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Exact solution of a heterogeneous multilane asymmetric simple exclusion process
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We have proved an exact solution of a multilane totally asymmetric simple exclusion process (TASEP) with
heterogeneous lane-changing rates on a torus. In the expression, the TASEP in each lane and lane-changing
transition can be separable. Moreover, the lane-changing transitions satisfy the detailed balance condition, and
this is the key to constructing the solution. Using the saddle-point method, the current of particles has been
derived in a simple form in a thermodynamic limit. It is interesting that the dynamics depends only on a set of
lane-changing parameters, not on the configuration of lanes.
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I. INTRODUCTION

Driven diffusive systems have been studied actively in
recent years, since they are useful for understanding various
phenomena in physics and biology. One of the most impor-
tant driven particle systems, the totally asymmetric simple
exclusion process (TASEP) [1], was originally proposed as
a model for describing biological transport phenomena, and
has been applied to the modeling of transport processes such
as vehicular traffic [2], granular flow [3], and biological
transportation by motor proteins [4–6]. In some studies, the
TASEPs with multiple lanes and lane-changing have been
investigated analytically [7–12], but exact analyses have been
performed on a few models [12].

In this work, we consider a multilane system with periodic
boundaries in two directions, and present an exact solution in
the stationary limit. The system has K lanes on a cylinder,
which is applicable to the problems such as transportation
phenomena of the kinesins [5,6,13] along the 13 protofilaments
placed on microtubules cylindrically [14,15]. On the other
hand, when K = 2 it corresponds to a simple two-lane TASEP
with periodic boundary. Moreover, we do not limit the number
of lanes, and thus this work will be a significant achievement
for solving a kind of two-dimensional exclusion process
exactly.

To construct the solution, we use the detailed balance
condition satisfied in lane-changing transitions in the model.
For this characteristic, the solution has a simple structure, and
quantities such as density and current are derived in simple
forms.

II. MODEL

We consider a two-dimensional cylindrical lattice of L × K

sites. Each lane i (i = 1, . . . ,K) has L sites (j = 1, . . . ,L),
and corresponding sites of adjacent lanes are connected with
each other. These K lanes are arranged cylindrically, namely,
lane i + K is identical with lane i.

A site (i,j ) can be either be empty (τi,j = 0) or occupied by
one particle (τi,j = 1) (the hard-core exclusion). τi,j denotes
the occupation number of the j th site in lane i. The time
evolution per time interval �t is written as below:

(i) hopping
1i,j 0i,j+1 → 0i,j 1i,j+1 with probability pi�t

(ii) lane-changing
1i,j ,0i±1,j → 0i,j ,1i±1,j with probability χi�t

In each lane, a particle hops to the next site (j → j + 1)
with probability pi�t(> 0) if the target site is empty (as in
the usual TASEP). Furthermore, lane-changing transitions are
also defined; namely, each particle hops to the adjacent lane
(i → i + 1 or i → i − 1) with probability χi�t(> 0) if the
target site is empty, as shown in Fig. 1. Since in our model each
particle is randomly updated, this lane-changing is permitted
even if the neighboring site j − 1 to the target site is occupied.

When K = 2 and each lane has only one adjacent lane, the
lane-changing is restricted to one direction. This peculiarity is
natural and does not influence the argument in the following
sections.

III. EXACT SOLUTION FOR A PERIODIC SYSTEM

In the following we focus on the periodic system in the
hopping direction; namely, site j + L is identical with site
j . For this system, we present an exact expression for the
probability with which a given configuration {τi,j } is realized,
as a product form of the density weight �i(Mi) and the
configuration weight in lane i, gi({τi,j }i). Here, Mi is the
number of particles in lane i (Mi = ∑

j τi,j ) and {τi,j }i =
τi,1,τi,2, . . . ,τi,L ∈ {0,1} is a set of occupation numbers in
lane i.

P ({τi,j }) = Z−1
L,N,K

K∏
i=1

�i(Mi)gi({τi,j }i), (1)

= Z−1
L,N,K

K∏
i=1

(
1

χi

)Mi

. (2)

Here, each weight factor gi({τi,j }i) is assumed to be 1 as
in the usual ASEP with periodic boundary [16], and the
density weight �i(Mi) is defined as �i(Mi) = (1/χi)Mi . The
normalization factor ZL,N,K is thus written as

ZL,N,K =
L∑

M1=0

· · ·
L∑

MK=0

K∏
i=1

(
1

χi

)Mi
(

L

Mi

)
δ

(
K∑

i=1

Mi − N

)

(3)
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FIG. 1. Schematic view of the system. If the neighboring site to
its right is empty, the particle hops there j → j + 1 with probability
pi�t (hopping). Moreover, if the receiving site is empty (lane-
changing), it changes lanes to the neighboring lane i + 1 (i − 1)
[i,j → i + 1,j (i − 1,j )] with probability χi�t .

by taking the sum of the weights with respect to Mi . The δ

function ensures that only those configurations with the correct
total number of particles are included.

Next, we confirm that this expression gives the exact
solution. The exact solution for the steady state of the
system must satisfy the master equation described below, and
conversely, the expression satisfying the master equation must
be the exact solution.

0 = ∂

∂t
P (C) =

∑
C′ �=C

{P (C ′)W (C ′ → C) − P (C)W (C → C ′)}.

(4)

Here, C and W (C → C ′) indicates the configuration of particles
and the transition probability from configuration C to C ′,
respectively.

We separate the transitions into two parts according to their
type of motion, i.e., hopping or lane-changing. It is obvious
that the terms for the hopping transition in the master equation
(4) vanish when one substitutes the presented solution, since
each gi({τi,j }i) is the exact solution of the TASEP with periodic
boundary in each lane. For transition terms of hopping in lane
i, one only has to consider the weight of lane i, gi({τi,j }i),
since other terms in Eq. (1) are in common before and after
the transition.

Then we show that the rest of Eq. (4), namely, the terms
for lane-changing transitions, also vanish. We focus on the
lane-changing transitions concerned with lane i. It is sufficient
to consider the neighboring lanes (i − 1,i,i + 1), and we write
the configurations of these three lanes with Mi−1,Mi , and
Mi+1 particles as {Ci−1

Mi−1
,Ci

Mi
,Ci+1

Mi+1
}. First, let us confirm the

correspondence of the lane-changing transitions i → i + 1

FIG. 2. Correspondence of lane-changing transitions on a certain
site in lanes i and i + 1. Asterisks indicate the same configuration in
both transitions.

FIG. 3. Possible lane-changing transitions concerning lane i for
an arbitrary set of configurations {Ci−1

Mi−1
,Ci

Mi
,Ci+1

Mi+1
}. Ci

Mi
represents

a certain configuration in lane i, where Mi is the total number of
particles in lane i in the configuration.

and i + 1 → i. As shown in Fig. 2, the number of configu-
rations of these transitions are the same where the asterisks
indicate the common configurations among the lanes, namely,
every lane-changing transition {. . . ,τi,j = 1, . . . ,τi±1,j =
0, . . .} → {. . . ,τi,j = 0, . . . ,τi±1,j = 1, . . .} is paired with its
counterpart {. . . ,τi,j = 0, . . . ,τi±1,j = 1, . . .} → {. . . ,τi,j =
1, . . . ,τi±1,j = 0, . . .}. These corresponding transitions bal-
ance in the master equation as explained below. Here, we
avoid the discussion with explicit expressions expanding
Eq. (4) because the expressions would be unnecessarily
complicated and make us lose sight of the essence. The
balance of lane-changing transitions concerned with lane i

is illustrated in Fig. 3. The transitions not described in the
figure are forbidden in this model (they occur with probability
0). We choose one arbitrary configuration of lanes i − 1, i,
and i + 1, {Ci−1

Mi−1
,Ci

Mi
,Ci+1

Mi+1
}. Taking the transition between

{Ci−1
Mi−1

,Ci
Mi

,Ci+1
Mi+1

} and {Ci−1
Mi−1−1,Ci

Mi+1,Ci+1
Mi+1

} (in the broken
line in the figure) as an example, they cancel in the master
equation as follows:

P (C ′)W (C ′ → C) − P (C)W (C → C ′)

= Z−1
L,N,K

∏
1 � l � L

l �= i − 1,i,i + 1

(
1

χl

)Ml

×
{ (

1

χi−1

)Mi−1−1 (
1

χi

)Mi+1 (
1

χi+1

)Mi+1

χi

−
(

1

χi−1

)Mi−1
(

1

χi

)Mi
(

1

χi+1

)Mi+1

χi−1

}

= 0. (5)

One can understand that the rest of the transitions also balance
using the same argument. Since the system is periodic, this
balance holds for every lane and configuration. It should be
noted that the transitions between the neighboring lanes satisfy
the detailed balance condition. Thus, we have proved that the
presented expression surely satisfies the master equation and
correctly describes the system.

IV. THERMODYNAMIC LIMIT

Let us discuss the thermodynamic limit (L → ∞) of the
system. First, we consider the following functions:

fi(M) =
(

1

χi

)M (
L

M

)
, (6)
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ZL,K (s) =
L∑

M1=0

· · ·
L∑

MK=0

K∏
i=1

fi(Mi)s
Mi

=
K∏

i=1

L∑
Mi=0

fi(Mi)s
Mi =

K∏
i=1

(
1 + s

χi

)L

=
[

K∏
i=1

(
1 + s

χi

)]L

= [F (s)]L , (7)

where fi(M) is the weight of lane i and F (s) =∏K
i=1 (1 + s/χi). Using this ZL,K (s), the partition function

ZL,N,K is expressed in an integral form:

ZL,N,K =
∮

ds

2πi

ZL,K (s)

sN+1
=

∮
ds

2πi

[F (s)]L

sN+1
. (8)

We evaluate the integral (8) in the L → ∞ limit, keeping
N/L = ρ(< K) constant, by the saddle-point method. For
large L,N Eq. (8) is dominated by the saddle point of the
integral denoted by s = z. Following [16], we define

φ(s) = −ρ ln s + ln[F (s)]. (9)

Then the saddle point is given by φ′(z) = 0 as

ρ =
K∑

i=1

z/χi

1 + z/χi

. (10)

Moreover, the partition function is evaluated by considering
the thermodynamic limit of Eq. (8) using this saddle point as

ZL,N,K � 1

(2πL)1/2

1

|φ′′(z)|1/2

exp [Lφ(z)]

z

= 1

(2πL)1/2

1

|φ′′(z)|1/2

ZL,K (z)

zN+1
. (11)

Let us investigate the current in lane i, which is defined as Ji =
〈τi,j (1 − τi,j+1)pi〉, by considering the configurations where
τi,j = 1 and τi,j+1 = 0. The weight of these configurations is
calculated through its generating function

Z̃ i
L,K (s) =

K∏
i ′ �=i

⎛
⎝ L∑

Mi′ =0

fi ′ (Mi ′)s
Mi′

⎞
⎠

×
L∑

Mi=0

(
1

χi

)Mi
(

L − 2
Mi − 1

)
sMi

= s/χi

(1 + s/χi)2
[F (s)]L . (12)

Therefore, by the same argument we find

Ji = Z̃i
L,N,K

ZL,N,K

pi =
∮

ds
2πi

s/χi

(1+s/χi )2
[F (s)]L

sN+1∮
ds

2πi

[F (s)]L

sN+1

(13)
� z/χi

(1 + z/χi)2
pi

in the thermodynamic limit. Here, z is the saddle point of the
integral again. Note that the two integrals performed above
have common φ, and thus the saddle point is consistent.

lane−1
lane−2
lane−3
lane−4
simulation

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 4. Fundamental diagram for the system with four lanes,
L = 1000, (χ1,χ2,χ3,χ4) = (0.1,0.2,0.05,0.3), and p1 = p2 = p3 =
p4 = 0.3. Here, the hopping probabilities pi are set as constant to
make the peaks of each curve aligned for the comprehensibility. The
relationship of the curves depends on the lane-changing probability,
and the relatively large χi leads to the large critical density.

In a similar way, the density in lane i, ρi = Mi/L, is also
calculated as

ρi � z/χi

1 + z/χi

. (14)

This corresponds with the expression (10) where each ρi

contributes to the total density. Furthermore, it is quite notable
that z plays the role of a “common incoming rate” when we
compare it with the Langmuir equilibrium density κ/(1 + κ)
where κ is the ratio of the attachment and detachment rates [4].

The currents Ji obtained from Monte Carlo simulations are
plotted on Fig. 4 with theoretical lines. The theoretical lines
are obtained from Eq. (13) after one finds z from Eq. (10). It
is notable that the density in lane i depends only on the set of
lane-changing rates, and is independent of the configuration
of the lanes. For a relatively large leaving rate of lane i, χi , the
density becomes small and leads to the large critical density.

To summarize this discussion, we can also regard the
dynamics as the ASEP with Langmuir kinetics [4] on each
lane with detachment rate χi and effective attachment rate z in
the thermodynamic limit for its detailed balance property.

V. SUMMARY

In this work we have considered a cylindrical multilane
exclusion process and presented an exact solution of it in the
stationary limit. This solution is also applicable to the model
with K = 2 lanes, which corresponds to a two-lane model
often discussed in transportation problems. Using the saddle-
point method we have derived an expression for the current
and density, and have shown that simulation results with
representative parameters well agree with the theory. As
shown in Fig. 4, the peak shift has been observed, and this
phenomenon might be seen in the actual transport process
such as the biological transportation of motor proteins.

The most important feature of the model is the detailed
balance condition satisfied in the lane-changing transitions;
and for this characteristic, the solution has been constructed
simply and interpreted as separated ASEPs with Langmuir
kinetics with a common rate in the thermodynamic limit.
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It is also intriguing that the system is solvable, although the
one-dimensional heterogeneous symmetric simple exclusion
process (which corresponds to the dynamics in the i direction
in this work) itself has not been solved in the previous works
so far. Moreover, it is significant that an exact solution for a
two-dimensional exclusion process has been given.

In the model we have considered a system with symmetric
lane-changing rates, where decrease of particles in the lane
corresponds to one lane-changing parameter. If we assume
asymmetric ones, the formulation of the expression would
be more complex, and it should be investigated in future
work.
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