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We discuss stationary aspects of a set of driven lattice gases in which hard-core particles with spatial extent,
covering more than one lattice site, diffuse and reconstruct in one dimension under nearest-neighbor interactions.
As in the uncoupled case [M. Barma et al., J. Phys.: Condens. Matter 19, 065112 (2007)], the dynamics of the
phase space breaks up into an exponentially large number of mutually disconnected sectors labeled by a nonlocal
construct, the irreducible string. Depending on whether the particle couplings are taken attractive or repulsive,
simulations in most of the studied sectors show that both steady state currents and pair correlations behave quite
differently at low temperature regimes. For repulsive interactions an order-by-disorder transition is suggested.
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I. INTRODUCTION

Since a general theoretical framework for studying nonequi-
librium phenomena yet remains elusive, our understanding
of the subject partly has to resort to studies of specific
and seemingly simple stochastic models. One of the most
investigated ones in that context is a driven lattice gas (DLG)
involving hard-core particle diffusion under an external bulk
field which biases the particle flow along one of the lattice
axes. Introduced by Katz, Lebowitz, and Spohn [1] in part with
the aim of studying the physics of fast ionic conductors [2],
it has triggered a great deal of research for almost three
decades [3,4]. In the high field limit this system describes
an asymmetric simple exclusion process (ASEP) [5,6] which
already in one dimension under suitable boundary conditions
has encountered applications as diverse as protein synthesis
[7], inhomogeneous interface growth [8], and vehicular traffic
[9]. Notwithstanding the deceptive simplicity of most DLG
versions, actually slight modifications of kinetic Ising models
[10], the constantly maintained bias results in a net dissipative
current (if permitted by boundary conditions), so the emerging
steady state (SS) distributions are nonequilibrium ones.

As part of the ongoing effort in this context, here we inves-
tigate numerically stationary aspects of DLG with extended
objects which in turn can dissociate and reconstruct them-
selves in a one-dimensional (1D) periodic lattice. Although
less frequently studied, exclusion processes with spatially
extended particles date back to the work of MacDonald, Gibbs,
and Pipkin [11], who introduced this concept as a simple
setting to understand the dynamics of protein synthesis. In
that terminology, each lattice site denotes a codon on the
messenger RNA, while large particles stand for ribosomes
which, covering several codons, move through them stepwise
and thereby produce the protein [11]. Subsequently, this and
other issues related to diffusion of extended objects were
revisited in various studies [7,12–18].

In common with some of these latter studies, the processes
here considered involve hard-core composite particles, here-
after termed k-mers, which occupy k consecutive locations
and diffuse by one lattice site in the presence of both an
external drive and other fragments of length l < k. In addition,
we include nearest-neighbor (NN) interactions between indi-
vidual particles (hard-core monomers), and allow for k-mer
dissociation [13–15] in the course of their casual encounters

with the otherwise nondiffusing fragments, e.g., • • ◦ • ◦ �
◦ • • • ◦ � ◦ • ◦ • •, say for dimers approaching a monomer.
Thus, although the dynamics preserves the total number of
k-mers, their indentities as well as those of the fragments
collided are not retained, these being instead recomposed
throughout the process. At finite drifts and couplings the
system evolves to a nontrivial SS measure characterized by a
macroscopic current, a central quantity of interest which in the
terminology of protein synthesis corresponds to the stationary
protein production rate [7]. When monomers are uncoupled
(beyond their excluded volumes), all SS configurations are
equally likely under periodic boundary conditions (PBC) but
the full dynamics and stationary correlations are quite involved
[15,18].

Interestingly, and irrespective of the monomer couplings,
ergodicity is strongly broken as a result of the presence
of the aforementioned fragments. As these do not diffuse
explicitly (but only through dissociation with k-mers), they
break up the phase space into mutually disjoint and dynamical
invariant subspaces or “sectors” whose number turns out to
grow exponentially with the lattice size [13–15,19]. Thus, the
SS current and correlations are not unique but rather vary
from one sector to another, ultimately depending on the initial
distribution of fragments. In that regard, to characterize the full
partitioning of the phase space here we follow the ideas given
in Refs. [13–15] for the case of dimers, and introduce a set
of fictitious extended particles whose order along a nonlocal
construct, namely, the “irreducible string” [19]- turns out
to be the actual invariant of the motion. This also enables us
to obtain saturation currents of generic sectors by means of
a correspondence to ASEP systems in a smaller lattice [15].
When normalized to those saturation values, our simulations
indicate that as long as monomer interactions are held attractive
the currents of most studied sectors can be made to collapse
into a single universal curve. Moreover, this latter can also be
fitted in terms of mean-field DLG currents [4,20] upon using
the ASEP densities associated to each sector. By contrast, for
repulsive interactions such normalized currents turn out to
be sector dependent and no universality can be constructed.
On a mesoscopic level of description, also different features
show up depending on whether the particle couplings are taken
attractive or repulsive. Although in either case most sectors
bear highly degenerate ground states, based on the behavior
of both the structure factor and correlation length at low
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temperature regimes, we suggest that for repulsive couplings
thermal fluctuations appear to lift part of this degeneracy and
cause an order-by-disorder transition [21].

The layout of this work is organized as follows. In Sec. II we
define the basic kinetic steps and transition probability rates of
these reconstituting processes. We then recast the dynamics in
terms of new extended particles which readily evidence the ap-
pearance of an exponentially growing number of disconnected
subspaces. Also, for large drives these new particles are helpful
to characterize the mentioned analogy between reconstructing
DLG and ASEP systems. Guided by these developments,
simulations for dimers and trimers are discussed in Sec. III
where we examine SS currents and pair correlations in several
sectors under various situations. We close with Sec. IV which
contains a recapitulation along with brief remarks on open
issues and possible extensions of this work.

II. DIFFUSION OF COMPOSITE PARTICLES

The microscopic particle model we consider is a ring of
L sites, each of which may be singly occupied (occupation
number n = 1), or empty (n = 0). The particles behave as if
they were positive ions in relation to a uniform electric field
E , while in turn are coupled effectively either by NN attractive
interactions (J > 0), or NN repulsive ones (J < 0), via an
Ising Hamiltonian H = −4 J

∑
i ni ni+1. Let us first describe

the basic kinetic steps which take place and then carry on with
the definition of their corresponding rates. The system evolves
stochastically under a particle conserving dynamics involving
just k-mer shifts in single lattice units, i.e.,

1 . . . 1︸ ︷︷ ︸
k

0 � 0 1 . . . 1︸ ︷︷ ︸
k

, (1)

the motion being biased in the direction of the field. Here,
monomers and groups or fragments of j -adjacent particles
with j < k cannot diffuse explicitly but since the identity of
k-mers is impermanent, they are ultimately allowed to in a
series of steps. For instance, in the sequence

1 . . . 1︸ ︷︷ ︸
k

0 1. .1︸︷︷︸
j

0 � 0 1. .1︸︷︷︸
j

1 . . . 1︸ ︷︷ ︸
k

0 � 0 1. .1︸︷︷︸
j

0 1 . . . 1︸ ︷︷ ︸
k

,

(2)

the initial rightmost group of j particles can hop k sites to the
left and vice versa. The key issue to emphasize is that both
k-mers and fragments can dissociate and reconstitute without
restraints throughout the process, so they do not retain their
identity (except in particular situations, as we shall see below).

As for transition rates between two particle configura-
tions C and C ′, we take up the common Kawasaki transi-
tions φ[ β(�H + uEk) ] with φ(x) ≡ 2(1 + ex)−1, and �H =
H (C ′) − H (C) [10,22]. Here, the term uEk denotes the work
done by the bulk field E during a k-mer jump (u = ±1),
whereas β = 1/T stands for the usual inverse temperature
(henceforth the Boltzmann constant is set equal to 1). The
different situations encompassed by these rules along with
the rates associated to them are easily visualized in Table I
(where thereafter Ek ≡ βEk). In the absence of drive the SS
distribution is of course proportional to e−βH (C). For E �= 0
these rates also satisfy local detailed balance [23], but owing
to PBC they amount to a uniform field “looping” around the
ring. Since such field cannot be written as the gradient of any
potential, clearly full detailed balance cannot hold and the
exact form of the nonequilibrium SS distribution is unknown.

This set of driven and reconstituting lattice gases (DRLG)
may be viewed as an extended and interacting version of
a dimer model recently studied in Ref. [15]. Alike its non-
driven (equilibrium) predecessors [13,14], the dynamic here
considered splits up the phase space of configurations into an
unusually large number of invariant sectors, actually growing
exponentially with the system size (see Sec. II B). Apart from
particle conservation within each of the k sublattices (hereafter
we consider a k-partite chain by choosing L/k integer), the
full partitioning of the phase space can be understood in
terms of a nonlocal construct known as the irreducible string
(IS) [13–15,19]. This latter is an invariant of the stochastic
motion and in turn provides a convenient label for each sector.
To further explain this idea we recur to an equivalent represen-
tation of these processes using a set of composite characters
or new “particles” A0,A1, . . . ,Ak−1,Ak constructed as

A0 ≡ 0 ,
...

Aj ≡ 1 . . . 1︸ ︷︷ ︸
j

0, 1 � j < k, (3)
...

Ak ≡ 1 . . . 1.

The Ak or k-mer movements and their recompositions can
then be thought of as character exchanges of the form

AkAj � AjAk, 0 � j < k, (4)

the k-mer identity here being preserved only by A0, whereas
exchanges not involving Ak remain disabled, i.e., Ai Aj do not
swap their positions if i,j �= k . For example, in this represen-
tation the steps referred to in Eq. (2) now become AkA0Aj �
A0AkAj � A0AjAk . This bears some resemblance to a driven

TABLE I. Transition rates of driven k-mer processes in one dimension. The symbols
•, ◦, and denote, respectively, occupied, vacant, and k-mer locations, whereas
upper and lower signs stand in turn for forward, →, and backward, ←, hopping rates.

Process Rate (�)

◦ ◦ ◦ � ◦ ◦ ◦ 1
2 [1 ± tanh (Ek/2)]

• ◦ • � • ◦ • 1
2 [1 ± tanh (Ek/2)]

• ◦ ◦ � • ◦ ◦ 1
2 [1 ± tanh (Ek/2 − 2βJ )]

◦ ◦ • � ◦ ◦ • 1
2 [1 ± tanh (Ek/2 + 2βJ )]
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process of several particle species introduced in the context of
1D phase separation [25]. However, in those systems all NN
species are exchangeable [25], whereas in this mapping note
that the ordering of characters A0,A1, . . . , Ak−1 set by the
initial conditions is conserved throughout all subsequent times,
modulo eventual interposition of one or more adjacent k-mers
between A’s. Thus, the invariant IS of a given sector simply
refers to the sequence emerged after deletion of all k-mers or
“reducible” characters appearing in any configuration of that
sector. This operation results in a unique sequence irrespective
of the order of deletion, so the correspondence between
original monomer and character configurations is one to one.

For this new representation we can therefore think of an
equivalent Hamiltonian H of hard-core particle species Ai

of fixed concentration Ni/N , defined on a ring of N = ∑
i Ni

sites with NN interactions. In terms of the occupation numbers
n

(i)
λ of these new particle classes, the related Hamiltonian can

be written down as

H = −4J
∑
i �=0

∑
λ

n
(k)
λ n

(i)
λ+1,

∑
λ

n
(i)
λ = Ni, (5)

up to a sector-dependent constant (here, if n
(i)
λ = 1 at a given

location λ, then n
(j )
λ = 0, ∀j �= i ). Hence, the Kawasaki rates

of the biased exchanges referred to in Eq. (4) now depend on
the class of surrounding particles, namely,

φ[ β (�H−E k) ]
AiAkAjAl � AiAjAk Al

φ[−β (�H−E k) ]
, j �= k, (6)

with φ(x) defined as above, and energy changes given by

�H =
{

0 if l �= 0 or l = j = 0, i �= k ,

4J otherwise.
(7)

In particular, it follows that all IS sectors having N0 = 0
conserve the internal energy throughout.

It is worth pointing out that for k = 1 the form of Eqs. (5)–
(7) just describes the usual monomer DLG. Also, notice that
the dynamics of this latter is formally analogous to that of
the nonreconstructing or null sector [A0]L, that is, an IS of
length L = N0. In that case Eq. (5) reduces to the usual Ising
Hamiltonian, and the processes of Eq. (6) just involve Ak-A0

(“particle-hole”) exchanges. In passing, we mention that it is
actually the noninteracting version of this sector, the one which
was studied in connection to the protein dynamics referred to
in Sec. I, and the one whose space-time correlations were
recently investigated in Ref. [18].

A. The ASEP limit

For N0 = 0 as well as in the large field or saturation regime
|E | 	 |J |/k of generic sectors, clearly the above processes are
isomorphic to an ASEP system in which k-mers play the role
of noninteracting (but hard-core) particles hopping through
indistinguishable Aj vacancies (j �= k). More specifically,
given an IS of length L = ∑

j �=k(j + 1)Nj measured in the
original DRLG spacings, this regime amounts to a problem
of Nk = (L − L)/k ASEP particles hopping with biased

probabilities 1
2 (1 ± tanh Ek

2 ) through N = ∑
j Nj lattice sites

with particle density

ρ−1
ASEP

= 1 + k

L − L
∑
j �=k

Nj . (8)

From these correspondences we can readily obtain the
sublattice currents of the original DRLG in their saturation
regimes. Since in our ASEP limit all SS configurations are
equally likely (because of PBC), evidently the probability
of finding an Ak particle followed by an Ai vacancy or
vice versa, is just ρASEP (1 − ρASEP ), in turn proportional to the
ASEP current. In the DRLG representation this is related
to the probability of finding a k-mer “head” (“tail”)—i.e., a
rightmost (leftmost) k-mer unit—on a given sublattice site,
times the probability of finding a 0 in the next (previous)
sublattice location. However, the former event occurs with
probability Nk/(L/k) = ρASEPkN/L, whereas that of the latter,
∝ (1 − ρASEP ), must be normalized by the fraction of 0’s of the
sublattice in question. So if ρi denotes the monomer density
of sublattice �i , such fraction is therefore calculated as

fi = L

k
(1 − ρi)

/∑
j �=k

Nj , (9)

hence combining Eqs. (8) and (9), and using N = ∑
j �=k Nj +

(L − L)/k, for |E | 	 |J |/k the saturation current of �i finally
reduces to

J (i)
sat = ρASEP (1 − ρi) tanh (Ek/2) , (10)

while also holding ∀E so long as N0 = 0. In general, these
saturation currents depend on the particular distribution of
characters in the IS. However, for periodic sectors, i.e., strings
formed by repeating a unit sequence of A’s, these limiting
values are just rational functions of sublattice densities (cf.
Table II below). In particular, and for ulterior comparisons, in
the null sector [A0]L referred to above, all sublattices share a
common saturation current

Jsat = ρ (1 − ρ) tanh (Ek/2)

ρ + k(1 − ρ)
(11)

and a particle density ρ = 1 − L/L. It is worth mentioning
that this (null string) flux has been derived in Ref. [11].

Although in Sec. III we shall restrict ourselves to time-
independent SS aspects, such as currents and pair correlations,
let us briefly mention here that density fluctuations in the
stationary ASEP move through the system as kinematic waves
[6,15,18] that ultimately take over the asymptotic behavior
at large times. In our DRLG model this corresponds to k

sublattice wave velocities Vi = ∂J (i)
sat /∂ρi which, for periodic

strings, can vanish at a common critical length Lc. Hence, as
suggested in Refs. [15,18], when approaching such conditions
there may well be a crossover from an exponential relaxation of
density fluctuations to a slow Kardar-Parisi-Zhang dynamics
[6] for which the former would decay as t−2/3. In particular,
from Eq. (11) it follows that in the null sector this should occur
for ρc → √

k/(1 + √
k) [18].
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B. Growth of invariant sectors

Before proceeding to the simulation of these processes
at finite temperatures and fields, we pause to digress about
the exponential growth of disjoint sectors with the length of
their IS’s. Here we follow and extend slightly the recursive
procedure discussed in Ref. [13] for the case of dimers. For
simplicity, and solely for the purpose of avoiding the overcount
of strings related to each other by a cyclic permutation
of characters, we will assume open boundary conditions
throughout this section.

Let FL(1) and FL(0) denote the number of IS’s of length L
whose first bit is 1 and 0, respectively. Thus, the total number
of L sectors we want to evaluate is just NL = FL(0) + FL(1).
As there are no Ak characters in these strings, these quantities
must satisfy the recursion relations

FL(0) = FL−1(0) + FL−1(1),
(12)

FL(1) = FL−1(0) + FL−1(A1) + · · · + FL−1(Ak−2),

with FL(Ai) denoting in turn the number of IS’s of length
L whose first character is Ai , 1 � i � k − 1 (note that such
construct would not be well defined for PBC). On the other
hand, by definition these latter quantities should also be related
recursively as

FL(A1) = FL−1(0),

FL(A2) = FL−1(A1) = FL−2(0), (13)
...

FL(Ak−1) = FL−1(Ak−2) = · · · = FL−(k−1)(0).

As a by-product of these relations, it follows that NL =
2FL(0) − FL−k(0), thus it is sufficient to focus attention
on FL(0). Inserting the above equations in Eq. (12) we
readily obtain a linear recursion for this quantity, namely, the
Fibonacci-like relation

FL(0) =
k∑

i=1

FL−i(0), L > k, (14)

whose general solution is bound up to the z1, . . . ,zk zeros of
the polynomial [24]

Pk(x) =
k∑

i=1

xi−1− xk. (15)

Thus, Eq. (14) reduces to the exponential form FL(0) =∑k
i=1 biz

L
i with b coefficients that are in turn evaluated

by fitting linearly the k boundary terms F1(0), . . . ,Fk(0),
e.g., F1(0) = F2(0) = 1 for dimers, and F1(0) = F2(0) =
1
2F3(0) = 1 in the case of trimers. Specifically, for these two
latter situations, which we shall discuss in detail for some
sectors later on, it turns out that for large L (say comparable
to L), the total number of L strings grows as

NL ∝
{[

1
2 (1 + √

5)
]L � 1.618L, for k = 2,

[ 1
3

(
1 + v+ + v−)

]L � 1.839L, for k = 3,
(16)

where v± = (19 ± 3
√

33)1/3.
From the above calculations, note that the number of

nonjammed sectors put together, i.e., the sum of all those
with lengths L ∈ [1,L − 1], increases as fast as the number

of sectors with L = L. Since these latter cannot evolve any
further, each constitutes a separate sector having only one
configuration [as opposed to nonjammed strings which, from

the ASEP analogy, bear
( ∑

i Ni

(L−L)/k

)
state configurations].

Growth of sectors with N0 = 0. Following this line of
reasoning, it is straightforward to also determine the number
of IS’s conserving the internal energy throughout. That is the
situation referred to after Eq. (7), where no A0 characters
appear in the IS. For this sector we now define GL(1) and GL(0)
as the number of invariant L strings having no consecutive 0’s,
and whose first bit is 1 and 0, respectively. Thus, the counting
of strings constrained by N0 = 0 requires the evaluation of
GL(1). Clearly, by construction these numbers involve the
relations

GL(0) = GL−1(1),
(17)

GL(1) = GL(A1) + · · · + GL(Ak−1),

where, as before, GL(Ai) refers to the number of irreducible
sectors, now subject to N0 = 0, having Ai as their first
character (1 � i � k − 1). Also, it can be readily verified
that these latter numbers are involved recursively in the
same form as their F counterparts in Eq. (13). When using
those relations in Eq. (17), the following linear recurrence
immediately emerges:

GL(1) =
k∑

i=2

GL−i(1), L > k. (18)

The characteristic polynomials Pk(x) associated to the generic
term of this sequence now distinguish the parity of k-mers,
namely [24],

Pk(x) =
⎧⎨
⎩

∑k−2
i=0 xi − xk, for k odd,

∑(k/2)−1
i=0 x2i − xk−1, for k even,

(19)

which along with the boundary terms G1(1), . . . ,Gk(1) deter-
mine the specific form of GL ∀L > k. As expected, the roots of
the above polynomials only yield exponential growth for k > 2
[evidently for dimers GL(1) ≡ 1, in correspondence with the
sole [A1]L/2 configuration]. In the limit L → ∞ these sectors
grow progressively faster as k increases but in all cases slower
than the respective F ’s of the unrestricted sectors Eq. (14), as
they should. In particular, for trimers it turns out that

GL(1) ∝ (w+ + w−)L � 1.325L, k = 3, (20)

where w± = ( 1
2 ± 1

6

√
23
3 )1/3.

III. NUMERICAL RESULTS

Armed with the ASEP correspondence discussed before,
we have conducted extensive simulations of SS currents and
pair correlations in several subspaces for both dimers and
trimers. In all cases, we evolved indpendent configurations
for each of the studied sectors. The corresponding initial
conditions were prepared by random deposition of (L − L)/k

ASEP monomers, that is, Ak particles (k = 2,3), on a ring
of N0 + N1 + · · · + Nk sites. Here, we distinguished between
k type of ASEP vacancies, so we tagged them in the same
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TABLE II. Limiting sublattice currents and densities for dimers and trimers
(k = 2,3) in periodic strings of length L considered in the simulations below.
These are formed by repeating, e.g. [A2

1A0] = [(10)(10)(0)] L/5 times, etc. In
some sectors these quantities are common to all sublattices.

k IS sector Jsat/ tanh ( Ek

2 ) Density

2 [A2
1
A0 ]L/5 (ρ−1)(5ρ−2)

ρ−4 ρ = 1 − 3L
5L

2 [A1A0 ]L/3 (3ρ−1)(ρ−1)
ρ−3 ρ = 1 − 2L

3L

2 [A1A
2
0
]L/4

{ (1−ρ1)(1−2ρ1)
ρ1−2

2ρ2(1−ρ2)
3−ρ2

{
ρ1 = 1 − L

2L

ρ2 = 1 − L
L

3 [A2A
2
1
A0 ]L/8 (ρ−1)(2ρ−1)

ρ−2 ρ = 1 − L
2L

3 [A2A1A0 ]L/6

⎧⎪⎨
⎪⎩

0
(1−ρ2)(1−2ρ2)

ρ2−2

2ρ3(1−ρ3)
3−ρ3

⎧⎪⎨
⎪⎩

ρ1 = 1

ρ2 = 1 − L
2L

ρ3 = 1 − L
L

3 [A2A1A
3
0
]L/8 (ρ−1)(8ρ−3)

7ρ−12 ρ = 1 − 5L
8L

order as that appearing in the particular IS’s considered,
either periodic or not. Subsequently, each ASEP particle was
duplicated (triplicated for the case of trimers), by adding
another particle (two particles) over one (two) extra adjacent
location(s) specially created for that purpose, i.e., 1 → 11
(1 → 111). In turn, the tagged vacancies were replaced
accordingly by j consecutive 1’s followed by a 0, that is,
0 → 1 · · · 1 0, if they referred to Aj characters, while keeping
all A0’s as 0’s. This defines an efficient algorithm to produce
generic configurations in the chosen IS sector within the
original DRLG representation of L sites. There is a small
hindrance however, as eventually cyclic shifts in one site (one
or two, for trimers) might be necessary to maintain invariably
all sublattice densities in the generated DRLG configurations.
These latter were then updated with the stochastic rules
summarized in Table I, using chains of L = 1.2 × 104 sites
evolving typically up to 105 simulation steps. Each of these
involved L update attempts at random locations, after which
the time scale was increased by one unit, i.e., t → t + 1,
irrespective of these attempts being successful.

The above algorithm enabled us to average measurements
over nearly 5 × 104 histories originated from independent
sector configurations, thus significantly reducing the scatter of
our data. We considered three typical periodic situations which
were afterwards compared with the null string [analogous to
the monomer DLG, as already mentioned in Eqs. (5)–(7)].
These are specified in Table II along with their sublattice
saturation currents and densities, in turn arising from Eq. (10)
and simple stoichiometric considerations. We also examined
random strings generated from the ASEP version of these
periodic sectors by swapping randomly through the lattice the
order of their irreducible characters, thus keeping all relative
concentrations.

A. Currents

The measurement of SS sublattice currents in these sectors
involved the monitoring of transient regimes which for most
temperatures and fields decayed typically in ∼103 steps.
Then, we averaged all currents along two further decades

during which no significant fluctuations were observed. As
usual, the sublattice currents Ji = k

L�t
〈N+

i − N−
i 〉t,t+�t can

be defined operationally using the total number of forward
N+

i and backward N−
i particle jumps within sublattice �i ,

and averaging over all event realizations during an interval
(t,t + �t). However, to avoid any dependence on that latter
lapse, particularly inconvenient to monitor early nonstationary
stages, instead we measured instantaneous correlators of the
form

Ji(Ek,βJ,t) = k

L

∑
j∈�i

〈(nj+1 · · · nj+k−1)

× (R+
j nj n̄j+k − R−

j nj+kn̄j )〉t , (21)

R±
j = 1

2
± 1

2
tanh

[
Ek

2
+ 2βJ (nj+k+1 − nj−1)

]
,

where n̄j ≡ 1 − nj are just vacancy occupation numbers in
sublattice �i . Here, 〈 〉t denotes an ensemble average over these
correlators at time t , whereas right (left) hoppings R+ (R−) are
defined so as to take into account the rates referred to in Table I.
In Fig. 1 we show the resulting SS currents normalized to the
saturation values of Table II, after taking T/J = ±1, ± 0.1,
and L/L = 1/2 for several driving fields. In addition, Fig. 2
displays other planes of the current, in this case holding
Ek = 10 for a variety of temperatures, using both attractive
and repulsive couplings. It turns out that normalized currents
of nonequivalent sublattices are indistinguishable within our
error margins, a nonobvious feature (except for random
strings, as their sublattice occupations approach each other as
L → ∞).

(i) J > 0. More importantly, under attractive interactions
the currents of all studied sectors, both periodic and random,
can be made to collapse into that of the null string by slightly
rescaling the driving fields. This is displayed in Figs. 1(a) and
1(b) (random sectors not shown, for legibility). Furthermore,
the data collapse extends also to the J -T plane provided the
attractive couplings are taken slimly rescaled, as illustrated in
Fig. 2(a). It is noteworthy that in both J -Ek and J -T planes
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FIG. 1. (Color online) Normalized SS currents for reconstructing trimers and dimers (insets) using L/L = 1/2. In listed order, the sectors
and sublattice densities of Table II here correspond to squares, triangles, and circles, respectively. In (a) T/J = 1, and (b) T/J = 0.1, all data
collapse onto the null string current (for clarity not shown), upon rescaling the drifts Ek with α’s such that |1 − α| � 0.05. The data are fitted
by the mean-field currents of Refs. [4,20] (solid lines), using the associated DLG densities referred to in Eq. (8). The mean-field description
extends as well to (c) T/J = −1, and (d) T/J = −0.1, where however, all currents are sector dependent and DLG densities are chosen only
as fitting parameters.

the null sector data follow the mean-field currents of the usual
DLG very closely [20]. These arise essentially from a kinetic
version of the cluster variation method applied to dynamics
proceeding via exchange processes [4]. As expected from the
arguments given in Sec. II A, here the fitting of the null string
current is attained upon choosing ρL = (1 − L

L
)/[1 + L

L
(k −

1)] as the monomer density for the DLG system [see Eq. (8)].
These numerical observations naturally lead us to put forward
the universality hypothesis

J (i)
DRLG

(Ek,βJ,L)
/
J (i)

sat = JDLG (f Ek,gβJ,ρL )

ρL (1 − ρL )
, J > 0, (22)

for normalized sublattice currents in ferromagnetic DRLG.
Here, f = f (βJ ) and g = g(Ek) are sector-dependent scaling

factors (probably close to 1), whereas J (i)
sat is taken as in

Eq. (10). Preliminary runs using other string lengths indicate
similar results, thus adding more weight to this conjecture.

(ii) J < 0. On the other hand, for repulsive interactions all
normalized currents come out to be sector dependent, as is
shown in Figs. 1(c), 1(d), and 2(b), an aspect becoming more
pronounced as temperature is lowered. However, this depen-
dence appears to involve only the relative concentration of
irreducible characters rather than their particular distributions,
because in all situations the normalized currents of random
sectors follow closely those of their periodic counterparts
(alike the attractive case). Although these currents can also
be fitted using the mean-field approach to DLG [4,20], the
corresponding monomer densities can no longer be understood
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FIG. 2. (Color online) Normalized SS currents versus temperature usingL/L = 1/2 for k = 3 and k = 2 (insets) while keeping Ek/T = 10
for (a) J > 0 and (b) J < 0. Key to symbols (standing for the sectors and densities referred to in Table II) is the same as in Fig. 1. In (a) the
data collapse is obtained by the rescale J → J/γ, choosing γ ’s such that |1 − γ | � 0.02. These currents follow the null string data closely
(not displayed to avoid overcrowding). By contrast, in (b) all currents are sector dependent. In both cases the mean-field fittings (Refs. [4,20],
solid lines) arise from the considerations given for Fig. 1.

in terms of the ASEP analogy given before (except for null
sectors and/or high drive regimes, as expected). Here, we
merely use DLG densities as fitting parameters which actually
turn out to be rather sensitive in tuning the values of the current
plateaus exhibited in Figs. 1(d) and 2(b).

Further to universality issues, or the lack thereof, for J < 0,
these results also suggest that DRLG currents inherit some of
the salient features of the DLG ones according to the type
of interactions [4,20] (cf. nevertheless, pair correlations in
non-null sectors). For J > 0 there is a continuous changeover
from a rather insulating state at low temperatures and fields
to a conducting phase as both T and E are increased. For
J < 0 however, already at low temperatures some sectors can
be found in conducting states, while exhibiting comparatively
larger conductivities at small fields. As for the appearance
of current plateauxs in Figs. 1(d) and 2(b), notice that these
are already present at the mean-field level of the standard
DLG.

B. Pair correlations

Turning to mesoscopic scales, in the following we focus
on the SS instantaneous density-density correlation functions
expressed through the subtracted or cumulant form

C(r) = 1

L

∑
j

(〈njnj+r〉 − ρ�j
ρ�j+r

), (23)

with ρ�i
being the density of sublattice �i . Also, to gain

some further insight into the average organization of stationary
regimes, we consider the static structure factor or Fourier
transform of C(r),

S(q) = 1

L

∑
−L/2<r<L/2

eiqrC(r), (24)

which in our case is a real function of the wavelength λ =
2π/q. In Fig. 3 we first show this latter function for the case of
dimers and trimers in the null sector, taking L/L = 1/3 and

 0

 0.5

 1

 1.5

 0

S(q)

q
π/2 π

k = 2

 0

 0.5

 1

 0

S(q)

q

k = 3

π/2 π

FIG. 3. (Color online) Structure factors of sector [A0]L (null
string) for dimers and trimers (inset), using L/L = 1/3 and 1/4,
respectively (ρ = 1 − L

L
). Solid, dashed, and dotted lines stand in

turn for (Ek,T /J ) = (2, − 1),(2,1), and (8, ± 1). The two first cases
exhibit maxima very near to q = 2π/3 (dimers), π/2 (trimers), and
0 (both), thus resembling the average equilibrium periodicity of
low temperature regimes. At high fields no periodicity takes over,
regardless of the sign of J . The dashed-dotted lines denote the
situation (Ek,T /J ) = (2, − 1/2) for L/L = 1/2, where the ground
state is highly degenerate.
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FIG. 4. (Color online) Stationary structure factors for (a) dimers in sector [A2
1
A0 ]L/5 (ρ = 1 − 3L

5L
), (b) trimers in [A2A1A

3
0
]L/8 (ρ = 1 − 5L

8L
),

(c) trimers in energy conserving sectors [A2
2
A1 ]L/8 (ρ = 1 − 3L

8L
, solid line, circles), and [A2A1 ]L/5 (ρ = 1 − 2L

5L
, dashed line, squares), using

L/L = 1/2 throughout. Spatial correlation functions (insets) are highly oscillating, but only local maxima evidencing a decay ∝e−r/ξ are
shown. Although (a) and (b) both bear highly degenerate ground states irrespective of the coupling sign, for J < 0 the peaks marked by arrows
rapidly grow as temperature is lowered. As in Fig. 3, here solid, dashed, and dotted lines (in turn, circles, squares, and triangles for insets)
denote, respectively, the cases (Ek,T /J ) = (2, − 1),(2,1), and (8, ± 1). In the high field regime the results of (a) and (b) become independent
of T/J , whereas in (c) this is always the case whether or not the system is driven.

1/4 in turn. At finite temperatures and far from the saturation or
ASEP regime |E | 	 |J |, the main maxima might be regarded
as remnants of the periodicity and long range order of the
Ising ground states. Clearly, in the attractive and repulsive
situations these are, respectively, of the form A

L/(k+1)
k A

L/(k+1)
0

and [AkA0]L/(k+1) (along with translations), so as T → 0 it is
natural to expect sharp peaks at q = 0 and 2π

k+1 in each case.
However, in general, notice that when L/L �= 1

k+1 the ground
state of the null sector is highly degenerate for J < 0
[having the form A

m1
k A0A

m2
k A0 · · · with mj � 0 constrained

as
∑

j mj = (L − L)/k], thus setting a residual entropy which
grows linearly with the system size. In fact, as temperature is
lowered the structure factor remains essentially broad (see data
of T/J = −1/2 forL/L = 1/2), and correlation lengths are of
the order of the lattice spacing. A similar scenario arises in the
monomer DLG, where degeneracies for J < 0 and ρ �= 1/2
also preclude long range order at any temperature [4,20].

(i) J < 0. Yet, a rather different situation shows up for
repulsive couplings in other periodic sectors also bearing high
degeneracies. This is observed in Figs. 4(a) and 4(b) where,
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as an example, we illustrate, respectively, the behavior of
strings [A2

1A0]L/5 (k = 2), and [A2A1A
3
0]L/8 (k = 3). It can

be readily verified that for J < 0 the number of ground states
of the former grows exponentially with the lattice size so
long as L/L �= 5/7, whereas that of the latter grows in the
same manner provided L/L �= 8/17 (otherwise these states
would be plain periodic sequences of the form [A2

1A2A0]L/7

for dimers, and [A2A1(A3A0)3]L/17 for trimers). However,
despite that exponential degeneracy the structure factors of
both sectors can single out wavelengths exhibiting peaks that
rapidly narrow and heighten as temperature is lowered. Also in
lowering T , correlation lengths turn out to grow monotonically
(e.g., at T/J = −1/2, ξ ∼ 500 in sector [A2A1A

3
0]L/8), while

being already relatively large at T/J = −1 as compared with
those of the case J > 0 (see below). This is suggestive of an
order-by-disorder scenario [21] in which thermal fluctuations
are able to lift part of the degeneracy by selecting a subset
of states with largest entropy in the ground state manifold.
Here, note that the role of frustration in Ref. [21] is being
played by the string conservation laws and the spatial extent
of characters.

(ii) J > 0. By contrast, under attractive interactions no
ordering seems to emerge for these sectors at low temperature
regimes. Structure factors now remain basically flat (i.e.,
bounded) and correlation lengths do not increase as T is
lowered [Figs. 4(a) and 4(b)]. Thus, thermal fluctuations now
appear as being unable to suppress the residual entropy (also
growing linearly in the thermodynamic limit of both sectors
∀L/L �= 0+,1−) and no order-by-disorder seems likely to
occur, just as in the situation of the null string and standard
DLG under repulsive couplings. Similar results for J > 0 were
observed in the other sectors of Table II, instead exhibiting
effects of order by thermal fluctuations as long as the couplings
are taken repulsive.

(iii) |E | 	 |J |. In approaching the ASEP or high field limit,
pair correlations become progressively independent of the
coupling values because all configurations tend to be equally
likely. Already for (Ek,T /J ) = (8, ± 1), Figs. 3, 4(a), and
4(b) indicate that all results are numerically indistinguishable.
However, as the field is lowered from the ASEP regime, for
J < 0 correlations can significantly enhance their ranges, in
turn becoming arbitrarily long if temperatures are taken low
enough. As displayed in Figs. 4(a) and 4(b), this is to be
contrasted with the opposite trend of both ξ and S(q) under
attractive couplings, where the drive favors a slight increase of
pair correlations.

(iv) N0 = 0. Finally, the ASEP regime is also related to the
energy conserving sectors (N0 = 0) referred to after Eq. (7),
for which the presence of NN interactions is inconsequential.
Despite the fact that every state is equally weighted, owing
to the k-mer size here structure factors can still single out
characteristic wave numbers (sector dependent) and exhibit
large correlation lengths. This is illustrated in Fig. 4(c). In
the ASEP limit of the null sector these issues were recently
analyzed in Ref. [18] where closed expressions for general k’s
were given for static correlations. Such rich behavior contrasts
to that of totally uncorrelated monomers and dimers in sectors
[A1]L/2 (the only ones with N0 = 0, which can be viewed as
hopping monomers within one independent sublattice).

IV. CONCLUDING REMARKS

To summarize, we have discussed stationary aspects of
driven lattice gases in which the role of biased monomers
is played by extended and reconstructing k-mers under a
Kawasaki dynamics [Eq. (2) and Table I]. Exploiting the
correspondence between these processes and those involving
the particle species defined in Eq. (3) we readily identified the
many sector decomposition of the original problem, ultimately
encompassed in the invariant ordering of these characters
along the so-called irreducible strings [13,19]. In the high field
regime the dynamics of these new particles was thought of as
an asymmetric exclusion process defined on a smaller lattice
(Sec. II A), thereby enabling us to evaluate saturation currents
Eq. (10) for generic strings or sectors of motion. In turn, the
proliferation of these latter was shown to grow exponentially
with the length of these strings (Sec. II B).

At finite temperatures and drives, we studied numerically
the case of both dimers and trimers in typical sectors whose
initial configurations were prepared by random sequential
adsorption of “monomers” in the equivalent ASEP states.
These were then raised up into DRLG configurations, always
keeping the distribution of irreducible characters or tagged
ASEP “vacancies” in each of the studied sectors (Table II).
The emerging stationary currents clearly discern between
universal [Figs. 1(a), 1(b), and 2(a)], and sector-dependent
behavior [Figs. 1(c), 1(d), and 2(b)] according to the particle
couplings being attractive or repulsive. In the former case, the
universality hypothesis put forward in Eq. (22) suggests in turn
an effective medium relation between generic sectors and null
string currents via a slight rescale of drifts and interactions.

When it comes to mesoscopic levels of description
(Sec. III B), distinctive features also appeared at low tem-
perature regimes. In spite of the residual entropy in most of
the studied sectors (stemming from their highly degenerate
ground states), under repulsive couplings there is a substantial
increase of both correlation lengths and structure factors
at characteristic wave numbers as temperature is lowered
[Figs. 4(a) and 4(b)]. We interpret these modes as being
selected by thermal fluctuations from the ground state manifold
thus giving rise, we suggest, to an order-by-disorder scenario
[21]. For attractive interactions however, this latter cannot be
inferred from our simulations since, in line with the ground
state degeneracies, both ξ and S(q) do not grow any further;
a situation which resembles that of the standard DLG (ρ �=
1/2), and null strings (L/L �= 1

k+1 ) under repulsive couplings
(Fig. 3). Finally, both large drive regimes and noninteracting
sectors are governed by a simple product measure, but
due to the k-mer size their correlation functions may still
show nontrivial oscillations and large correlation lengths
[Figs. 4(a)–4(c)] [18].

It is natural to ask whether the above numerical findings
could be approached theoretically. At the microscopic level of
the master equation [23], the formal analogies between this
latter and the Schrödinger equation describing the evolution
of associated quantum spin chains have proven useful in the
analysis of several nonequilibrium processes [6,12,26]. In
fact, for vanishing drives and interactions these reconstructing
systems have been studied in terms of spin- 1

2 Heisenberg
ferromagnets [13], but for E,βJ �= 0 the evolution operators

061145-9



M. D. GRYNBERG PHYSICAL REVIEW E 84, 061145 (2011)

are neither familiar nor simple to analyze. On the other hand,
already at the mean-field level it is not clear how to proceed
with an exponential number of conservation laws such as the
IS’s discussed throughout.

Other issues not covered here that would be worth pursuing
concern the phase ordering dynamics of periodic sectors under
repulsive couplings where, as we have pointed out, stationary
correlation lengths can get very large at low temperature
regimes. It would be interesting to determine whether the
dynamic exponents characterizing the large time growth of
ξ actually depend on the subspaces where the evolution takes
place. There is also the question about tagged particle diffusion
either with or without driving fields. For βJ = 0 and E �= 0 it is
known that in the nonreconstructing case the root-mean-square

displacement of a tagged particle around its mean position
grows asymptotically in time as ∼ t1/2 (as usual), but if the
bias is zero it grows anomalously slow as ∼ t1/4 [27]. In
the reconstructing situation, where such caging effect might
depend on the particular distribution of fragments of the sector
considered, these issues remain quite open. The question also
extends to the coarsening regime −βJ 	 1 for which other
displacement laws might emerge depending on whether or not
the motion is driven [28].
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[28] C. Godrèche and J. M. Luck, J. Phys. A 36, 9973 (2003).

061145-10

http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1007/BF01018556
http://dx.doi.org/10.1080/01411599108207950
http://dx.doi.org/10.1080/01411599108207950
http://dx.doi.org/10.1080/00018738000101406
http://dx.doi.org/10.1080/00018738000101406
http://dx.doi.org/10.1007/s10955-009-9884-0
http://dx.doi.org/10.1016/S0370-1573(98)00005-2
http://dx.doi.org/10.1016/S0370-1573(98)00006-4
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1088/1751-8113/40/46/R01
http://dx.doi.org/10.1103/PhysRevLett.93.198101
http://dx.doi.org/10.1103/PhysRevE.68.021910
http://dx.doi.org/10.1103/PhysRevE.68.021910
http://dx.doi.org/10.1016/j.cpc.2011.03.016
http://dx.doi.org/10.1016/j.cpc.2011.03.016
http://dx.doi.org/10.1103/PhysRevE.78.031106
http://dx.doi.org/10.1103/PhysRevLett.65.1591
http://dx.doi.org/10.1088/0305-4470/34/6/103
http://dx.doi.org/10.1016/S0370-1573(99)00117-9
http://dx.doi.org/10.1103/PhysRev.145.224
http://dx.doi.org/10.1002/bip.1968.360060102
http://dx.doi.org/10.1002/bip.1968.360060102
http://dx.doi.org/10.1103/PhysRevE.60.79
http://dx.doi.org/10.1590/S0103-97332003000300015
http://dx.doi.org/10.1007/BF02183622
http://dx.doi.org/10.1007/BF02183622
http://dx.doi.org/10.1016/S0378-4371(02)01221-9
http://dx.doi.org/10.1209/0295-5075/92/20008
http://dx.doi.org/10.1088/0953-8984/19/6/065112
http://dx.doi.org/10.1088/0953-8984/19/6/065112
http://dx.doi.org/10.1007/s10955-011-0183-1
http://dx.doi.org/10.1007/s10955-011-0183-1
http://dx.doi.org/10.1103/PhysRevE.76.051113
http://dx.doi.org/10.1103/PhysRevE.76.051113
http://dx.doi.org/10.1103/PhysRevE.84.041102
http://dx.doi.org/10.1103/PhysRevE.84.041102
http://dx.doi.org/10.1103/PhysRevLett.73.2135
http://dx.doi.org/10.1103/PhysRevLett.73.2135
http://dx.doi.org/10.1007/BF02847591
http://dx.doi.org/10.1007/BF02847591
http://dx.doi.org/10.1016/0003-4916(90)90382-X
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.53.806
http://dx.doi.org/10.1088/1751-8113/44/41/415004
http://dx.doi.org/10.1103/PhysRevE.67.066115
http://dx.doi.org/10.1103/PhysRevE.67.066115
http://dx.doi.org/10.1103/PhysRevLett.80.425
http://dx.doi.org/10.1103/PhysRevE.82.051121
http://dx.doi.org/10.1103/PhysRevB.44.5306
http://dx.doi.org/10.1088/0305-4470/36/39/301

