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Relaxation processes in collisionless dynamics lead to peculiar behavior in systems with long-range interactions
such as self-gravitating systems, non-neutral plasmas, and wave-particle systems. These systems, adequately
described by the Vlasov equation, present quasistationary states (QSS), i.e., long lasting intermediate stages of
the dynamics that occur after a short significant evolution called “violent relaxation.” The nature of the relaxation,
in the absence of collisions, is not yet fully understood. We demonstrate in this article the occurrence of stretching
and folding behavior in numerical simulations of the Vlasov equation, providing a plausible relaxation mechanism
that brings the system from its initial condition into the QSS regime. Area-preserving discrete-time maps with a
mean-field coupling term are found to display a similar behavior in phase space as the Vlasov system.
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I. INTRODUCTION

The evolution of collisionless systems poses an interesting
challenge in kinetic theory. Indeed, from the lack of a collision
term in the kinetic equation ruling the evolution of the system
arises the need for another relaxation mechanism. Unusual
relaxation properties are found in many physical systems,
among which are self-gravitating systems, non-neutral plas-
mas, and wave-particle interactions. These systems fall into
the categories of long-range interacting systems, a domain of
physics that is the object of renewed interest [1–3].

One phenomenon in particular has been evidenced numer-
ically [4] and theoretically [5,6]: In systems with long-range
interactions, increasing the number of particles N causes the
system to evolve, with a time scale of order N0, toward an
intermediate state that is not the one predicted by statistical
mechanics and whose lifetime increases as Nδ , with δ � 1/8
[7]. Numerical simulations show algebraic increase with δ � 1
[8] or δ � 1.7 [4] depending on the conditions. These long
lasting intermediate states are called quasistationary states
(QSS) and are equilibria of the continuum limit given by
the Vlasov equation [4]. QSS have been observed in the
Hamiltonian mean-field (HMF) model [9], the free-electron
laser [10], and also in self-gravitating systems [11]. Experi-
mental perspectives regarding these QSS have recently been
proposed [12].

The fast evolution on a timescale N0 is termed violent
relaxation, following the terminology of the studies on one-
dimensional self-gravitating systems. Early works report that
the evolution toward a stationary regime is not driven by
two-body encounters and question the nature of the initial
evolution of gravitating systems [13,14]. In light of these
observations, Lynden-Bell presented in 1967 his statistical
mechanics of violent relaxation in stellar systems [15]. The
aim of his theory is to explain the outcome of collisionless
dynamics and the unusual energy distribution found in galactic
dynamics. Lynden-Bell’s (LB) theory is a statistical theory
that takes into account, among other properties of the Vlasov
equation, its incompressible character in the single-particle
phase space; accordingly, an ergodic-type hypothesis on the
dynamics allows one to compute, via an entropy maximization,

stationary states of the Vlasov equation. LB’s theory predicts
the magnetization in the HMF model and provides the most
likely QSS solution for this model, as of now [16,17]. The work
of Lynden-Bell has been followed by numerous numerical
studies on violent relaxation; see Refs. [18–21] for instance.
LB’s theory or other attempts to compute the outcome of
violent relaxation can be found in more recent work on
the self-gravitating sheet model [11], non-neutral plasmas
[22], and two-dimensional (2D) self-gravitating systems [23].
Recently, new macroscopic observables have been proposed
to measure the approach to equilibrium in the self-gravitating
sheet model [24]. An extensive study by the same authors
indicates the physical situations in which LB’s theory provides
a good prediction and the reasons it does not work in other
situations [25].

Let us also mention the use of the Vlasov equation in the
field of plasma physics [26], that is probably the widest area of
research making use of it. The understanding of collisionless
relaxation is also of great interest in this field and is mostly
known for the famous problem of Landau damping (see
Ref. [27] for instance).

The purpose of this article is to demonstrate via direct
numerical simulation of the Vlasov equation that stretching
and folding structures occur in some regions of phase space. A
measure of the consequent deformation of the fluid allows us
to characterize the short-time evolution in the Vlasov equation.
We thus suggest that the stretching and folding mechanism is
a collisionless source of mixing evolution toward the QSS, the
mechanism from which the violent relaxation originates. We
choose to take as the main vehicle of our study the Hamiltonian
mean-field (HMF) model [28], a system of globally coupled
rotators moving on a circle. The HMF model has been
the object of many studies as a paradigmatic representative
of long-range interacting systems, and the properties of its
associated Vlasov dynamics are well known. In addition, in
the spirit of demonstrating fundamental dynamical properties,
the similarity of the HMF model with the forced pendulum
makes it a worthwhile example, as evidenced in Ref. [29].

We also consider discrete-time versions of Vlasov dynam-
ics, in which the phase-space distribution function evolves
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under the effect of an area-preserving map. Two such mean-
field maps are investigated, which are based on Arnold’s cat
map [30,31] and the standard map [32,33].

The plan of the paper is the following. In Sec. II, we
introduce the Hamiltonian mean-field model, its associated
Vlasov equation, and the phenomenology of QSS. Section III
presents the numerical algorithm and the computation of
the perimeter that is used to substantiate quantitatively our
claims. Section IV gives the results of Vlasov simulations,
in which stretching and folding occur in phase space. In
Sec. V, mean-field maps are studied in order to determine
the conditions of stretching of fluid boundaries in phase space.

II. COLLISIONLESS DYNAMICS AND THE
HAMILTONIAN MEAN-FIELD MODEL

The Hamiltonian mean-field (HMF) model was introduced
as a simplified model to study collective effects and has become
a paradigmatic model to study long-range interactions [3,28].
It is composed of particles on a circle interacting via a cosine
potential and described by the following Hamiltonian:

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (1)

where θi is the position in the interval [−π ; π [ of the ith
particle, pi is its momentum, and N is the number of particles.
At equilibrium, the HMF model is characterized by a second-
order phase transition, identified by the magnetization:

m = mx + i my = 1

N

N∑
j=1

eiθj . (2)

m = |m| is equal to zero above the critical energy uc = H
N

= 3
4 ,

while m > 0 for energies below uc.
Starting from an out-of-equilibrium initial condition, the

HMF model displays interesting dynamical phenomena: in
addition to the energy, the initial value of m influences the
regimes attained by the system [17], a dependence which is
not found at equilibrium. The value that m reaches is not
the one corresponding to equilibrium statistical mechanics.
This phenomenon lasts for a time lapse that depends on the
number N of particles considered as N1.7 after which the
system eventually relaxes to equilibrium. This intermediate
regime is called a QSS [9,10].

Let us now introduce the Vlasov equation describing the
evolution of the distribution function f (θ,p) in the HMF
model and valid in the thermodynamic limit [26,34]:

∂f

∂t
+ p

∂f

∂θ
− dV [f ]

dθ

∂f

∂p
= 0,

V [f ](θ ) = 1 − mx[f ] cos θ − my[f ] sin θ,

mx[f ] =
∫

dθ dp f cos θ,

my[f ] =
∫

dθ dp f sin θ, (3)

where θ is the periodic spatial coordinate, p is the momentum,
and V is the potential, depending self-consistently on f . The

time evolution of Eqs. (3) conserves the energy U :

U [f ](t) =
∫

dθ dp f (θ,p; t)

×
[
p2

2
+1

2
(1 − mx[f ] cos θ−my[f ] sin θ )

]
, (4)

the normalization ∫
dθ dp f (θ,p; t) = 1,

and the total momentum∫
dθ dp f (θ,p; t) p.

In order to solve numerically Eqs. (3), we use the semi-
Lagrangian method (see Ref. [35] or [36] for an application to
the HMF model) with cubic spline interpolation. This method
has been implemented in the code vmf90 [37] used in Ref. [36]
and in the present study. Although numerical limitations come
into play [38], Vlasov simulations have proven useful to
study the HMF model in the thermodynamic limit [34]. The
semi-Lagrangian method displays a relatively small amount of
numerical dissipation and thus fits adequately the purpose of
computing the perimeter of the fluid.

Lynden-Bell’s (LB) theory has proven so far successful
for the HMF model [16,17] and the free-electron laser [10]
and partly for the self-gravitating sheet model [11,25]. In
particular, the phase diagram in the HMF model has been
discussed in the framework of the LB theory by Staniscia
et al., who used the level of the distribution function f0

for waterbag initial conditions, instead of the initial value of
the magnetization m as the thermodynamical parameter that
enters Lynden-Bell’s theory, and evidenced a phase reentrance
phenomenon that was not observed in previous studies [41]. An
additional point of view on the core-halo structure that is found
is the HMF model has been provided by Pakter and Levin [40],
who introduced an ad hoc dynamical reduction as well as an
ansatz on the distribution function f to find the stationary
value for mx and the corresponding f , respectively. In this
way, these authors found a transition from mx > 0 to mx = 0
and an agreement for the position and velocity marginals of
the distribution function in the inhomogeneous regimes [40].

As a matter of fact, the effectiveness of Lynden-Bell’s
theory to describe the HMF model has been an important
confirmation of the adequateness of the Vlasov equation to
understand QSS. It has been recently shown that Lynden-
Bell’s theory captures fundamental properties of the Vlasov
dynamics and that phase-space stirring already provides a fair
amount of evolution. The authors of Ref. [39] obtain good
comparison between Lynden-Bell’s theory and a model with no
interaction at all between particles. The same authors propose
an exact solution to the mean-field equilibria in the Vlasov
equation, fully demonstrating how stirring allows the dynamics
to reach steady states in Vlasov dynamics [8]. Stirring is
however insufficient to obtain the better agreement found in
the HMF model when using LB’s theory. To complete the
dynamical picture, another relaxation mechanism is needed.
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III. EVOLUTION OF THE PERIMETER OF THE FLUID

In the context of 2D fluid dynamics, experimental results
can be obtained by direct visual inspection. In the kinetic
context, the distribution function (DF) lies in phase space
(θ,p). The technique that we propose is reminiscent of
methods used in fluid dynamics. To analyze the complex
behavior of the DF, we track its boundary in the same way as
we would track a dyed region in a fluid. Instead of a dye, phase
space is filled with a step profile of value f0. Inside the step,
f = f0, while outside of the step f = 0. An example of such
step profiles is known as the waterbag (WB) initial condition.
The WB initial condition possesses the following advantages:
a simple formulation of LB’s theory, a nice interpretation in
terms of a dye in phase space, and a very widespread use in
the literature.

The perimeter Pf of the DF f is the length of the interface
between the f = f0 and 0 regions of phase space; it is similar
to the intermaterial area per unit volume defined in Ref. [42].
Pf provides a direct measure of the deformation of the DF.

The WB is defined by a width of 2�θ and 2�p in the
two dimensions of phase space. The initial perimeter Pf of
this “fluid” is 4(�θ + �p). The preservation of phase-space
volume in Vlasov dynamics implies that the area of the fluid
remains constant.

In the simple case of free streaming, it is easy to compute
the time evolution of Pf :

Pf (t) = 4�θ + 4�p
√

1 + t2, (5)

which is seen to be asymptotically linear in time. This linear
behavior is expected to hold in the case of regular dynamics,
as in the case of integrable systems.

In more complex situations, we expect a deformation of the
contour of the fluid, similar to what happens in fluid dynamics
[42]. Indeed, 2D flows submitted to parametric forcing exhibit
chaotic behavior, and analogies between Vlasov dynamics
and 2D Euler equations are common [43]. If neighboring
fluid elements experience an exponential separation of their

FIG. 1. Vlasov simulation for a noninteracting set of pendula.
The top panel displays the waterbag initial condition, parametrized
by �θ = 2.85 and �p = 0.79. The bottom panel displays only the
contour at time t = 10. The filamentary structure is caused, in this
system, only by the differential rotation in phase space, i.e., phase-
space stirring.

FIG. 2. Perimeter of the fluid as a function of time for the
simulation shown in Fig. 1. The top panel uses a logarithmic scale on
the y axis and the bottom panel uses a linear scale for the y axis.

positions, we expect that the perimeter is dominated by this
contribution so that

Pf (t) ∝ eλt , (6)

where λ is a positive real number. After the stretching
mechanism has taken place, the fluid folds onto itself to
accommodate for the increasing perimeter at a fixed area.
In fluid dynamics, the obtention of an optimal mixing, via
stretching and folding of the fluid, is an ongoing topic of
interest [42,44].

The perimeter is computed numerically with the help of the
routine CONREC [45]. This routine, initially used to display
contour lines on a computer display, has been modified in
order to compute the length of this contour and has been
implemented within the Vlasov simulation program used in
Ref. [36], a modification that is necessary in order to avoid
storing all time steps of the DF for postprocessing. Equation
(5) is checked to give a perfect match with the simulation
for m = 0 (data are not shown). A check of our conjecture
for noninteracting systems is tested for a pendulum [a system
similar to Eqs. (3) but in which the magnetization m is set to a
constant value in the equations of motion]. Figure 1 displays
the evolution of the DF, and Fig. 2 displays the evolution of
Pf (t) for the same simulation.

Table I lists the numerical parameters for the Vlasov
simulations. All initial conditions are run with all these
parameters, allowing us to monitor the convergence of the
physical quantities as a function of the number of grid points.

TABLE I. Numerical parameters for the Vlasov simulations.

Nθ Np �t

0k5 512 512 0.1
1k 1024 1024 0.1
2k 2048 2048 0.1
4k 4096 4096 0.1
8k 8192 8192 0.1
8kb 8192 16384 0.1
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TABLE II. Parameters for the waterbag initial condition of runs
f , i, and j .

Run U m0

f 0.60 0.20
i 0.69 0.20
j 0.565 0.50

IV. STRETCHING AND FOLDING IN PHASE SPACE

The present section focuses on the interacting HMF model.
The variations of the self-consistent field m cause a complex
evolution of the initial waterbag that we consider in several test
cases. The first case (run f in Table II) leads to a magnetized
state and has the property that mx keeps its sign in the course
of time. Also, a significant amount of mass remains enclosed
inside the separatrix at all times, meaning that it is not subject
to alternating stretching motion but only to a stirring motion
that is reminiscent of the noninteracting situation. A variation
on run f is the run j , that also leads to a magnetized regime
and possesses a similar structure in phase space. m0 for run j

is however equal to the predicted value of m in the QSS regime
by Lynden-Bell’s theory, and we expect a smaller amount of
stretching and folding because the variations of m are smaller.
The second case (run i in Table II) refers to the peculiar value
U = 0.69, with m0 = 0.20, which is known to possess counter-
rotating resonances. mx then experiences changes of sign that
imply elliptic-hyperbolic bifurcations [43], which we discuss
further in Sec. IV B.

The organization of phase space is similar to that of a
pendulum at every given time. The simplest situation is when
my = 0 at all times with small variations of mx around a finite
average value. The system is then close to a set of pendula,
although small oscillations of mx are sufficient to induce
stretching and folding. In the presence of stronger oscillations
of mx , the observed phenomenon of stretching and folding is
increased. The oscillations of the separatrix, which drive the
stretching and folding, are indeed linked to those of mx . The
region of phase space that is located under the separatrix at all
times experiences deformations, but the organization of phase
space is such that around the elliptic fixed point at (0,0) a
part of the waterbag remains intact, recalling the “core-halo”
phenomenon observed in self-gravitating systems [11,25].

In the counterpropagating resonances regime, first observed
in Ref. [28], an example of hyperbolic-elliptic bifurcation is
found. Such a behavior has been observed already in the single-
wave model in Ref. [43]. The authors of the latter reference find
that a succession of elliptic-hyperbolic bifurcation produces
strongly chaotic Lagrangian trajectories and destroys dipolar
structures, modifying the general behavior of the system. As it
stands for the HMF model, two coherent counterpropagating
clusters remain present in the system.

A. Variation of mx at null m y

We consider run f of Table II; in this situation, my = 0 at all
times and mx displays strong initial oscillations from t = 0 to
t ≈ 100, followed by smaller oscillations (see Fig. 3) around
a finite value. The initial time lapse corresponds to violent

FIG. 3. Evolution of m(t) as a function of the time t for run f

of Table II for different numerical settings (see Table I). The initial
behavior is very similar for all runs; later times display small phase
and amplitude differences.

relaxation, during which we are interested in the behavior of
the fluid. The initial stronger oscillations are typical of violent
relaxation in self-gravitating systems, with the difference that
the monitored quantity in these systems is the virial ratio [18].
The value of m, in the HMF model, is sufficient to fully follow
macroscopic quantities.

Figure 3 displays m(t) as a function of time, for run f

and the parameters of Table I. Between t = 0 and t ≈ 50,
the curves superimpose well. Up to t ≈ 100, qualitative
agreement is still valid. We may already conclude that
the amplitude of the oscillations decays, a key point in the
theory of violent relaxation. However, the amplitude of the
oscillations in m(t) behaves in a different manner than that
found in Ref. [36], where increasing the number of grid points
enhances sustained oscillations. Here, increasing the number
of grid points does not lead to a monotonous increase in the
amplitude of the oscillations. We can quantify this behavior
by taking the standard deviation of the time series m(t),
taken here between t = 100 and 200. The results are given
in Table III. The standard deviation is observed to decrease
from parameters “0k5” to “4k” and to increase afterward.
This can be understood by the presence of two competing
reasons for the damping. On the one hand, a low number of
grid points increases the phenomenon of numerical dissipation
(as found in Ref. [36]). On the other hand, a high number of grid
points enables the description of complex dynamics in phase
space such as stretching, folding, as well as the recurrence of
coherent behavior, leading to moderate persistent oscillations
of m(t) as observed in the conditions of Fig. 3 with a fine
enough resolution.

A general view of phase space is given in Fig. 4. The phase-
space structure is as follows: there is an elliptic fixed point at

TABLE III. Standard deviations of m(t) for run f with different
parameters. m(t) is taken between t = 100 and 200.

0k5 1k 2k 4k 8k 8kb

2.5 10−2 1.7 10−2 1.3 10−2 1.1 10−2 1.5 10−2 1.6 10−2
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FIG. 4. Phase space for run f at time t = 25, with the setting “8k.”
The contour is displayed, the region in black corresponds to f = f0,
and the region in white corresponds to f = 0. The instantaneous
separatrix is drawn in gray and three separate regions are visible:
well inside the separatrix, around the separatrix, and well above the
separatrix. The filamentary structure is the result of the self-consistent
evolution of the system. The box indicates the zoomed region of Fig. 6.

(θ,p) = (0,0) and a hyperbolic fixed point at (θ,p) = (±π,0).
A separatrix joins the two hyperbolic points, but its height
is variable as the magnetization evolves in time. This time
dependence allows one to consider the HMF model as a
time-dependent pendulum, keeping in mind that in the HMF
model the particles generate self-consistently the value of m.
Three different behaviors are found, depending on the energy
with respect to the separatrix, consistent with the findings of
the forced pendulum [29]: (1) Below the separatrix energy, the
so-called trapped particles remain close to the elliptical point
and perform an oscillatory motion; (2) above the separatrix,
particles cross space with a velocity of constant sign; and
(3) at energies near the separatrix, particles experience a
very complex behavior, known as separatrix crossing. The

FIG. 5. The perimeter Pf (t) for run f , for several configurations
of Table I. The initial behavior is an exponential increase of Pf

as a function of time (notice the logarithmic scale for the y axis),
followed by a saturation due to a numerical limitation. It is observed
that increasing the number of grid points increases the saturation
level.

oscillations of the separatrix will cause fluid elements to
experience stretching and folding.

Figure 5 displays Pf (t) for the parameters from Table I. The
initial behavior of Pf (t) is exponential (notice the logarithmic
scale of Pf in Fig. 5), showing that part of the perimeter is
experiencing an early exponential separation. Thereafter, the
perimeter goes up and down depending on the resolution used
in the simulation. If the resolution is too low, the perimeter
culminates and decreases due to the inability of the numerical
procedure to resolve structures that are finer than the numerical
grid. If the number of grid points is increased, the problem
is delayed farther and farther. With our finer resolution, the
perimeter is observed in Fig. 5 to saturate on the time interval
considered, after a moderate growth shown with the dashed
line.

A general comment is that the stretching rate λ of
the perimeter differs from a Lyapunov exponent in several
respects. A study of the Lyapunov exponent for test particles
submitted to the force field of a Vlasov-Poisson plasma has
been performed in a stationary regime and reveals interesting
similarities in the organization of phase space around the
separatrix [46]. However, the method introduced in the present
work automatically tracks the boundary of the distribution
function and follows the time evolution of its perimeter. Since
the perimeter is associated with a certain distribution function,
its stretching rate only characterizes the phase-space regions
at the boundary of the distribution function, which depends
in general on the choice of the initial distribution function.
Moreover, depending on the conditions, the perimeter may
undergo an early regime of exponential growth that does not
go on, so that the stretching rate may not be defined in the
long-time limit contrary to Lyapunov exponents. Nevertheless,
the concept of the Lyapunov exponent characterizing chaotic
dynamics is useful to interpret the present stretching rate. In
Fig. 5, the early exponential increases observed for Pf can
be understood in terms of the phase-space dynamics of the
pendulum periodically forced by the large early oscillations
of the mean field seen in Fig. 3. Indeed, the periodically
forced pendulum is known to be chaotic, which can induce
the stretching of phase-space domains leading to a positive
Lyapunov exponent. Therefore, the perimeter can undergo
an exponential growth as long as this induced stretching
goes on. However, as time increases, the oscillations of
the mean field become of lower amplitudes as observed in
Fig. 3, which reduces the extension of the chaotic zones
in the phase space of the periodically forced pendulum and
tends to decelerate the growth of Pf as seen in Fig. 5.
This decrease is expected to hold under the assumption
of mixing, but the numerical limitations explained earlier
in this section affect the behavior of Pf at earlier times
as the numerical resolution becomes lower. We point out
that the self-consistent setting used in the present work is
needed in order to study the phenomenon of violent relaxation
itself, in contrast to the situation of the periodically forced
pendulum. The dynamical evolution from an initial condition
to a QSS is indeed specific to the problem of violent
relaxation.

Finally, to illustrate the behavior at small scales, we display
in Fig. 6 a zoom of Fig. 4 at a later time. The stretching and
folding structures are clearly apparent.
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FIG. 6. Zoom on Fig. 4 at a later time t = 100. The complex
evolution of the initial waterbag leads to a stretching and folding
behavior. A very intricate sequence of f = 0 and f0 regions can be
observed.

B. Elliptic-hyperbolic bifurcation

The study of run i, leading to the counterpropagating
resonances, displays an interesting bifurcation of the elliptic
fixed point (0,0). The nature of that point depends on the
sign of mx that is found to change during time evolution.
The separatrices corresponding to the two situations of the
elliptic-hyperbolic bifurcation are shown in Fig. 7.

The evolutions of m and mx are displayed in Fig. 8 (my = 0
at all times). Fluid elements that are located in the alternating
separatrix regions experience a strong amount of stretching
and folding. This is confirmed in Fig. 9, where Pf (t) is shown
and compared to the result for run f . The improved mixing
in run i should not however lead to premature conclusions
about the relaxation of the systems on a macroscopic level. The
counter propagating resonances are very stable and prevent the
relaxation to complete equilibrium, in which the resonances
are not predicted.

FIG. 7. Phase-space DF f (θ,p) for run i at time t = 20 and 25
(see Fig. 8). Two counterpropagating clusters are found that lead to
sign changes in mx . The top panel displays a separatrix for mx < 0
and the bottom panel displays a separatrix for mx > 0.

FIG. 8. mx and m as a function of time for run i. The vertical
lines indicate the times at which the snapshots of Fig. 7 are taken.

In order to link the phenomenon of stretching and folding
to the amount of evolution from an initial condition to a
QSS, run j provides an interesting comparison. The initial
magnetization is m0 = 0.5, and the magnetization predicted
by Lynden-Bell’s theory is also mQSS = 0.5. A large region
of the initial waterbag will remain below the separatrix, and
smaller oscillations than for run f are expected. A comparison
between run f and run j for the numerical parameters 8kb is
given in Fig. 9, confirming that the amount of stretching and
folding needed for run j is well below that for run f .

V. MEAN-FIELD MAPS

In this section, we simplify the dynamics of the HMF model
into discrete-time maps giving the mean-field approximation
of symplectic coupled map systems [47] ruled by the periodi-
cally kicked Hamiltonian:

H =
N∑

i=1

p2
i

2
+

⎡
⎣ N∑

i=1

U0(xi) + 1

2N

N∑
i,j=1

U (xi − xj )

⎤
⎦

×
+∞∑

n=−∞
δ(t − n). (7)

FIG. 9. The perimeter Pf (t) for the runs f , i, and j of Table II.
All runs are performed with the setting “8kb” of Table I.
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In the mean-field approximation, the positions and momenta of
the particles after each kick are mapped by the time evolution
according to

�

{
pn+1 = pn − U ′

0(xn) − ∫
dx dp f (x,p) U ′(xn − x)

xn+1 = xn + pn+1 (modulo 1),
(8)

where n denotes the discrete time and f (x,p) denotes the
distribution function representing the ensemble of particles
normalized by

∫
f (x,p) dx dp = 1. The map is area pre-

serving so that the normalization condition is maintained
during the time evolution. Here, we consider the interaction
U (x) = C [1 − cos(2πx)] /(2π ) and the external potentials:
U0 = −Kx2/2, corresponding to Arnold’s cat map [30,31],
or U0 = A [cos(2πx) − 1] /(2π ), giving the standard map
[32,33].

We suppose that the distribution function f (x,p) is uniform
in a phase-space domain Dn. This domain evolves in time
under the mean-field mapping, Dn = �n(D0), and its area
is preserved: Area(Dn) = Area(D0). The problem is now to
determine the time evolution of the perimeter of the domain
Dn. In this regard, we notice that the domain Dn has the
same perimeter whether it is defined on the cylindrical phase
space {0 � x < 1, − ∞ < p < +∞} or in the whole plane
{−∞ < x < +∞, − ∞ < p < +∞}, because the mean field
is the same in both cases. Accordingly, the perimeter can also
be calculated without imposing periodicity in the position x,
which provides a numerical advantage.

A. Mean-field cat map

Here, the map takes the following form:{
pn+1 = pn + Kxn − mx[f ] sin(2πxn) + my[f ] cos(2πxn)

xn+1 = xn + pn+1 (modulo 1),

(9)

with the mean field equation

m[f ] = mx[f ] + i my[f ] = C

∫
dx dp f (x,p) ei2πx. (10)

The initial distribution function f (x,p) is taken to be uniform
in a circle of radius 1

4 centered on the point x = p = 1
2 of

the unit square, which defines the initial domain D0. After
n iterations, the distribution function is still uniform but in
a domain Dn resulting from the time evolution of the map
Eq. (9).

If the coupling parameter vanishes, C = 0, the mean field
has no effect on the dynamics and the map reduces to Arnold’s
cat map, which is known to be fully chaotic if the parameter
K is a positive integer [30,31]. We notice that the hyperbolic
character of the map persists as long as the coupling parameter
C is small enough that K � 2π |m|. Under this condition,
we may expect that the hyperbolic character of the map will
tend to stretch the domain Dn into a filamentary phase-space
structure, which produces an effective uniform distribution
over the unit interval x such that the mean field Eq. (10) tends
to vanish as n → ∞. For the same reason, the perimeter of
the domain Dn grows exponentially in time at a rate close to
the Lyapunov exponent of the Arnold cat map. This is indeed
observed in Fig. 10, which depicts the perimeter of the domain
Dn versus the number n of iterations for the parameter values

FIG. 10. The perimeter Pf (t) for the mean-field cat map with
K = 0,1,2 and C = 10. The calculations are performed with 1 × 106

(empty symbols) and 4 × 106 (full symbols) points to represent the
boundary and the bulk of the domain where the distribution function
is uniform.

C = 10 and K = 0,1,2. The computation is performed for
two approximations in which the boundary of the domain Dn

and its interior are discretized into 1 × 106 and 4 × 106 points.
In the hyperbolic regime for K = 1 and 2, the growth of the
perimeter is exponential. However, in the absence of chaos
for K = 0, the perimeter no longer increases exponentially
and the computation is sensitive to the discretization. The
fact is that, for the value C = 10 of the coupling parameter,
the mean field vanishes so that the mean field alone cannot
induce an exponential stretching of the perimeter in this
case.

B. Mean-field standard map

Now, we consider the mean-field standard map defined on
the unit square as{

pn+1 = pn + (A − mx[f ]) sin(2πxn) + my[f ] cos(2πxn)

xn+1 = xn + pn+1 (modulo 1),

(11)

with the same mean field as in Eq. (10). Here, the single-
particle potential as well as that induced by the mean field have
a similar trigonometric form so that the mean field mx appears
to have an effect comparable to that of the constant parameter
A of the standard map (in the case where my = 0) [32,33].
The initial distribution function f (x,p) is the same as in the
previous subsection.

Figure 11 shows the growth of the perimeter of the domain
Dn as a function of the discrete time n for the parameter
values C = 1 and A = 0,1,2. As before, the boundary and the
bulk of the domain Dn are discretized into 1 × 106 and 4 ×
106 points. The early growth of the perimeter until about n =
6 iterations is well approximated by these discretizations for
A = 1,2 and until about n = 15 iterations for A = 0. There-
after, both approximations deviate, showing the sensitivity of
the calculation to the discretization of the domain Dn and
the distribution function f (x,p) into points. Nevertheless, the
early growth appears to be exponential for A = 0,1,2.
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FIG. 11. The perimeter Pf (t) for the mean-field standard map
with K = 0,1,2 and C = 1. The calculations are performed with
1 × 106 (empty symbols) and 4 × 106 (full symbols) points to
represent the boundary and the bulk of the domain where the
distribution function is uniform.

For A = 1,2, the exponential increase of the perimeter can
be explained by the global chaoticity of the standard map for
A > Ac � 0.15 [32,33]. Indeed, the standard map is stretching
domains at a rate equal to the Lyapunov exponent λ � ln(πA),
which is positive for A = 1,2. At each iteration, the perimeter
of the domain Dn is stretched by a factor exp(λ) > 1 for
every point in the chaotic zones of the map. The domain Dn

thus develops a filamentary phase-space structure uniformly
distributed over the unit square so that the mean field Eq. (10)
tends to vanish and the mean-field standard map Eq. (11)
behaves on long time as the single-particle standard map with
A = 1,2 and m = 0. Accordingly, the exponential growth of
the perimeter of the domain Dn could go on as the discrete
time n increases.

In contrast, for A = 0, the dynamics is entirely determined
by the mean field Eq. (10). It turns out that the mean field
vanishes for C > Ct with Ct � 2 but is nonvanishing for
0 < C < Ct by a phenomenon analogous to the one happening
in the HMF model. For C = 1, the mean field fluctuates around
the mean value mx � −0.21 with my = 0. This explains
the early exponential growth of the perimeter observed in
Fig. 11 for A = 0 and C = 1. Indeed, if we suppose that the
mean field remains essentially constant, the Vlasov dynamics
would be equivalent to that of the simple standard map for
A = −mx � 0.21. In this case, the early growth rate would
be about λ � 0.44, which is close to the value λ � 0.48 of
the mean-field dynamics with A = 0 and C = 1 shown in
Fig. 11.

These results confirm that the stretching of the perimeter by
the Vlasov dynamics is controlled by the local hyperbolicity
of the effective single-particle phase-space dynamics induced
by the current value of the mean field.

VI. CONCLUSION

Measuring the degree of mixing in kinetic theory is
undoubtedly a considerable challenge. Nevertheless, in order
to assess the evolution of a given system, we here propose

a quantitative tool by drawing an analogy with the mixing
of dyed regions in fluid mechanics. In this picture, the
effectiveness of the mixing can be measured by the growth
of the perimeter of dyed fluids in phase space.

In both the Hamiltonian mean-field model and the mean-
field cat and standard maps, our numerical simulations report
an exponential growth of the perimeter, a sign that exponential
stretching occurs at least locally on the contour of the dyed
fluid. The fluid in phase space displays folding and stretching
structures that are absent from similar noninteracting and non-
chaotic systems. This mechanism is an appropriate candidate
to explain how violent relaxation can take place: through
mixing in phase space, even though this mixing is limited
to certain regions of phase space.

The complex intertwining of f = 0 and f0 regions in phase
space confirms that a coarse-grained theory should be able
to provide a good description of the fluid after mixing has
taken place. The existence of an infinite number of conserved
quantities in the Vlasov equation forbids the increase of en-
tropic functionals, which implies that coarse graining is needed
in order to describe the evolution toward stationary states or
quasistationary states (QSS). In the light of our findings about
the mechanism leading to such QSS, violent relaxation can
be understood from a Vlasovian point of view, in which the
deformation of the initial condition allows the system to reach
a QSS. This deformation takes place at constant phase-space
volume but with a perimeter that increases exponentially
during some lapses of the time evolution. The increase in the
perimeter is made possible through successive stretching and
folding of the fluid. Subsequently, finite N effects may come
into play, but they are of a different type and are not discussed
herein.

We notice that the results of the present article are in
agreement with the understanding of phenomena related to
violent relaxation, for instance the separation of phase space
into different regions [48] that leads to the formation of a core
and a halo. Applying our method to more common systems,
such as the self-gravitating sheet model, is expected to reveal
a similar behavior and would prove interesting to complete the
existing body of literature.

As known in the literature, the presence of self-consistent
resonances may organize phase space in a way that prevents
the statistical prediction of stationary regimes. Indeed, these
resonances imply that the energy distribution function is
nonmonotonous, in contrast to the predictions of Lynden-
Bell’s theory or Boltzmann-Gibbs equilibrium. The self-
consistent resonances are often at the origin of the so-called
“dynamical effects” that prevent a system from reaching a QSS
or thermodynamical equilibrium.

Finally, let us recall that, in the perspective given in the
present paper, the phase-space exponential separation leading
to mixing has similarities to what happens in chaotic dynamics,
although notable differences exist such that the dependence on
the initial distribution function as well as the time dependence
of the stretching rate. A possible way to tighten both aspects is
to use test particles that feel the time-dependent magnetization
generated by a Vlasov simulation. It is possible to push this
method further by the use of a Poincaré map on these test
particles, providing one with the tools of iterative mapping,
which are of common use in nonlinear dynamics.
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