �±
0 H+

2(r+1) − eA0

r∑
m=1

�±
2m H+

2(r+1−m), (A62)

where �±
2m = �±

0 D±
2m, and by using the inductive hypothesis we obtain

D±
2(r+1) = P ±

2(r+1) − �±
0 eA0

r∑
m=0

G±
2m H+

2(r+1−m) − �±
0 eA0

r∑
m=1

H+
2(r+1−m)

m−1∑
k=0

G±
2k P ±

2(m−k). (A63)

By considering for the last two terms the recurrence relations (A8) and (A14) (with τ = 1) we determine Eq. (A61), and we
conclude that the relation (A60) is true for all r � 0.

In a second step, by Eq. (A60) we rewrite the expansion (A57) as a Cauchy product of power series, and, using Eq. (A9)2, we
obtain the phase-space function �±(r,p) in the form (A58). Also in this case, if we consider the kinetic fields (24), the constraints
(26), and the Lagrange multipliers (39), then we can define A(r,̃p,t) in terms of the expansion

A(r,̃p,t) =
∞∑

r=0

h̄2r A2r (r,̃p,t), with A2r =
N∑

A=1

λ
(2r)
A (r,t)M̃A (̃p) . (A64)

Therefore, where FW (r,p,t) = W (̂�±)/(2 π h̄)3, by relations (34), (A57), and (A58) we determine the Wigner function for
the Fermi and Bose gases by means of the two equivalent expansions:

FW = ỹ

e�0 ± 1

{
1 +

∞∑
r=1

h̄2rD±
2r

}
, with �0 =

N∑
A=1

λ
(0)
A M̃A, (A65)

FW = ỹ

e� ± 1

{
1 +

∞∑
r=1

h̄2rP ±
2r

}
, with � =

N∑
A=1

λA M̃A, (A66)

where ỹ = y/(2πh̄)3 and {D±
2r , P

±
2r } are expressed by recursive formulas (A54) and (A59).
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6. Explicit first-order quantum correction for the Fermi and Bose gases

By considering the first term of Eq. (A66) we evaluate the zero-order iteration and obtain the relations (41). In this case, (i)
the moments MA must satisfy the classic system, and (ii) the zero-order approximation for the Lagrange multipliers λA can be
determined by considering the expansion (50) and inverting the relations (41)2.

With this approach, for the Fermi and Bose gases we obtain the classic relations [1,7] (42). Analogously, by considering the
successive term of the expansion (A66) we obtain

FW = ỹ

e� ± 1
{1 + h̄2P ±

2 } with MA + O(h̄4) =
∫

d3p M̃A FW . (A67)

In this case, (i) the moments MA are calculated up to the first-order quantum correction. (ii) The correction term P ±
2 is evaluated,

using the previous iteration, by means of Eqs. (A34), (A35), and (A56). (iii) The first-order approximation for the Lagrange
multipliers is determined by considering the expansion (50) and by inverting the quantum relations (A67)2. For this purpose, it
is necessary to introduce the Fermi and the Bose integral functions

I±
n (α) =

∫ +∞

0

xn

exp(α + x2) ± 1
dx (A68)

satisfying the differentiation property with the recurrence relation

dr I±
n (α)

d αr
= (−1)r

�
(

n+1
2

)
�
(

n+1
2 − r

) I±
n−2r (α), (A69)

where, in general, the functions I±
n (α) can be analytically continued also for complex values [62] of n, and the relation (A69)

cannot be necessarily restricted to positive values [62] of n. Thus, all functions I±
n (α) with negative values of n are defined by

means of (A69). In this case, by assuming that the nonlocal effects are due essentially to the spatial derivatives of the equilibrium
Lagrange multipliers α and β, we determine both FW |E and the linearized nonequilibrium Wigner function FW |NE in the form
(51)–(54). In particular, by defining z = n/T 3/2, all nonlocal coefficients {Q(k,l),Q(k,l)

〈ij〉 } contained in Eqs. (51)–(54) are expressed
by means of relations

Q(1,1) = −2

(
I±

2

I±
0

)2 (
∂ln z

∂xk

)2

+ O(h̄2), (A70)

Q(1,2) = 1

3

I±
2

I±
0

{[
1 + I±

2

I±
0

I±
−2

I±
0

](
∂ln z

∂xk

)2

− ∂ln z

∂xk

∂ln T

∂xk

+ ∂2ln z

∂xk∂xk

}
+ O(h̄2), (A71)

Q(1,3) = − 1

24

{(
∂ln T

∂xk

)2

− 2
∂2ln T

∂xk∂xk

}
+ O(h̄2), (A72)

Q(2,1) = 3
I±

2

I±
0

{[
1 + I±

2

I±
0

I±
−2

I±
0

](
∂ln z

∂xk

)2

+ ∂2ln z

∂xk∂xk

}
+ O(h̄2), (A73)

Q(2,2) = 1

4

{
3

∂2ln T

∂xk∂xk

−
(

∂ln T

∂xk

)2}
+ O(h̄2), (A74)

Q(1,4)
〈ij〉 = I±

2

I±
0

{[
1 + I±

2

I±
0

I±
−2

I±
0

]
∂ln z

∂x〈i

∂ln z

∂xj〉
+ ∂2ln z

∂x〈i∂xj〉
+ 2

∂ln z

∂x〈i

∂ln T

∂xj〉

}
+ O(h̄2), (A75)

Q(1,5)
〈ij〉 = 1

4

{
∂2ln T

∂x〈i∂xj〉
+ ∂ln T

∂x〈i

∂ln T

∂xj〉

}
+ O(h̄2), (A76)

Q(2,4)
〈ij〉 = 3

2

∂ln T

∂x〈i

∂ln T

∂xj〉
+ O(h̄2). (A77)

Finally, when all terms associated to the spatial derivatives of temperature are negligible respect to terms connected with
the spatial derivatives of numerical density [53], then we have the density-gradient approximation. In this case we obtain that
Q(1,3) = Q(2,2) = Q(1,5)

〈ij〉 = Q(2,4)
〈ij〉 ≈ 0, while, for the remaining quantities, we find the quantities

Q(1) = Q(1,1), Q(2) = Q(1,2) = 1
9 Q

(2,1), Q〈ij〉 = Q(1,4)
〈ij〉 , (A78)

as explicitly reported in Appendix A of Ref. [6].
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a. Nonequilibrium Lagrange multipliers and the closure problem for Fermi and Bose gases

To determine the nonequilibrium Lagrange multipliers and the constitutive relations, we define the matrices ϒ
(r)
ls ,ϒ

(r,i,j )
ls =

{ϒ (r,1,1)
ls ,ϒ

(r,1,2)
ls ,ϒ

(r,1,3)
ls ,ϒ

(r,2,1)
ls ,ϒ

(r,2,2)
ls } with r = 0,1 and, ϒ

(p,q)
ls = {ϒ (1,4)

ls ,ϒ
(2,4)
ls ,ϒ

(1,5)
ls }, ϒ̃ (p,q)

ls = {ϒ̃ (1,4)
ls ,ϒ̃

(2,4)
ls ,ϒ̃

(1,5)
ls },

by means of relations

ϒ
(r)
sl = �

(
s + l + r + 3

2

)
�
(
s + l + r + 1

2

) I±
2(s+l+r)

I±
2

, (A79)

ϒ
(r,i,j )
sl = 2j−1 (−1)i

{
�
(
s + l + j + r + 1

2

)
�
(
s + l + i + j + r − 9

2

) I±
2(s+l+i+j+r−5)

I±
2

− �
(
j + 1

2

)
�
(
i + j − 7

2

) �
(
s + l + r + 3

2

)
�
(
s + l + r + 1

2

) I±
2(s+l+r)

I±
2

I±
2(i+j−4)

I±
2

}
,

(A80)

ϒ
(p,q)
sl = 2q−2

5
(−1)p

�
(
s + l + q − 1

2

)
�
(
s + l + p + q − 11

2

) I±
2(s+l+p+q−6)

I±
2

, (A81)

ϒ̃
(p,q)
sl = 2q−2

5
(−1)p

�
(
s + l + q + 1

2

)
�
(
s + l + p + q − 9

2

) I±
2(s+l+p+q−5)

I±
2

. (A82)

Thus, by introducing the nonequilibrium Wigner expansion (52) in the moments (87), we obtain the following linear system
in the nonequilibrium variables {�(l),�(l)|k}:

�(s) + O(h̄4) = −n

N∑
l=0

{
ϒ

(0)
sl + h̄2

12 m

1

kB T

[
3∑

j=1

ϒ
(0,1,j )
sl Q(1,j ) +

2∑
j=1

ϒ
(0,2,j )
sl Q(2,j )

]}
(kB T )s+l �(l), (A83)

M(s)|i + O(h̄4) = −2

3

n

m

N∑
l=0

{
ϒ

(1)
sl δik + h̄2

12 m

1

kB T

[(
3∑

j=1

ϒ
(1,1,j )
sl Q(1,j ) +

2∑
j=1

ϒ
(1,2,j )
sl Q(2,j )

)
δik

+
2∑

p=1

ϒ
(p,4)
sl Q(p,4)

〈ik〉 + ϒ
(1,5)
sl Q(1,5)

〈ik〉

]}
(kB T )s+l+1 �(l)|k, (A84)

This system can be inverted, and we obtain

�(l) = −1

n

N∑
s=2

{
�

(0)
ls − h̄2

12 m

1

kB T

[
3∑

p=1

�
(0,1,p)
ls Q(1,p) +

2∑
q=1

�
(0,2,q)
ls Q(2,q)

]}(
1

kB T

)l+s

�(s) + O(h̄4), (A85)

�(l)|k = −3

2

m

n

N∑
s=1

{
�

(1)
ls δki − h̄2

12 m

1

kB T

[(
3∑

p=1

�
(1,1,p)
ls Q(1,p) +

2∑
q=1

�
(1,2,q)
ls Q(2,q)

)
δki

+
2∑

q=1

�
(q,4)
ls Q(q,4)

〈ki〉 + �
(1,5)
ls Q(1,5)

〈ki〉

]}(
1

kB T

)l+s+1

M(s)|i + O(h̄4), (A86)

where all matrices �
(r)
ls , �

(r,i,j )
ls ={�(r,1,1)

ls , �
(r,1,2)
ls , �

(r,1,3)
ls , �

(r,2,1)
ls , �

(r,2,2)
ls } obtained for r = 0,1, and �

(p,q)
ls =

{�(1,4)
ls ,�

(2,4)
ls ,�

(1,5)
ls }, contained in these relations, are expressed in the form

�
(r)
ls = (

ϒ
(r)
ls

)−1
, �

(r,i,j )
ls = �

(r)
ln ϒ (r,i,j )

nm �(r)
ms, �

(p,q)
ls = �

(1)
ln ϒ (p,q)

nm �(1)
ms. (A87)

From the knowledge of the Lagrange multipliers, and using the matrices (A79)–(A82) and (A87), the constitutive relations
are obtained through Eqs. (88)–(90), where all the coefficients ζ(N+1) s , ζ

(i,j )
(N+1) s = {ζ (1,1)

(N+1) s , ζ
(1,2)
(N+1) s , ζ

(1,3)
(N+1) s , ζ

(2,1)
(N+1) s , ζ

(2,2)
(N+1) s},

ξ
(p,q)
sr = {ξ (1,4)

sr , ξ (2,4)
sr , ξ (1,5)

sr }, and 
(p,q)
sr = {(1,4)

sr , (2,4)
sr , (1,5)

sr }, entering these relations, are given by

ζ(N+1) s =
N∑
l=0

ϒ
(0)
(N+1) l �

(0)
ls , ζ

(i,j )
(N+1) s =

N∑
l=0

[
ϒ

(0,i,j )
(N+1) l �

(0)
ls − ϒ

(0)
(N+1) l �

(0,i,j )
ls

]
, (A88)

ξ (p,q)
sr = (kB T )s−r

N∑
l=0

ϒ
(p,q)
sl �

(0)
lr , (p,q)

sr = (kB T )s−r

N∑
l=0

ϒ̃
(p,q)
sl �

(1)
lr . (A89)
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7. Explicit first-order quantum correction for a Boltzmann gas

We recall that for α 
 1 the Fermi and/or Bose integral functions are expressed by means of relation I±
n (α) ≈ (1/2)�[(n +

1)/2]exp(−α). Thus, by considering Eqs. (53) and (A70)–(A77), we obtain

L±
(n) = (−1)n e−α−βε̃, (A90)

Q(1) = Q(2,1) − Q(1,1), Q(2) = Q(2,2) − Q(1,2), (A91)

Q(3) = −Q(1,3), Q(4)
〈ij〉 = Q(2,4)

〈ij〉 − Q(1,4)
〈ij〉 , Q(5)

〈ij〉 = −Q(1,5)
〈ij〉 , (A92)

where all coefficients {Q(r),Q(p)
〈ij〉} can be evaluated explicitly by using the Boltzmann approximation for the functions I±

n (α) in
the relations (A91) and (A92).

As a consequence, the Moyal expansions (56)–(58) for a Boltzmann gas are obtained as a particular case of the Moyal
expansions (51)–(54) for the Fermi and Bose gases under nondegenerate conditions.

a. Nonequilibrium Lagrange multipliers and the closure problem for a Boltzmann gas

In the framework of Boltzmann statistic, to determine the nonequilibrium Lagrange multipliers and, as a consequence, the
constitutive relations, we define the following matrices {A(r)

sl , A
(r,j )
sl ,A(p)

sl ,Ã(p)
sl } and {B(r)

ls , B
(r,j )
ls ,B(p)

ls }, with r = 0,1, j = 2,3,

and p = 4,5:

A
(r)
sl = [2 (s + l + r) + 1]!!

2s+l+r
, A

(r,2)
sl = [2 (s + l + r) + 1]!!

2s+l+r−1
(s + l + r), (A93)

A
(r,3)
sl = [2 (s + l + r) + 1]!!

2s+l+r−2
(s + l + r) (s + l + r + 4), (A94)

A(p)
sl = 1

5

[2 (s + l + p) − 3]!!

2s+l
, Ã(p)

sl = 1

5

[2 (s + l + p) − 1]!!

2s+l+1
, (A95)

B
(r)
ls = (

A
(r)
ls

)−1
, B

(r,j )
ls = B

(r)
ln A(r,j )

nm B(r)
ms, B(p)

ls = B
(1)
ln A(p)

nm B(1)
ms . (A96)

Therefore, by evaluating the relations (A79)–(A82) for α 
 1, one can verify that

ϒ
(r)
sl = A

(r)
sl ; ϒ

(r,1,2)
sl = −ϒ

(r,2,2)
sl = −A

(r,2)
sl , ϒ

(r,1,3)
sl = −A

(r,3)
sl , ϒ

(r,1,1)
sl = ϒ

(r,2,1)
sl = 0;

ϒ
(1,4)
sl = −ϒ

(2,4)
sl = −A(4)

sl , ϒ
(1,5)
sl = −A(5)

sl , ϒ̃
(1,4)
sl = −ϒ̃

(2,4)
sl = −Ã(4)

sl , ϒ̃
(1,5)
sl = −Ã(5)

sl ;

�
(r)
sl = B

(r)
sl ; �

(r,1,2)
sl = −�

(r,2,2)
sl = −B

(r,2)
sl , �

(r,1,3)
sl = −B

(r,3)
sl , �

(r,1,1)
sl = �

(r,2,1)
sl = 0;

�
(1,4)
sl = −�

(2,4)
sl = −B(4)

sl , �
(1,5)
sl = −B(5)

sl .

As a consequence, by using Eqs. (A83), (A84), (A91), and (A92) we obtain the following linear system:

�(s) + O(h̄4) = −n

N∑
l=0

{
A

(0)
sl + h̄2

12 m

1

kB T

3∑
j=2

[
A

(0,j )
sl Q(j )

]}
(kB T )s+l�(l), (A97)

M(s)|i + O(h̄4) = −2

3

n

m

N∑
l=0

{
A

(1)
sl δik + h̄2

12 m

1

kB T

[(
A

(1,2)
sl Q(2) + A

(1,3)
sl Q(3)

)
δik

+A(4)
sl Q(4)

〈ik〉 + A(5)
sl Q(5)

〈ik〉
]}

(kB T )s+l+1 �(l)|k, (A98)

and, as solution of these relations, the Lagrange multipliers

�(l) = −1

n

N∑
s=2

{
B

(0)
ls − h̄2

12 m

1

kB T

3∑
j=2

[
B

(0,j )
ls Q(j )

]}(
1

kB T

)l+s

�(s) + O(h̄4), (A99)

�(l)|k = −3

2

m

n

N∑
s=1

{
B

(1)
ls δki − h̄2

12 m

1

kB T

[(
B

(1,2)
ls Q(2) + B

(1,3)
ls Q(3)

)
δki

+B(4)
ls Q(4)

〈ki〉 + B(5)
ls Q(5)

〈ki〉
]}(

1

kB T

)l+s+1

M(s)|i + O(h̄4). (A100)
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Analogously, by introducing the following matrices:

χ(N+1) s =
N∑
l=0

A
(0)
(N+1) l B

(0)
ls , χ

(j )
(N+1) s =

N∑
l=0

[
A

(0,j )
(N+1) l B

(0)
ls − A

(0)
(N+1) l B

(0,j )
ls

]
, (A101)

ξ (p)
sr = (kB T )s−r

N∑
l=0

A(p)
sl B

(0)
lr , (p)

sr = (kB T )s−r

N∑
l=0

Ã(p)
sl B

(1)
lr , (A102)

for j = 2,3 and p = 4,5, we consider Eqs. (A88) and (A89) to obtain the relations

ζ(N+1) s = χ(N+1) s ; ζ
(1,2)
(N+1)s = −ζ

(2,2)
(N+1)s = −χ

(2)
(N+1)s , ζ

(1,3)
(N+1)s = −χ

(3)
(N+1)s ,

ζ
(1,1)
(N+1)s = ζ

(2,1)
(N+1)s = 0; ξ

(1,4)
sl = −ξ

(2,4)
sl = −ξ

(4)
sl , ξ

(1,5)
sl = −ξ

(5)
sl ; 

(1,4)
sl = −

(2,4)
sl = −

(4)
sl , 

(1,5)
sl = −

(5)
sl .

As a consequence, all nonequilibrium closure relations (92)–(95) can be estimated under nondegenerate conditions by means
of Eqs. (88)–(91).
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