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Power-series expansion of the Boltzmann equation and reciprocal relations
for nonlinear irreversible phenomena
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The Boltzmann equation subject to a general boundary condition is expanded in a power series with respect
to a thermodynamic force disturbing a gaseous system. Recurrence relations between the terms of the expansion
are obtained using the main properties of the collision integral and of the gas-surface interaction kernel. The
reciprocal relation for nonlinear irreversible phenomena, i.e., a relation between the terms of different orders, is
obtained. The relations can be used to estimate the range of applicability of linearized solutions and to predict
nonlinear phenomena in gaseous systems.
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I. INTRODUCTION

Transport phenomena in rarefied gases are calculated on the
basis of the Boltzmann equation (BE) [1–5], which is nonlinear
in a general case. In some particular cases, when a deviation
from equilibrium is weak, the BE is linearized, then its analysis
and solution become simpler. As a result, the properties of the
linearized BE are studied more profoundly and the number
of papers reporting its numerical solutions is quite larger than
those based on the full BE; see, e.g., the reviews [6,7].

The linearized BE was also used to derive the reciprocal
relations for gaseous systems. First, such relations were proved
by Onsager [8,9], who considered isolated statistical systems
and assumed that the fluctuation regressions obey the same
law as the corresponding macroscopic irreversible processes.
Then, Casimir [10] generalized the theory considering odd and
even phenomena with respect to the time reversion. As was
shown in Refs. [11–14] using some particular examples of
gas flows, the reciprocal relations derived from the linearized
BE can be applied to open systems and the assumption on
the fluctuation regressions is dispensed. An approach to the
reciprocal relations for a wide class of gaseous systems based
on the linearized BE was developed in Refs. [15–20]. A further
generalization of the approach [21–23] showed that there are
phenomena which are neither odd nor even with respect to
the time reversion, i.e., they cannot be described in the frame
of the theory developed previously [10–20]. Nowadays, the
reciprocal relations are widely used to reduce efforts to solve
the linearized BE or to verify the accuracy of its numerical
solutions; see, e.g., Refs. [24–32]. However, the applicability
of the linearized BE is restricted to small deviations from
equilibrium and, sometime, the range of its applicability is not
well determined. To consider an arbitrary deviation, a solution
of the full BE is inevitable.

It is attractive to use the experience in solving the linearized
BE in order to solve the full BE. The famous Chapman-Enskog
method [1,2] is an example to reduce the full BE to a hierarchy
of linearized ones using the Knudsen number as a small
parameter, i.e., the solution of the BE is expanded in a power
series with respect to the Knudsen number. Each term of
the series representing a solution of the linearized BE is a
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correction to construct the solution of the full BE. Since the
method is based on the smallness of the Knudsen number, it is
valid only in the hydrodynamic regime.

In the present paper, the BE is expanded in a power series
with respect to a thermodynamic force disturbing a gaseous
system. The expansion is done together with the boundary
condition that allows us to consider an arbitrary Knudsen
number. Each term of the series is obtained from the linearized
BE subject to the linearized boundary condition.

In most situations, such solutions are obtained by modest
computational effort applying the so-called model equations
like the Bhatnagar-Gross-Krook (BGK) equation [33], S

model [34], McCormack equation [35], etc. However, some
nonlinearized models, e.g., BGK, fail to predict all transport
coefficients and other ones do not obey the H theorem, e.g.,
the S model. In contrast, the linearized model equations, e.g.,
that proposed by McCormack, provide correct values of all
transport coefficients and obey the H theorem, i.e., they are
reliable and can be used to approximate a solution of the full
Boltzmann equation using the expansion proposed here.

Another utility of the high order approximations is to
estimate their contributions to the full solution. The estimation
will allow us to determine the range of applicability of the
linearized equation.

Using the same ideas to obtain the reciprocal relations
[16–23] from the linearized BE, couplings between different
orders of the expansion, which can be considered as the
nonlinear reciprocal relations, are obtained. Like the linear
reciprocal relations, they can be used to reduce computational
effort to solve the kinetic equation or as an additional criterion
of numerical accuracy.

II. INPUT EQUATION

Consider a gas occupying a region �, which can be closed
by a solid wall �w or restricted to such a wall only partially.
In the last case, the region � is restricted also to an imaginary
surface passing through the gas �g so that the boundary
∂� = �w

⊕
�g is closed. An infinite region � is considered

as a limit removing �g to infinity. A state of the gas is described
by the one-particle distribution function f (t,r,�), where t is
the time, r is the position vector, and � is a set of variables
determining a state of molecule. For monatomic gas, � is just
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its velocity v, while for polyatomic gases, the set � includes
also all variables describing an internal state of molecules.
If a gaseous system is in equilibrium at a density n0 and
temperature T0, the distribution function becomes Maxwellian,
i.e.,

f0(�) = n0�(T0) exp [−E(�)/kBT0], (1)

where �(T0) is the normalization factor

�(T0) =
[∫

exp(−E(�)/kBT0)d�

]−1

, (2)

E(�) is the molecular energy, and kB is the Boltzmann
constant.

When a gaseous system is out of equilibrium, the distribu-
tion function is obtained from the BE, which in the absence of
external forces reads [1–5]

∂f /∂t + D̂f = Q(f,f ), (3)

where D̂ = v · ∇r and Q(f,f ) is the collision integral

Q(f,f ) =
∫∫∫

(f ′
∗f

′ − f∗f )w(�′,�′
∗; �,�∗)d�′d�′

∗d�∗.

(4)

Here and henceforward, the affixes to f correspond to those
of their arguments �: f∗ = f (t,r,�∗), f ′ = f (t,r,�′). The
function w(�,�∗; �′,�′

∗) is the probability density of transition
from states (�,�∗) to states (�′,�′

∗) in a binary collision.
It satisfies the two general relations [3]. The first one is a
consequence of the reversibility of binary collisions and reads

w(�,�∗; �′,�′
∗) = w(−�′, − �′

∗; −�, − �∗), (5)

where “−�” is used to indicate a time-reversed state of the
molecules. The second relation is given as∫∫

w(�,�∗; �′,�′
∗)d�′d�′

∗ =
∫∫

w(�′,�′
∗; �,�∗)d�′d�′

∗, (6)

which follows from the scattering matrix unitary.
On a solid or liquid surface �w, the reflected distribution

function f (�) is related to that of incident particles f (�′)
as [16]

vnf (t,r,�) = [1 − α(t,r, − �)]vnfw(t,r,�)

−
∫

v′
n�0

v′
nf (t,r,�′)R(t,r; �′ → �)d�′, (7)

where vn = (v · n) is the normal component of the molecular
velocity v, n is the unit vector normal to the surface and
directed toward the gas, fw is the surface Maxwellian

fw = nw�(Tw) exp [−I/kBTw − m(v − uw)2/2kBTw], (8)

�(Tw) is calculated by Eq. (2) with the surface temperature
Tw, I is the inner molecular energy, m is the molecular mass,
uw is a surface velocity, nw is the number density of particles
evaporated by the surface. The scattering kernel R(t,r; �′ →
�) is determined by the surface quantities nw, Tw, uw.

In the case of equilibrium between a gas and surface, the
flux of incident molecules must be equal to that of reflected

ones and evaporated molecules together. To guarantee such a
condition, the kernel must be normalized as∫

vn�0
R(t,r; �′ → �)d� = α(t,r,�′). (9)

Thus the coefficient α(t,r,�′) is the probability that an
incident particle with a state �′ will be reflected. When no
evaporation happens, i.e., α = 1, the equality (9) means that
all incident molecules are reflected. In this particular case,
the normalization factor �(Tw) in the surface Maxwellian fw

given by Eq. (8) does not matter and any quantity can be used
instead of nw�(Tw).

If the surface is in a local equilibrium, the kernel satisfies
the reciprocity condition [4,36]

v′
nf

′
wR(�′ → �) = −vnfwR(−� → −�′), (10)

where vn � 0 and v′
n � 0. With the help of conditions (9) and

(10), it can be shown that if the incident distribution function is
Maxwellian, i.e., if f (t,r,�′) = fw(�′) in the right hand side
of Eq. (7), then the distribution of the reflected molecules will
be the same Maxwellian, i.e., the left hand side of Eq. (7) will
be vnfw(�).

Note, if the surface �w does not move (uw = 0), if it is
maintained at the equilibrium temperature (Tw = T0), if the
density of evaporated gas is equal to the equilibrium density
(nw = n0) or the surface does not evaporate (α = 1), the
system reaches the equilibrium distribution function (1) at any
gas rarefaction even in the collisionless regime.

III. POWER SERIES EXPANSION

Consider a thermodynamic force X disturbing the gaseous
system. It can be a surface motion with a velocity uw or a
surface temperature Tw different from the equilibrium one T0.
Let us represent the disturbed distribution function as a power
series expansion with respect to X,

f =
∞∑

n=0

fnX
n = f0

∞∑
n=0

hnX
n, (11)

where fn = f0hn, h0 = 1. We assume that the value of X is
within the convergence radius for the expansion (11), which
is different for each specific problem and depends on the
Knudsen number. As has been mentioned above, if a gaseous
system is not disturbed, it will reach its equilibrium distribution
function f0 at any gas rarefaction. Thus the expansion (11) is
not restricted to small Knudsen numbers, but it is valid for any
gas rarefaction even in the free-molecular regime where the
Knudsen number is infinite. This is the principal difference
of the expansion (11) from the Chapman-Enskog one [1,2]
using the Knudsen number for the power series. As a result,
the Chapman-Enskog expansion is limited by small values of
the Knudsen number, while the expansion (11) is valid for any
Knudsen number.

Substituting the expansion (11) into the collision integral
(4) and using the Cauchy product formula, we obtain

Q(f,f ) = f0

∞∑
n=1

XnL̂hn +
∞∑

n=2

Xn

n−1∑
k=1

Q(fk,fn−k), (12)
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where L̂ is the linearized collision operator,

L̂h =
∫∫∫

f0∗(h′ + h′
∗ − h∗ − h)wd�∗d�′

∗d�′. (13)

Here, the affixes to h also correspond to those of their argu-
ments �: h∗ = h(t,r,�∗), h′ = h(t,r,�′). The representation
(12) of the collision operator is well known and can be found
in Chap. IV of Ref. [4].

Substituting Eqs. (11) and (12) into Eq. (3), we obtain the
expansion of the BE

∞∑
n=1

Xn(∂/∂t + D̂)hn

=
∞∑

n=1

XnL̂hn + f0
−1

∞∑
n=2

Xn

n−1∑
k=1

Q(fk,fn−k), (14)

which is split in series of the linearized equations related
recurrently to each other,

(∂/∂t + D̂)hn = L̂hn + gn, (15)

where g1 = 0, while the other gn are expressed via the
functions fk (0 � k � n − 1),

gn(t,r,�) = f0
−1

n−1∑
k=1

Q(fk,fn−k), n � 2. (16)

The analogous expansion of the boundary condition (7)
is not known and should be described in more detail. First,
the surface Maxwellian fw and the kernel R(t,r; �′ → �) are
expanded as

fw = f0

∞∑
n=0

hwnX
n, (17)

and

R(t,r; �′ → �) =
∞∑

n=0

XkRk(t,r; �′ → �), (18)

respectively. Here hw0 = 1 and R0 corresponds to the scat-
tering kernel of a surface staying at rest (uw = 0) and at the
equilibrium temperature T0. The coefficient α normalizing the
kernel (9) is expanded too,

α(t,r,�′) =
∞∑

n=0

Xkαk(t,r,�′) (19)

so that each term of the kernel is normalized as∫
vn�0

Rk(t,r; �′ → �)d� = αk(t,r,�′). (20)

Note that if α0 = 1, then αn = 0 for all n � 1.
Substituting Eqs. (17) and (18) into Eq. (10), using the

Cauchy product and equating the terms with the same degree
of X, we obtain

− (v′
nf

′
0/vnf0)

n∑
k=0

h′
wkRn−k(�′ → �)

=
n∑

k=0

hwkRn−k(−� → −�′). (21)

Integrating it with respect to �′ in the semispace v′
n � 0, we

obtain

n∑
k=0

Ân−khwk =
n∑

k=0

hwkαn−k(−�), (22)

where Eq. (20) has been used and the scattering operators

Ânh = −
∫

v′
n�0

(v′
nf

′
0/vnf0)Rn(�′ → �)h′d�′ (23)

have been introduced.
Substitute Eqs. (11)–(19) into Eq. (7), and the expansion of

the boundary condition is obtained as

∞∑
n=0

Xnhn(�) =
∞∑

n=0

Xnhwn −
∞∑

n=0

Xn

n∑
k=0

hwkαn−k(−�)

+
∞∑

n=0

Xn

n∑
k=0

Ân−khk, (24)

where the Cauchy product has been used. A combination of
Eqs. (24) and (22) provides the boundary condition for each
function hn (n � 1) on the solid surface r ∈ �w as

hn = hwn + Â0(hn − hwn) + ηn, (25)

where η1 = 0, while for n � 2 this quantity is given in terms
of the perturbations hk and scattering operators Âk of the lower
orders (1 � k � n − 1), i.e.,

ηn(t,r,�) =
n−1∑
k=1

Ân−k(hk − hwk). (26)

Thus Eq. (15) with the boundary condition (25) is a chain of the
linearized equations related recurrently representing a solution
of the full Boltzmann equation (3) subject to the boundary
condition (7).

IV. SYMMETRY

Using the main properties of the operators L̂ and Â0, an
additional relation can be obtained between two solutions hn

of different orders. When the functions gn and ηn are known,
the equations (15) subject to the boundary conditions (25) can
be treated independently on each other and then, the same ideas
of the reciprocity described in the works [16–23] can be used.
Following these works, the scalar products are introduced as

(φ,ψ) =
∫

f0φ(t,r,�)ψ(t,r,�)d�, (27)

((φ,ψ)) =
∫

�

(φ,ψ)d r, (28)

(φ,ψ)B =
∫

vn�0
vnf0φ(t,r,�)ψ(t,r,�)d�, r ∈ �w, (29)

where φ and ψ are arbitrary functions. We also will use the
operator reversing the internal state of molecules in the time
T̂ φ(t,r,�) = φ(t,r, − �).
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As was shown in the work [16], the properties (5) and (6)
lead to the self-conjugation of the operator T̂ L̂, i.e.,

((T̂ L̂φ,ψ)) = ((T̂ L̂ψ,φ)). (30)

The scattering operator Â0 satisfies the following equality:

(T̂ φ,Â0ψ)B = (T̂ ψ,Â0φ)B, (31)

which is a consequence of the scattering kernel properties (9)
and (10).

Using the Gauss divergence theorem, the following prop-
erty for the operator T̂ D̂ is derived,

((T̂ D̂φ,ψ)) = ((T̂ D̂ψ,φ)) −
∮

∂�

(T̂ vnφ,ψ)d� (32)

for any functions φ and ψ . If we assume that these functions
obey the boundary condition (25) on the surface �w, the last
term of Eq. (32) can be modified as

(T̂ vnφ,ψ) = (T̂ vnφw,ψ − (1/2)ψw) + (ηφ,T̂ (ψ − ψw))B

− (T̂ vnψw,φ − (1/2)φw) − (ηψ,T̂ (φ − φw))B,

(33)

where the property (31) has been used. Here, φw and ψw

are functions defined in the whole velocity space, while the
functions ηφ and ηψ are given only in the semispace vn � 0.
On the surface �g , the last term of Eq. (32) is written down as

(T̂ vnφ,ψ) = (1/2)(T̂ vnφ,ψ) − (1/2)(T̂ vnψ,φ). (34)

Finally, with the help of Eqs. (33) and (34), equality (32) takes
the form

((T̂ D̂φ,ψ)) +
∫

�w

[(T̂ vnφw,ψ − (1/2)ψw) + (ηφ,T̂ (ψ − ψw))B]d� + (1/2)
∫

�g

(T̂ vnφ,ψ)d�

= ((T̂ D̂ψ,φ)) +
∫

�w

[(T̂ vnψw,φ − (1/2)φw) + (ηψ,T̂ (φ − φw))B]d� + (1/2)
∫

�g

(T̂ vnψ,φ)d�. (35)

Let us consider two functions hk and hn from expansion (11). Each of them satisfies the linearized kinetic equation (15)
and linearized boundary condition (25). Applying the operator T̂ to Eq. (15), multiplying it by hk , and integrating with respect
to � and r , we obtain

((T̂ ∂hn/∂t,hk)) + ((T̂ D̂hn,hk)) = ((T̂ L̂hn,hk)) + ((T̂ gn,hk)). (36)

With the help of Eqs. (30) and (35), the symmetry relation between hk and hn is obtained as

((T̂ gn,hk)) +
∫

�w

[(T̂ vnhwn,hk − (1/2)hwk) + (ηn,T̂ (hk − hwk))B]d� + (1/2)
∫

�g

(T̂ vnhn,hk)d� − ((T̂ ∂hn/∂t,hk))

= ((T̂ gk,hn)) +
∫

�w

[(T̂ vnhwk,hn − (1/2)hwn) + (ηk,T̂ (hn − hwn))B]d� + (1/2)
∫

�g

(T̂ vnhk,hn)d� − ((T̂ ∂hk/∂t,hn)). (37)

This coupling is similar to the Onsager-Casimir reciprocal
relation [8–10], but it is valid for any order of the expansion
(11), i.e., Eq. (37) is the reciprocal relation for nonlinear
irreversible phenomena. It can be used to predict a behavior of
nonlinear phenomena in gaseous systems.

In a general form, the reciprocal relation (37) is cumber-
some, but in a particular situation of a steady state and bounded
region, it can be simplified. In this case, the surface �g does
not exist and the functions hwn are even with respect to the
normal velocity vn. Then, Eq. (37) is reduced to

((T̂ gn,hk)) +
∫

�w

[(T̂ vnhwn,hk) + (ηn,T̂ (hk − hwk))B]d�

= ((T̂ gk,hn)) +
∫

�w

[(T̂ vnhwk,hn)

+ (ηk,T̂ (hn − hwn))B]d�. (38)

V. EXAMPLE OF APPLICATION

In this section, some useful expressions to apply the above
elaborate theory are given. For the sake of simplicity, we will

restrict ourselves to a monatomic gas, i.e., � = v and E =
mv2/2. Let us assume that a gaseous system is disturbed by a
wall having a temperature Tw different from the equilibrium
one T0. Then, the thermodynamic force is defined as

X = (Tw − T0)/T0. (39)

In this case, the surface distribution function can be written as

fw = f0(1 + X)−ν exp(c2X/(1 + X)), (40)

where

c = (m/2kT0)1/2v. (41)

The constant ν depends on the density of evaporated gas. If
nw = n0, then ν = 3/2. In the case when n0 = p0/kTw, the
constant ν is equal to 5/2. As has been mentioned after Eq.
(9), for an impermeable surface (α = 1), the value of ν does
not matter and any value can be adopted. The function (40)
can be expanded in the Sonine polynomials,

fw = f0

∞∑
n=0

(−1)nS(n)
ν−1(c2)Xn, (42)
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where S(n)
ν (ξ ) are defined as [1,2]

S(n)
ν (ξ ) =

n∑
k=0

�(ν + n + 1)

(n − k)!k!�(ν + k + 1)
(−ξ )k. (43)

Here, �(x) is the gamma function. Thus for the thermodynamic
force defined by Eq. (39), the terms hwn of the expansion (17)
are given as

hwn(c) = (−1)nS(n)
ν−1(c2). (44)

The two first terms are given explicitly as

hw1(c) = c2 − ν, (45)

hw2(c) = (1/2)c4 − (ν + 1)c2 + (1/2)ν(ν + 1). (46)

The most used gas-surface interaction law is the diffuse
scattering. If a surface is at a temperature Tw, the diffuse
scattering kernel reads

R(v′ → v) = [m2vn/2π (kBTw)2] exp(−mv2/2kTw). (47)

Using the force in the form (39), it is also expressed in terms
of the Sonine polynomials,

R(v′ → v) = [m2vn/2π (kBT0)2] e−c2
∞∑

n=0

(−1)nS(n)
1 (c2)Xn.

(48)

So, each term of the expansion (18) is written down as

Rn(v′ → v) = (−1)n[m2vn/2π (kBT0)2] e−c2
S

(n)
1 (c2). (49)

The first term of the expansion reads

R1(v′ → v) = [m2vn/2π (kBT0)2] e−c2
(c2 − 1). (50)

To illustrate an application of the relation (38), we will
specify the problem. Consider two infinite and parallel plates
fixed at x = 0 and x = L. The plate at x = 0 is maintained at a
temperature Tw and the other plate has a different temperature
which will be referred to as the equilibrium one T0. We
are interested in the heat flux qx between the plate over the
whole range of the Knudsen number. When the hotter plate is
impermeable, i.e., α = 1, the gas is at rest and the heat flux is
calculated as

qx = (1/2)
∫

mv2vxf dv. (51)

If we restrict ourselves to the second order of the expansion
(11), then the heat flux reads

qx = qx1X + qx2X
2 + O(X3), (52)

where

qxk = (1/2)
∫

mv2vxf0hkd�, k = 1,2. (53)

Since the hotter plate is impermeable, we may adopt any
value for the quantity ν in Eq. (40), for instance, ν = 0. Then
functions (45) and (46) are simplified,

hw1 = c2, hw2 = c4/2 − c2. (54)

For the problem in question, Eq. (38) is transformed to

(T̂ vxhw1,h2)|x=0 =
∫ L

0
(T̂ g2,h1)dx + (T̂ vxhw2,h1)|x=0

+ (η2,T̂ (h1 − hw1))B, (55)

where

g2(x,v) = f0
−1Q(f0h1,f0h1) (56)

and

η2(v) = Â1(h1 − hw1). (57)

The function η2 is determined at x = 0 and vn � 0. Note that
g1 = 0 and η1 = 0. Substituting Eqs. (54), (56), and (57) into
Eq. (55), we obtain

qx2 = −kBT0

∫ L

0

∫
Q(f0h1,f0h1)h1(x, − v)dvdx

+ (kBT0/2)
∫

f0vxc
4h1(0,v)dv − qx1

+ kBT0

∫
vn�0

∫
v′�0

v′
nf

′
0R1(v′ → v)(h1(0,v′) − c′2)

× (h1(0, − v) − c2)dv′dv. (58)

If one applies the diffuse scattering kernel, the expression (50)
is substituted into the last term of Eq. (58).

Thus the right hand side of relation (58) contains only the
solution of the first order h1, while the left hand side represents
the second order term in expansion (52). In other words, if one
is interested only the heat flux, its second order term qx2 can be
calculated without solving the corresponding kinetic equation.

VI. CONCLUSION

A solution of the Boltzmann equation subject to boundary
conditions in a general form is presented as an expansion
near its equilibrium solution. Unlike the Chapman-Enskog
expansion, the present one is valid for any Knudsen number.
Recurrence relations between the terms of the expansion are
obtained using the main properties of the collision integral and
gas-surface interaction kernel. The reciprocal relation between
the terms of different orders describing nonlinear irreversible
phenomena was derived. Thereby, an efficient tool to study
nonlinear phenomena in gaseous systems using the linearized
kinetic equation has been proposed. An example of application
of the approach is given.

The present theory can be easily generalized for gaseous
mixtures and for several thermodynamic forces following the
formalism described here and in Refs. [16,18,21,22].
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