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We report a detailed study, using state-of-the-art simulation and theoretical methods, of the effective (depletion)
potential between a pair of big hard spheres immersed in a reservoir of much smaller hard spheres, the size
disparity being measured by the ratio of diameters q ≡ σs/σb. Small particles are treated grand canonically,
their influence being parameterized in terms of their packing fraction in the reservoir ηr

s . Two Monte Carlo
simulation schemes—the geometrical cluster algorithm, and staged particle insertion—are deployed to obtain
accurate depletion potentials for a number of combinations of q � 0.1 and ηr

s . After applying corrections for
simulation finite-size effects, the depletion potentials are compared with the prediction of new density functional
theory (DFT) calculations based on the insertion trick using the Rosenfeld functional and several subsequent
modifications. While agreement between the DFT and simulation is generally good, significant discrepancies
are evident at the largest reservoir packing fraction accessible to our simulation methods, namely, ηr

s = 0.35.
These discrepancies are, however, small compared to those between simulation and the much poorer predictions
of the Derjaguin approximation at this ηr

s . The recently proposed morphometric approximation performs better
than Derjaguin but is somewhat poorer than DFT for the size ratios and small-sphere packing fractions that
we consider. The effective potentials from simulation, DFT, and the morphometric approximation were used to
compute the second virial coefficient B2 as a function of ηr

s . Comparison of the results enables an assessment of
the extent to which DFT can be expected to correctly predict the propensity toward fluid-fluid phase separation in
additive binary hard-sphere mixtures with q � 0.1. In all, the new simulation results provide a fully quantitative
benchmark for assessing the relative accuracy of theoretical approaches for calculating depletion potentials in
highly size-asymmetric mixtures.
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I. INTRODUCTION

Much of condensed matter physics and chemistry is
concerned with simplifying the description of a complex
many-body system by integrating out certain subsets of the
degrees of freedom of the full system. Thus in treating
atomic and molecular solids and liquids one often resorts
to integrating out, usually approximately, the higher energy
quantum mechanical degrees of freedom of the electrons in
order to obtain an effective interatomic or intermolecular
potential energy function that is then employed in a classical
statistical mechanical treatment to study the properties of
condensed phases. Similarly in metallic systems integrating
out the degrees of freedom of the conduction electrons leads
to an effective Hamiltonian for the screened ions or pseudo-
atoms. When one turns to complex, multicomponent fluids
such as colloidal suspensions or polymers in solution the basic
idea is similar: One integrates out the degrees of freedom of
the small species to obtain an effective Hamiltonian for the
biggest species; for an illuminating review see Ref. [1]. In this
case all species can be treated classically, and the formalism
is essentially the famous one of McMillan and Mayer [2],
who developed a general theory for the equilibrium properties
of solutions. These authors and many others subsequently
recognized that integrating out is best performed when the
smaller species (those constituting the solvent) are treated
grand canonically. Obtaining the full effective Hamiltonian
is a tall order. A first step in any theoretical treatment is to
determine the effective potential between a single pair of the

biggest particles in a sea of the smaller species. There is a long
history of work in this field. Various statistical mechanical
techniques have been developed to calculate these potentials
for different types of complex fluid. Well-known examples of
effective two-body potentials, forming cornerstones of colloid
science, are the Derjaguin-Landau-Verwey-Overbeek (DLVO)
potential for charged colloids and the Asakura-Oosawa deple-
tion potential for colloid-polymer mixtures. Further examples,
including polymer systems, are given in Refs. [1,3].

The problem of determining the effective two-body in-
teraction is particularly challenging to theory and computer
simulation in the situation where—and we specialize to
a binary fluid—the bigger particles are much larger than
the smaller ones. Sophisticated theoretical and simulation
techniques, which will provide accurate results for the effective
potential, are only now becoming available.

Our present focus is on a simple model for a suspension of a
binary mixture of big and small colloidal particles, both species
suitably sterically stabilized; i.e., we consider a highly size
asymmetric binary mixture of hard spheres. This can also serve
as a crude model of a mixture of colloids and nonadsorbing
polymer and can be regarded as a reference system for a
mixture of size asymmetric simple fluids.1 The hard-sphere

1It is not universally accepted that a binary mixture of hard
spheres is a good reference system for binary mixtures of colloids
in suspensions. Residual (non-hard-sphere) interactions might play
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mixture is important in that it provides a testing ground for
theories of the effective potential between two big hard spheres
immersed in reservoirs of small ones, with different packing
fractions ηr

s , and, indeed, for theories of the full effective
Hamiltonian obtained when the degrees of freedom of the
small species are integrated out fully [4]. Generally speaking,
the more asymmetric the mixture the more difficult it is to
treat both species on equal footing and the more necessary it
is to perform some integrating out to obtain an (approximate)
effective Hamiltonian. Often this procedure is feasible only at
the level of a Hamiltonian consisting of a sum of (effective)
pair potentials, as obtained by considering a single pair of the
big particles, along with zero- and one-body terms [1,4]. One
of the advantages of the hard-sphere system is that geometrical
considerations indicate that three-, four-, etc., body terms
become less important as the size ratio q = σs/σb becomes
small. Here σs and σb denote the diameters of the small and
big species, respectively. Thus provided one can calculate an
accurate effective pair potential, the pair description alone
determines an effective Hamiltonian that should provide an
excellent description of the big-big correlation functions and
the phase behavior of the binary hard-sphere mixture when q

is sufficiently small [4]. Note that in this paper we consider
additive hard-sphere mixtures so that the big-small diameter
σbs = (σb + σs)/2.

Since the studies of the phase behavior of the hard-sphere
mixture by Dijkstra et al. [4], whose simulations of an effective
one-component system used a rather crude approximate pair
potential, there have been several new developments in the
theory of effective potentials. Most of these are based on
Density Functional Theory (DFT). It is important to assess
whether (1) the potentials derived in recent studies are accurate
and (2) use of these might lead to different predictions for the
properties of the mixture. In order to make such assessments
it is necessary to have accurate simulation results for the
effective potential. Employing state-of-the art techniques we
provide what we believe are the most accurate results currently
available for q � 0.1 and packing fractions ηr

s up to 0.35
and make direct comparisons with the results of theoretical
approaches. The simulation techniques we employ do not
allow us to work at very high values of ηr

s , but they do allow
us to compute accurate effective potentials, for a range of
size ratios, in the regime of small sphere packing fractions
where the putative (metastable) fluid-fluid phase separation
is predicted to occur [4]. By calculating the second virial
coefficient associated with the effective potential we make
new estimates of the value of ηr

s where the onset of this elusive
phase transition occurs. Of course, real colloidal systems may
not reach equilibrium on experimental time scales, particularly
if the effective potential exhibits significant repulsive barriers
[5]. Nevertheless, knowledge of the underlying phase behavior
is important for interpreting dynamical observations, such as
whether gelation or glassiness might set in Refs. [6,7].

The comparison between DFT results and simulation
addresses recent suggestions [8,9] that no existing theoretical
framework is reliable for calculating effective potentials for

a role in determining the effective big-big potential and the phase
behavior. See, e.g., Ref. [62] and references therein.

small values of q and physically relevant values of ηr
s . We

examine and refute these suggestions in the light of our present
results.

The effective potential between two big hard spheres takes
the form

φeff(rbb) = φbb(rbb) + W (rbb), (1)

where φbb is the bare hard-sphere potential between two big
spheres and W is the so-called depletion potential. This is
attractive for small separations rbb of the big spheres but
decays in an exponentially damped oscillatory fashion at large
separations. The physics of the attraction is well understood:
The exclusion or depletion of the small spheres as the big
ones come close together results in an increase in free volume
available to the small species leading to an increase of entropy.
If this attraction is sufficiently strong it can give rise to
fluid-fluid phase separation. Such a phase transition is driven
by purely entropic effects: Recall that all the bare interactions
in the mixture are those of hard spheres. Of course, the concept
of an attractive depletion potential between colloids dispersed
in a solution of nonadsorbing polymer or other depletants
has a long history. The recent book by Lekkerkerker and
Tuinier [10] describes this and the general importance of
depletion interactions in colloidal systems.

We have emphasized that the effective pair potential is a
key ingredient in an effective Hamiltonian description of the
mixture. However, this object is also important in its own right
since it can be measured experimentally for colloidal systems
using various techniques. More specifically, the effective
potential between a single colloid, immersed in a suspension
of small colloidal particles or nonadsorbing polymer, and a flat
substrate has been measured; see, for example, Ref. [11] and
the comparisons made between DFT results and experiment
[12]. Crocker et al. [13] measured the effective potential
between two big PMMA particles immersed in a sea of small
polystyrene spheres and observed damped oscillations at high
small-sphere packing fractions. Subsequently comparisons
were made with DFT results [14]. Reference [15] provides a
recent review of direct experimental measurements of effective
interactions in colloid-polymer systems.

A. Previous simulation studies

In general, the task of accurately measuring effective
potentials in highly size-asymmetrical fluid mixtures using
traditional simulation methods such as molecular dynamics
(MD) or Monte Carlo (MC) is an extremely challenging
one. The difficulty stems from the slow relaxation of the big
particles caused by the presence of the small ones. Specifically,
in order for a big particle to relax, it must move a distance of
order its own diameter σb. However, for small size ratios q,
and even at quite low values of ηr

s , very many small particles
are typically to be found surrounding a big particle, and these
hem it in, greatly hindering its movement. In computational
terms this mandates a very small MD time step in order
to control integration errors, while in MC simulations that
employ local particle displacments, a very small trial step size
must be used in order to maintain a reasonable acceptance
rate. Consequently, the computational investment required to
simulate highly size-asymmetric mixtures by traditional means
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is (generally speaking) prohibitive at all but the lowest packing
fractions of small particles.

Owing to these difficulties, most previous simulation
studies of hard-sphere mixtures [8,9,16–18] have adopted an
indirect route to measuring effective potentials in the highly
size-asymmetrical regime q � 0.1 based on measurements of
interparticle force. The strategy rests on the observation that
the force between two big particles can be expressed in terms
of the contact density of small particles at the surface of the
big ones [17,19]. By measuring this (angularly dependent)
contact density for fixed separation rbb of the big particles
and repeating for separations ranging from the minimum value
rbb = σb to rbb = ∞, one obtains the force profile F (rbb). This
can in turn be integrated to yield an estimate of the depletion
potential. Generally speaking, however, the statistical quality
of the data obtained via this route seems typically quite low,
particularly at small q and high ηr

s . This presumably reflects
the difficulties of measuring contact densities accurately and
the errors inherent in numerical integration.

Only a few studies have tried to measure the depletion
potential directly for q � 0.1 (see Refs. [20,21] for hard-
sphere studies and Refs. [22,23] for more general potentials).
In common with the present work, these studies deployed
a cluster algorithm (to be described in Sec. II A) to deal
efficiently with the problem of slow relaxation outlined above.
However, they treated the small particles canonically rather
than grand canonically, which complicates comparison with
theoretical predictions, which are typically formulated in terms
of an infinite reservoir of small particles.2 Furthermore it
seems that no previous simulation studies have discussed (in
any detail) finite-size effects in measurements of depletion
potentials, the role of which we believe to be particularly
significant at large size asymmetries. Consequently, while
previous work has evidenced good qualitative agreement
between simulation and theory, there is to date a lack of data
from which one can make confident comparisons between the
various theoretical approaches. This is remedied in the present
work.

B. Previous theoretical studies

There are many of these, and they are based on a variety of
techniques. Integral equation treatments abound, and some
of these are summarized in the recent article by Boţan
et al. [24]. The studies of Amokrane and co-workers that
implement sophisticated closure approximations within a
bridge functional approach probably constitute the state of the
art in integral equation treatments of asymmetric mixtures; see,
e.g., Refs. [25,26]. A related rational function approach was
used recently by Yuste et al. [27]. Tackling highly asymmetric
mixtures via integral equation methods, where one treats
both species on equal footing, is notoriously difficult, and
making systematic assessments of the reliability of closure
approximations is not straightforward and, of course, requires
accurate simulation data.

Density functional (DFT) treatments are arguably much
more powerful. There are several different ways of calculating

2However, see Ref. [18] for a grand canonical study at q = 0.2.

the effective (depletion) potential between two big hard
spheres in a reservoir of small hard spheres or more generally
of calculating the effective potential between two big particles
in a reservoir of small ones with arbitrary interactions between
bb, bs, and ss. The first method is to fix the centers of the big
(b) particles a distance rbb apart and then compute the grand
potential of the small (s) particles in the external field of the
two fixed b particles as a function of rbb for a given size ratio
q and a reservoir packing fraction of ηr

s . This method requires
only a DFT for a single-component fluid, the small particles.
The big particles are fixed so they simply exert an external
potential on the small ones. DFT for one-component hard
spheres is very well developed; very accurate functionals exist,
and these are suitable for treating the extreme inhomogeneities
that arise for small size ratios q. It follows that this brute force
method should be rather accurate. Its drawback is that the
density profile of the small particles has cylindrical symmetry
requiring numerically accurate minimization of the free energy
functional on a two-dimensional grid.

Goulding [30,31] performed pioneering brute force calcula-
tions using the Rosenfeld fundamental measure theory (FMT)
[30] for a system with q = 0.2 and packing fractions ηr

s up to
0.314. This method has been refined recently by Boţan et al.
[24] who employed various hard-sphere functionals for more
asymmetric systems and higher values of ηr

s . These authors
(see also Oettel et al. [31]) also used DFT to calculate the
depletion force directly using the formula due to Attard [17,19]
that relates the force to the density profile of small spheres
in contact with a big sphere. Once again the density profile
has cylindrical symmetry, and careful numerical methods are
required.

A popular DFT method for hard-sphere systems is based
on what has become known as the insertion trick or insertion
method [14,18]. This is a general procedure (see Sec. III A) for
calculating the depletion potential between a big particle and
a fixed object, e.g., a wall or another big particle, immersed in
a sea of small particles. The advantage of the method is that
one requires only the equilibrium density profile of the small
species in the external field of the isolated fixed object, and this
profile clearly has the symmetry of the single fixed object. For
the case of two big spheres the profile ρs(r) has spherical
symmetry. The disadvantage is that the theory requires a
DFT for an asymmetric mixture, albeit in the limit where the
density ρb of the big particles approaches zero: ρb → 0. For
hard-sphere mixtures the insertion method is straightforward
to implement, and Ref. [14] provides a series of comparisons,
using the Rosenfeld FMT [30], with the simulation data that
existed in 2000.

Further comparisons between results of the DFT insertion
method and simulation studies were made in Refs. [8,9,24,
31]. In the present paper we seek to make more quantitative
comparisons, taking into consideration the improved accuracy
of our new simulation results and the availability of improved
DFTs for hard-sphere fluids.

There is a further theoretical approach to calculating
depletion potentials developed very recently in Ref. [31] and
employed subsequently in Ref. [24]. This approach is based
on morphological (or morphometric) thermodynamics [32].
The basic idea is that the depletion potential is (essentially)
the solvation free energy of the dumbbell formed by the
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two big spheres and that this quantity can be separated into
geometrical measures, namely, the volume, surface area, and
integrated mean and Gaussian curvatures. The coefficients
of these measures are geometry-independent thermodynamic
quantities, i.e., the pressure, the planar surface tension, and
two bending rigidities, all of which can be obtained from
simulations or from DFT calculations of the single-component
fluid performed for a simple geometry.

The paper is arranged as follows: Sec. II describes the
grand canonical simulation methods that we have employed for
determining the depletion potential between two big spheres
for size ratios q from 0.1 to 0.01. In Sec. III we summarize
briefly the DFT insertion method and the three hard-sphere
functionals that we employ in our present calculations. We
also discuss some of the limitations of the parametrization
of the depletion potential introduced in Ref. [14]. Some
details of the morphometric approaches are also given here.
Results are presented in Sec. IV. As a test of our simulation
method we determine the depletion potential for two big hard
spheres in a solvent of noninteracting point particles that have
a hard interaction with the big spheres. For this case the
depletion potential is known analytically; it is the venerable
Asakura-Oosawa potential [33,34] of colloid science. For
the additive binary hard-sphere case we make comparisons
between results of simulation, DFT insertion method, the
morphometric approach, and the Derjaguin approximation
[35] for the depletion potential. We also compare simulation,
DFT, and morphometric results for the associated second virial
coefficient B2(ηr

s ). The latter provides a valuable indicator of
the propensity of the bulk binary mixture to phase separate
into two fluid phases [36,37]. We conclude in Sec. V with a
discussion.

II. SIMULATION METHODS

A. Geometrical cluster algorithm

An efficient cluster algorithm capable of dealing with
hard spheres mixtures was introduced by Dress and Krauth
in 1995 [38]. It was subsequently generalized to arbitrary
interaction potentials by Liu and Luijten [22,39], who dubbed
their method the Geometrical Cluster Algorithm (GCA). Here
we describe the application of the GCA to a size asymmetrical
binary mixture of hard spheres.

The particles comprising the system are assumed to be
contained in a periodically replicated cubic simulation box
of volume V . The configuration space of these particles is
explored via cluster updates, in which a subset of the particles
known as the “cluster” is displaced via a point reflection
operation in a randomly chosen pivot point. The cluster
generally comprises both big and small particles, and by
virtue of the symmetry of the point reflection, members of the
cluster retain their relative positions under the cluster move.
Importantly, cluster moves are rejection-free even for arbitrary
interparticle interactions [22]. This is because the manner in
which a cluster is built ensures that the new configuration is
automatically Boltzmann distributed.

For hard spheres, the cluster is constructed as follows: One
of the particles is chosen at random to be the seed particle of
the cluster. This particle is point-reflected with respect to the

pivot from its original position to a new position. However,
in its new position, the seed particle may overlap with other
particles. The identities of all such overlapping particles are
recorded in a list or “stack.” One then takes the topmost particle
off the stack and reflects its position with respect to the pivot.
Any particles that overlap with this particle at its destination
site are then added to the bottom of the stack. This process is
repeated iteratively until the stack is empty and there are no
more overlaps.

In this work we shall be concerned with measurements of
the radial distribution function gbb(r) for a system containing
a pair of big particles among many small ones. To effect
this measurement we modify the GCA slightly as follows:
We choose one big particle to be the seed particle, which
we place uniformly at random within a shell σbb < r < L/2,
centered on the second big particle, with L the linear box
dimension. The location of the pivot is then inferred from the
old and new positions of the seed particle. Thereafter clusters
are built in the standard way. This strategy satisfies detailed
balance and improves efficiency by ensuring that we generate
only separations of the big particles that lie in the range
r = [σbb,L/2] for which gbb(r) is defined for hard spheres in
a cubic box. The correctness of this technique was checked by
comparing with the standard GCA approach described above.

Small particles are treated grand canonically in our sim-
ulations. In practical terms this means that in parallel with
the cluster moves, we implement insertions and deletions of
small particles, subject to a Metropolis acceptance criterion
governed by an imposed chemical potential. The choice of
chemical potential controls the reservoir packing fraction of
small particles.

For the systems of interest in this work, we find that the
GCA is efficient for reservoir packing fractions ηr

s � 0.2.
Above this value one finds that practically all the particles join
the cluster, which merely results in a trivial point reflection of
the entire system. For single-component fluids this problem
can be ameliorated by biasing the choice of pivot position to
be close to the position of the seed particle [22]. Doing so
has been reported to extend the operating limit to ηr

s � 0.34.
However, for the case of highly asymmetrical mixtures we find
that this strategy does not significantly decrease the number of
particles in the cluster because as soon as a second big particle
joins the cluster and is point reflected it causes many overlaps
with small particles.

B. Staged insertion algorithm

Our second MC approach for obtaining effective potentials
for size asymmetrical mixtures is based on the staged insertion
of a big particle [40–43]. The method involves first fixing one
big particle at the origin and then sampling the free-energy
change associated with inserting a second big particle at
a prescribed distance rbb from the origin. Essentially this
amounts to an estimation of the chemical potential of the
second particle μex(rbb). As such our approach is close in spirit
to one proposed very recently by Mladek and Frenkel [44],
although their implementation did not employ staged insertion
and was therefore restricted to low-density systems or those
interacting via very soft potentials.
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The effective potential for big particle separation rbb is
simply

W (rbb) = μex(rbb) + C, (2)

where the additive constant

C = − lim
rbb→∞ μex(rbb) (3)

can be determined as the excess chemical potential of a single
big particle in the reservoir of small particles. To estimate
μex(rbb) we follow the strategy described in Ref. [42]. In
outline, one imagines that the second big particle can exist
in one of M possible “ghost” states in which it interacts with
a small hard particle (a distance rbs away) via the potential

βφ(m)
g (rbs) = −[1 − �(rbs − σb)] ln λ(m) .

Here m = 1, . . . ,M (an integer) indexes the ghost states, while
the associated coupling parameter 0 � λ(m) � 1 controls the
strength of the repulsion between the big particle and the
small one. Owing to the step function �, the potential is
uniformly repulsive over the volume of the big particle, and
zero elsewhere. Moreover, for λ(m) > 0 the repulsion is finite
so that overlaps between small particles and the big one can
occur. If we denote by No the number of such overlaps at any
given time, then the configurational energy associated with the
ghost big particle is

β	(m)
g = −No ln λ(m). (4)

Clearly for λ(m) = 0, the big particle acts like a normal
hard sphere, while for λ(m) = 1 there is no interaction and
the big particle is effectively absent from the system. To span
this range we set the extremal states λ(1) = 0 and λ(M) = 1
and define some number of intermediate states that facilitate
efficient MC sampling over the range m = 1, . . . ,M , i.e., that
permits the ghost particle to fluctuate between being a real hard
sphere and being absent. The measured value of the relative
probability of finding the system in these extremal states yields
the excess chemical potential:

μex(rbb) = ln

[
p(λ(M))

p(λ(1))

]
. (5)

Now since W (rbb) is spherically symmetric, it can be
estimated from Eqs. (5) and (2), by measuring μex(rbb) for
values of rbb � σb along a one-dimensional grid. Moreover
since each such measurement is independent of the others, the
approach is trivially parallel and thus can be effectively farmed
out on multicore processors.

Details of a suitable Metropolis scheme for sampling
the full range of m = 1, . . . ,M have been described in
detail previously [42,43]. The basic idea is to perform grand
canonical simulation of the small particles, supplemented by
MC updates that allow transitions m → m ± 1 for the ghost big
particle. These transitions are accepted or rejected on the basis
of the change in the configurational energy Eq. (4). However,
for this strategy to realize the aim of sampling the relative
probability of the extremal states, it is necessary to bias the
transitions such as to ensure approximately uniform sampling
of the M ghost states. This is achieved by determining a
suitable set of weights that appear in the MC acceptance
probability [45].

Additionally it is important to choose sufficient interme-
diate states and to place them at appropriate values of λ

such that transitions m → m ± 1 are approximately equally
likely in both directions and have a reasonably high rate of
acceptance. To achieve this we perform a preliminary run in
which we consider a single big ghost particle in the reservoir
of small ones. We first define M = 1000 values of λ in the
range (0,1), evenly spaced in ln λ and (in short runs) measure
the distribution of overlaps p(No|λ) for each. From this set we
then pick out those values of λ for which successive p(No|λ)
exhibit an overlap by area of approximately 20%. This criterion
yields a suitable set of intermediate states.

Efficiency benefits result from noting that the rate of
transitions in m depends on how quickly the number of over-
laps No relaxes after each successive transition. To enhance
this relaxation we preferentially perform grand canonical
insertions and deletions of small particles within a spherical
subvolume of diameter 1.2σb centered on the second big
particle. Updates within the subvolume occur with a frequency
100-fold that outside the subvolume. Our approach—which
satisfies detailed balance—greatly reduces the time spent
updating small particles whose coordinates are relatively
unimportant for the quantity we wish to estimate.

The validity of the staged insertion technique was pre-
viously verified via comparisons with GCA in the context
of grand canonical ensemble studies of phase behavior in
highly size-asymmetrical binary mixtures of Lennard-Jones
particles [43]. In the present context of hard-sphere depletion
potentials, we have explicitly verified for q = 0.1,ηr

s = 0.2
that the staged insertion technique yields results that agree to
within statistical errors with those determined using the GCA
technique.

A further innovation, applicable to highly size-
asymmetrical hard sphere mixtures, stems from the observa-
tion that it is not actually necessary to insert a big hard sphere in
order to calculate the effective potential. Instead it is sufficient
and (generally much more efficient) to insert a hard shell of in-
finitesimal thickness. The basic idea is that when fully inserted
a hard shell particle encloses a number of small particles. These
remain in equilibrium with the reservoir (i.e., their number
can still fluctuate) but are fully screened from the rest of the
system because their surfaces cannot penetrate the shell wall.
Accordingly their contribution to the free energy is indepen-
dent of the position of the shell particle, and hence their net
effect is merely to shift the value of the additive constant in the
measurement of μex(rbb). Since the latter is anyway set by hand
to ensure that limrbb→∞ W (rbb) = 0, one does not need to know
the contribution to the free energy from the enclosed particles.

From a computational standpoint, the task of inserting a
hard shell is much less challenging than that of inserting a
hard sphere: Essentially the chemical potential grows with
the particle size ratio like (1/q)2 rather than (1/q)3. Conse-
quently, far fewer intermediate stages M are required to effect
the insertion, which reduces substantially the computational
expenditure in measuring μex(r) accurately. We have explicitly
verified that the shell insertion approach yields results for the
effective potential that agree to within statistical error with
those resulting from sphere insertion.

While the staged insertion technique is not as straight-
forward to implement as the GCA for highly asymmetrical
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mixtures, it does not suffer the very rapid decrease in
efficiency that renders the GCA inoperative for ηr

s � 0.2.
The computational expenditure required to obtain effective
potentials via staged insertion does increase with ηr

s , but more
gradually than for the GCA. Thus we were able to attain (for
q = 0.1), the considerably larger reservoir packing fraction of
ηr

s = 0.35. This was achieved for a computational expenditure
of circa 2 weeks on a 150-core computing cluster, the bulk of
which is associated with decorrelating the configurations of
the small particles at this volume fraction. At the somewhat
lower volume fraction of ηs = 0.32, only 2 days were required
on the same machine. These figures sugest that while it may
be feasible to go to somewhat higher volume fractions than
ηs = 0.35, the computational cost would be high.

C. Correcting for finite-size effects

The effective potential W (r) between two big particles is
defined in terms of the radial distribution function g(r) ≡
gbb(r), with r = rbb, measured in the limit of infinite dilution

−βW (r) = lim
ρb→0

ln[g(r)] , (6)

for r > σb. In our simulation studies this limit is approximated
by placing a single pair of big hard spheres in the simulation
box. A finite-size estimate to g(r), which we shall denote gL(r),
is then obtained by fixing the first of these particles at the origin
and measuring (in the form of a histogram) the probability of
finding the second big particle in a shell of radius r → r + dr ,
i.e.,

gL(r) = P (r)

Pig(r)
, (7)

where the normalization relates to the probability of finding
an ideal gas particle at this radius:

Pig(r) = 4πr2

V
. (8)

Now, the principal source of finite-size error in gL(r)
arises from the normalization of Pig by the system volume.
Specifically, for a finite-sized system, the volume occupied
by the hard sphere at the origin is inaccessible to the second
particle. Accordingly, the accessible system volume is

Ṽ = V − v1, (9)

where v1 = (1/6)πσ 3
b is the hard-sphere volume. More gen-

erally, one should define an effective excluded volume ṽ1 for
use in Eq. (9), which allows for the fact that the small particles
can mediate additional repulsions and/or attraction between
the two big particles. In principle ṽ1 is given by

ṽ1 = 4π

∫ ∞

0
[1 − g(r)]r2 dr. (10)

It follows from Eqs. (7)–(10) that the principal finite-size
contribution to gL(r) is just an overall scale factor:

g(r) = Ṽ

V
gL(r) . (11)

Accordingly gL(r) approaches V/Ṽ at large r instead of
unity, while the calculated effective potential, W (r) decays
to ln(Ṽ /V ) instead of zero.
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b
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(R
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g
L
(r)

G(R)

Gradient 0.4100(5)

FIG. 1. (Color online) The measured form of gL(r) for q = 0.05,
ηr

s = 0.2 obtained for a system size L = 2.5σb. Also shown is the
cumulative integral G(R) = ∫ R

0 gL(r) dr , together with an asymptotic
linear fit, the gradient of which yields the finite-size correction factor
for g(r).

One can conceive of a number of possible approaches for
dealing with this finite-size error. One is simply to minimize
it by choosing a very large system volume V so that V/Ṽ

is close to unity. The disadvantage of this approach is that
in a size-asymmetrical mixture, in which the big particles
are in equilibrium with a reservoir of small ones, a huge
number of small particles will necessarily fill the extra space
available in a bigger box. All the interactions arising from
these small particles then need to be computed, which can
become prohibitively expensive.

Another route, which we have adopted in the present work,
is to attempt to correct gL(r) by estimating the overall scale
factor in Eq. (11), thus ensuring that g(r) → 1 at large r . An
expedient approach to doing so, which utilizes as much as
possible of the information in gL(r), proceeds by determining
the cumulative integral of gL(r):

G(R) =
∫ R

0
gL(r) dr. (12)

In practice, this integral was observed to tend toward a
smooth linear form quite rapidly as the upper limit R increases,
a fact illustrated for typical data in Fig. 1. A little thought then
shows that if when left uncorrected g(r) tends to V/Ṽ at large
r , the limiting gradient m of G(R) is m = V/Ṽ , which thus
provides the requisite correction factor for use in Eq. (11).
Thus one corrects the measured histogram gL(r) by first fitting
G(R) to obtain an estimate of the limiting gradient of the linear
part, and then scaling gL(r) according to g(r) = m−1gL(r).

III. THEORETICAL METHODS

As mentioned in the Introduction we choose to make
comparisons between our simulation results and those from
the DFT insertion method and from the morphometric and
Derjaguin approximations.
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A. DFT

The DFT insertion method is described in detail in Roth
et al. [14]. It is based on an exact result from the potential
distribution theorem, for an arbitrary mixture, that expresses
the effective potential between two big particles in terms of
the one-body direct correlation function of the big species
in the limit where the density ρb of that species vanishes.
For DFT treatments of hard-sphere mixtures that employ the
fundamental measures theory (FMT) approach [30] the calcu-
lation of the effective potential requires the computation of the
density profile ρs(r) of the small spheres in the neighbourhood
of a single fixed big sphere as well as knowledge of the
weight functions and the excess free energy density of the
(binary) mixture [14]. The FMT must be sufficiently accurate
to describe a very asymmetric binary mixture, i.e., one with
small values of q, in the limit ρb → 0. In the original DFT
studies [14,18] the Rosenfeld (RF) FMT [30] was employed.
In the present work we employ RF, the White Bear (WB)
version [46], and its modification the White Bear Mark 2
(WB2) version [47]. These versions differ from RF in the
choice of the coefficients φα entering the excess free-energy
function. RF yields thermodynamic quantities that are the same
as those from Percus-Yevick (compressibility) approximation,
whereas WB incorporates the accurate Mansoori-Carnahan-
Starling-Leland (MCSL) empirical bulk equation of state. In
WB2 additional self-consistency requirements are imposed
on the pressure. The consistency of the WB2 version was
demonstrated in calculations of the surface tension and other
interfacial thermodynamic coefficients for a one-component
hard-sphere fluid adsorbed at a hard spherical surface [47].
Reference [48] provides an overview of recent develop-
ments and describes comparisons between different versions
of FMT.

Boţan et al. [24] carried out DFT insertion method calcula-
tions as well as explicit (brute force) free-energy minimization
for two fixed big spheres using different versions of FMT.
These authors provide a compendium of the ingredients
entering the FMT functionals as well as the thermodynamic
coefficients required in the morphometric approximation, and
we refer readers to Appendix B of Ref. [24] for the explicit
formulas used in the present calculations. Their paper is
important in pointing to the regimes where the DFT insertion
method is likely to fail. In particular, for ηr

s = 0.419 and
q = 0.1 and 0.2 there are substantial differences between the
results for the depletion potential calculated by brute force
and from the insertion method. At higher reservoir packing
fractions the differences can be even larger. Moreover different
FMTs can give rise to quite different potentials at high small
sphere packings. The comparisons made by Oettel et al. [31]
for the depletion force using the RF functional suggest that
for q = 0.05 the insertion method is not especially accurate at
ηr

s = 0.314 and 0.367. Of course, one is assuming that the brute
force minimization is the more accurate method as this requires
only a reliable functional for a single-component hard-sphere
fluid, not one for the asymmetric mixture.

However, our present study focuses on smaller values of
ηr

s than those considered in Ref. [24]. Previous studies [14,
18] showed generally good agreement between DFT insertion
results and those of simulation for q = 0.1 and 0.2 and ηr

s

typically up to 0.3. Since we are concerned primarily with

investigating the depletion potential for highly asymmetrical
mixtures in regimes, accessible to simulation, near the onset
of fluid-fluid phase separation, we do not concern ourselves
with very high values of ηr

s where the DFT insertion method
is likely to be inaccurate.

Another way of viewing this DFT insertion method is
that it is equivalent [14,18] to calculating the big-big radial
distribution function gbb(r) for a binary mixture using the
test particle route; i.e., one fixes a big sphere at the origin and
computes the inhomogeneous density profile of the big spheres
ρb(r) by minimizing the mixture free-energy functional for
this spherical geometry. Then gbb(r; ρb) = ρb(r)/ρb and the
depletion potential is given by

−βW (r) = lim
ρb→0

ln gbb(r; ρb), for r > σb. (13)

In Refs. [14,18], for all cases considered, it was demon-
strated that a bulk packing fraction ηb = 10−4 of the big
spheres was sufficiently small to ensure that the depletion
potential calculated from gbb(r) had converged to the limiting
form. In a very recent paper Feng and Chapman [49] used the
mixture WB theory to calculate gbb(r) via the test particle
route. For size ratios q = 0.1 they report good agreement
with existing simulation results [50] for concentrations of
the big hard spheres as small as 0.002 and total packing
fractions as large as 0.4. However, the packing fraction ηb

is still too high to be appropriate for determining the depletion
potential.

Roth et al. [14] also introduced a parameterized form for the
depletion potential obtained from their DFT insertion method
calculations. Their motivation was to provide an explicit form
W = 1/2(1/q + 1) W̃ (x,ηr

s ), with x = h/σs and h = r − σb

the separation between the surfaces of the big spheres, that
would be valid for a range of size ratios q and reservoir
packing fractions ηr

s and therefore efficacious in studies of the
phase behavior and correlation functions of binary hard sphere
mixtures. The authors were influenced by the comprehensive
simulation studies of Dijkstra et al. [4], which had employed
a very simplified (third-order virial expansion) formula for the
depletion potential derived in Ref. [35]. Roth et al. aimed to
provide a formula, convenient for simulations of an effective
one-component fluid, that captured both the short-range
depletion attraction and the long-range oscillatory behavior
of W (r). Such a formula is, of course, also useful in making
comparisons between theory and experimental measurements
of the depletion potential. Their formula for W̃ consists of a
third-order polynomial at small x and an exponentially damped
oscillatory function at large x accounting for the correct
asymptotic decay [14]. Comparisons made for ηr

s between 0.1
and 0.3 and different values of q showed that the parametrized
form gave a good fit to the results of the numerical calculations.
Largo and Wilding [37] employed this parametrized form in
simulation studies of the (metastable) fluid-fluid critical point
of the effective one-component fluid, comparing their results
with those from the much simpler parametrized form used in
Ref. [4].

In the present study we noticed that the parametrization in
Ref. [14] did not recover the correct Asakura-Oosawa limiting
behavior as ηr

s → 0, and this restricts its regime of application.
Since we are concerned with making direct quantitative
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comparisons between DFT and the present simulation we
performed a set of new numerical DFT insertion calculations,
avoiding parametrization.

B. Derjaguin and morphometric approximations

A much used theoretical tool of colloid science is the
Derjaguin approximation [51] that relates the force between
two large convex bodies immersed in a fluid consisting of much
smaller particles or molecules to the integral of the excess
pressure of the same fluid contained between two parallel
walls. In recent years there has been considerable discussion
about the regime of validity of the Derjaguin approximation
for our present case of a fluid of small hard spheres confined
between two fixed big hard spheres or between a planar hard
wall and a single big hard sphere. The reader is referred to
Refs. [9,14,35,52,53]. Herring and Henderson [8,9] performed
simulations for the wall-sphere case for q = 0.05 and ηr

s =
0.3 and 0.4, comparing their results for the depletion force
with those from the Derjaguin approximation and from the
DFT insertion method [14]. In the present work we perform
equivalent comparisons, for the sphere-sphere case, using what
we believe is much more accurate simulation data for the
depletion potential.

As shown in Ref. [35] the depletion potential difference for
hard spheres obtained from the Derjaguin approximation can
be expressed succinctly as

WDer(h) − WDer(σs) = −επ

2
(σs + σb)(σs − h)

×
[

1

2
p
(
ηr

s

)
(σs − h) + 2γ

(
ηr

s

)]
;

0 < h < σs, (14)

where h is the separation between the surfaces, p(ηr
s ) is

the pressure of the small sphere reservoir, and γ (ηr
s ) is the

surface tension between a single planar hard wall and the small
sphere fluid. Within the Derjaguin approximation the potential
between a wall and a single big sphere is precisely twice that
between two big spheres: ε is 1 for sphere-sphere and 2 for
wall-sphere. Expressions for the pressure and surface tension
are listed in Appendix A of Ref. [24]. Another expression for
the surface tension due to D. Henderson and Plischke [54] as
obtained by fitting simulation data was used in Ref. [9]. For
h > σs the depletion potential depends on the excess grand
potential of the small sphere fluid confined in the planar
hard wall slit, which must be obtained from simulation or
DFT [24].

Morphometric thermodynamics [32] was developed to
calculate the solvation free energy (excess grand potential) of
large convex bodies immersed in a solvent. Its application to
determining depletion potentials is described in Refs. [24,31],
where it is shown that

WMorp(h) = −p�V (h) − γ�A(h) − κ�C(h) − 4πκ̄, (15)

for 0 < h < σs . Here �V (h) and �A(h) are the volume
and surface area of the overlap of exclusion (depletion)
zones around the big spheres (or a wall and a big sphere)
and �C(h) is the integrated mean curvature of the overlap
volume. The thermodynamic coefficients are the pressure p,

surface tension γ , and the two bending rigidities κ and κ̄;
these four quantities are functions of ηr

s .The fourth term is
the difference in integrated Gaussian curvatures between a
dumbbell (4π ) and two disconnected spheres (8π ). For h > σs

the dumbbell separates into two disconnected spheres. Thus
WMorp(h > σs) = 0. Explicit formulas are given in Ref. [24]
for the geometrical quantities and for the four thermodynamic
coefficients. Note that WMorp(σ−

s ) = −4πκ̄(ηr
s ), independent

of size ratio. This term is small in comparison with the
others.

In order to connect with the Derjaguin approxima-
tion we invoke the colloidal limit, i.e., q → 0. Then the
difference

WMorp(h) − WMorp(σs)

= −επ

2
(σs + σb)(σs − h)

[
1

2
p
(
ηr

s

)
(σs − h) + 2γ

(
ηr

s

)]

−κ
(
ηr

s

)
π2

√
ε(σs − h)(σs + σb)/2, (16)

for 0 < h < σs . Since κ is positive the morphometric approach
contributes an additional attractive term, augmenting the at-
traction from the pressure [�V (h)] term. Here γ is negative so
the surface tension [�A(h)] term gives a repulsive contribution
to the depletion potential. The physical interpretation of the
third term in Eq. (15) or (16) is of a line contribution to
the effective interaction associated with the circumference
of the edge of the annular wedge formed between the two
exclusion spheres where the line tension is −κπ/2 [31]. As
this term is proportional to

√
ε (not to ε) Derjaguin scaling is

violated [24].
The morphometric analysis must break down in the limit

h → σs where Eq. (15) or (16) predicts that the depletion
force is singular, diverging as (σs − h)−1/2. The reasons for
this unphysical limiting behavior are associated with problems
of self-overlapping surfaces as explained in Refs. [24,31].
However, away from this limit one might expect the elegant
geometrical arguments underlying the morphometric analysis
to capture the essential physics. Indeed the comparisons with
brute force DFT results for the depletion force in Ref. [31]
indicated rather good agreement for a range of q and ηr

s =
0.314.

In Sec. IV we compare the results of Eqs. (14) and (15) with
our simulation data and with results from the DFT insertion
method.

IV. RESULTS

A. Test case

We have tested the ability of the GCA to accurately
determine effective potentials by applying it to the case of the
Asakura-Oosawa (AO) model [33,34]. This model describes
colloidal hard-spheres in a solvent of noninteracting point
particles modeling ideal polymer that have a hard-particle
interaction with the colloids. Although not the case of additive
hard-spheres which is our primary focus in this paper, the
extremely nonadditive AO model does provide a very useful
test bed for our simulation methodology because the exact
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form of the depletion potential is known, taking the form [34]

βWAO(r) =
{

−ηr
s

(1+q)3

q3

[
1 − 3r

2σb(1+q) + r3

2σ 3
b (1+q)3

]
, σb < r < σb + σs

0, r � σb + σs,
(17)

where σs is the “polymer” diameter; i.e., the colloid-polymer
pair potential is infinite for r < (σb + σs)/2.

Simulation measurements of g(r) ≡ gbb(r) were performed
for the AO model using the GCA for a system comprising a
pair of hard spheres in a cubic box of linear dimension L = 3σ

in equilibrium with a reservoir of small particles having
size ratio q = 0.1. Since the small particles are mutually
noninteracting, the chemical potential of the reservoir is just
that of an ideal gas. The depletion potential was calculated
as βW (r) = − ln[g(r)], and the results were corrected for
finite-size effects according to the procedure described in
Sec. II C. In Fig. 2 we compare the results of simulations
of the effective potential with the exact result. Data are shown
for various values of the reservoir packing fraction. In each
instance, the simulation results (symbols) are indistinguishable
from the analytical form (lines) within the very small statistical
errors, a finding that supports the validity and accuracy of
the simulations and the procedure for correcting finite-size
effects.

B. Effective potentials for additive hard spheres

We turn now to our measurements of the effective potential
for highly size-asymmetrical additive hard spheres and the
comparison with DFT calculations. Similarly to the case of
the AO model, our simulations treat the small particles grand
canonically, i.e., their number fluctuates under the control of a
chemical potential μr

s . The value of μr
s is chosen to yield some
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FIG. 2. (Color online) A comparison of GCA simulation mea-
surements of the depletion potential of the AO model with the exact
analytical form. The size ratio is q = 0.1, and data are shown for
four values of the reservoir packing fraction. Symbols are results
from GCA measurements of g(r) for a pair of big particles, corrected
for finite-size effects and transformed via βW (r) = − ln[g(r)].
Statistical errors are smaller than the symbol size. Lines are the exact
AO effective potential, Eq. (17).

nominated value of the packing fraction of small particles ηr
s

in the notional reservoir. Thus the simulations require prior
knowledge of μr

s (ηr
s ). In principle, one could employ the

Carnahan-Starling (CS) approximation [55] to estimate the
requisite chemical potential. However, in tests we found this
approximation to be insufficiently accurate for our purposes.
For instance, taking ηr

s = 0.32 as an example, if we employ
the CS value for the chemical potential, we actually measure
η̄r

s = 0.3195, which, while close to the target, lies outside the
range of fluctuations in ηr

s that occur in a large simulation
box. In order to determine μr

s more accurately we therefore
performed a series of accurate grand canonical simulations for
the pure fluid of small hard spheres in a large box of L = 50σs .
We then employed histogram reweighting to extrapolate to the
precise values of the chemical potential that corresponds to the
various values of ηr

s that we wished to study. These resulting
estimates are listed in Table I.

Measurements of the radial distribution function g(r) were
made for a pair of big hard spheres in equilibrium with a
reservoir of small hard spheres, for the combinations of values
of ηr

s and size ratio q shown in Table II. The system size
was L = 3σb for q = 0.1, while for q = 0.05, 0.02, 0.01,
where the range of the depletion potential is shorter, L = 2.5σb

was used. In all cases the depletion potential was obtained
as βW (r) = − ln[g(r)] with corrections for finite-size effects
applied as described in Sec. II C.

1. Comparison of simulation and density functional theory results

We now examine a selection of the measured effective
potentials. Data for q = 0.1,ηr

s = 0.2 are shown in Fig. 3.
Despite our use of a rather small histogram bin size of just
δr = 0.001 to accumulate estimates of βW (r), the statistical
fluctuation is sufficiently small that one can simply connect
the data points by lines. This allows us to better discern

TABLE I. Measured values of the reduced chemical po-
tential βμr

s corresponding to each of the packing fractions ηr
s

listed. The data were obtained by histogram reweighting the
results of grand canonical simulations of hard spheres obtained
at the nearby value of βμr

s predicted by the CS approximation.
The simulation cell size was L = 50σs . The definition of μr

s is
subject to the convention of choosing the thermal wavelength
to equal the hard-sphere diameter.

ηr
s βμr

s

0.05 −1.9079(1)
0.10 −0.6770(3)
0.15 0.3923(2)
0.20 1.5105(1)
0.32 5.0472(1)
0.35 6.2659(2)
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TABLE II. Combinations of particle size ratio q and reservoir
volume fraction ηr

s for which we compare simulation estimates of
depletion potentials with DFT predictions. Values shown in normal
typeface were studied by simulation using the GCA described in
Sec. II A, while those in boldface were studied using staged insertion
MC as described in Sec. II B.

q ηr
s

0.10 0.05 0.1 0.15 0.20 0.32 0.35
0.05 0.05 0.1 0.15 0.20 − −
0.02 0.05 0.1 0.15 − − −
0.01 0.05 − − − − −

differences between the simulation results and those of the
DFT calculations using the insertion method, which are also
included on the plot. Data for three versions of DFT are
shown, namely, the Rosenfeld (RF), White Bear (WB), and
White Bear 2 (WB2) functionals. Clearly for these parameters
the overall agreement is very good. To quantify the extent
of the accord, the two insets to Fig. 3 show a comparison in
the range of separations close to hard-sphere contact (left inset)
and around the first maximum (right inset). These show that
near contact, WB2, fares slightly better than WB, which is in
turn better than RF. Near the first maximum in the potential
however, the trend is reversed, and RF has the greatest accord
with the simulation data, while WB is better than WB2.

A similar picture emerges for q = 0.05,ηr
s = 0.2 as shown

in Fig. 4. Although here the simulation data are not as smooth
as for q = 0.1, the form and magnitude of the deviations from
the DFT are similar. We comment later on the results of the
morphometric approximation, Eq. (15).

Generally speaking, the smaller the size ratio, q, the lower
the maximum packing fraction ηr

s for which we can obtain
good statistics with the GCA. Data for q = 0.02, with ηr

s = 0.1
and ηs = 0.15, are shown in Figs. 5(a) and 5(b), respectively.
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FIG. 3. (Color online) Simulation and DFT results for the hard-
sphere depletion potential βW (r) for q = 0.1, ηr

s = 0.2. The abscissa
is the separation of hard-sphere centers expressed in units of the
big particle diameter σb. The two insets expand the region close
to hard-sphere contact (left panel) and around the first maximum
(right panel).
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FIG. 4. (Color online) As for Fig. 3 but with q = 0.05, ηr
s = 0.2.

Also shown are the results of the morphometric approximation
Eq. (15).

For this size ratio and these (low) small-sphere packings the
various versions of FMT perform very well. Data for q = 0.01
with ηr

s = 0.05 are shown in Fig. 6. In this extreme case the
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FIG. 5. (Color online) As for Fig. 3 but with (a) q = 0.02,

ηr
s = 0.1 and (b) q = 0.02, ηr

s = 0.15.
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FIG. 6. (Color online) As for Fig. 3 but with q = 0.01, ηr
s = 0.05.

insertion DFT results are almost indistinguishable from each
other and from the results of simulation. However, one should
note that there is still a maximum in W (r); one is not yet in the
AO limit, although the contact value is close to the AO value
given by Eq. (17).

For our system, the GCA is operable for ηr
s � 0.2. To

go beyond this limit we have employed the staged insertion
algorithm outlined in Sec. II B. Simulation results for q =
0.1, ηr

s = 0.35 are compared with those from DFT calculations
in Fig. 7. While the simulation data are somewhat noisier, they
show that in this regime, quite significant discrepancies with
the DFT insertion method have emerged. The principal form
of the discrepancy, i.e., DFT underestimates the height of the
first maximum, is similar in form but greater in magnitude than
that seen using the GCA at smaller values of ηr

s (see Fig. 3).
Once again RF fares better than the two WB functionals but
underestimates the first maximum by about 0.5kBT . Results
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FIG. 7. (Color online) The depletion potential for q = 0.1, ηr
s =

0.35 obtained using the staged insertion simulation method and DFT.
The simulation data points represent the results of 150 independent
measurements of βW (r) made at various fixed values of the big
particle separation, though concentrated in the range r < 1.12σb. Also
shown are the results of the morphometric approximation Eq. (15).

from the three functionals agree quite well with one another
and with simulation near contact.

2. Comparison with Derjaguin and morphometric approximations

In this subsection we make comparisons between our
simulation and DFT results with those from the approxi-
mations described in Sec. III B. Recall that the Derjaguin
approximation is specifically designed to tackle small size
ratios. In Fig. 4 we compare the results of the morphometric
approximation Eq. (15) with those from simulation and DFT.
Two sets of thermodynamic coefficient were used: RF and
WB2 [24]. Both versions underestimate the maximum of the
depletion potential and overestimate the magnitude of the
potential at contact for q = 0.05 and ηr

s = 0.2. By contrast
for q = 0.1 and ηr

s = 0.35, Fig. 7 shows that both versions of
the morphometric approximation overestimate the maximum
and underestimate the magnitude of the potential at contact.
Figure 7 also shows a pronounced minimum for h close to
σs . This feature is absent in both simulation and DFT. It is
associated with the unphysical divergence of the line tension
contribution to the depletion force arising in the morphometric
treatment. Recall that WMorph is zero for separations h > σs .

Figure 8(a) compares the depletion potential difference
obtained from simulation and insertion method DFT for
q = 0.1 and ηr

s = 0.35 with results from the Derjaguin
approximation (where plotting the difference is the natural
choice [35]) and morphometric approximations, Eqs. (14) and
(15), respectively. For this value of q the packing fraction of
the small spheres is sufficiently large to enter the regime where
fluid-fluid phase separation might occur, as discussed below
in Sec. IV B 3. Thus it is interesting to observe how well these
explicit approximations perform. Similar remarks apply for
q = 0.05 and ηr

s = 0.2, for which comparisons are presented
in Fig. 8(b).

One sees in Fig. 8(a) that the Derjaguin approximation
is very poor. Overall the morphometric approximations fare
considerably better than Derjaguin with RF better than WB2
near the maximum. However, both morphometric versions
overestimate the magnitude of the contact value by about
0.5kBT . Note once again the minimum close to h/σs = 1
for this packing fraction. The situation is clearly different in
Fig. 8(b), where the Derjaguin and morphometric approxima-
tions are reasonably good; they bracket the simulation and
DFT results. The two morphometric versions yield results that
are very close, and even in this difference plot one sees that
these fall below the simulation results both at maximum and
at contact. At this smaller value of ηr

s there is no minimum
visible in the depletion potential. Although plotting the
difference appears to improve the level of agreement between
morphometric and simulation, one should recall that it is the
actual depletion potential displayed in Figs. 4 and 7, which
matters, e.g., in determining B2(ηr

s ), to which we now turn.

3. Second virial coefficients

While the various simulation and DFT estimates of effective
potentials show generally good agreement at low ηr

s , the
differences grow with increasing ηr

s , and it is natural to enquire
as to the likely implications for the properties of the bulk
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FIG. 8. (Color online) Comparison of βW (h) − βW (σs) obtained
from simulation and DFT for (a) q = 0.1, ηr

s = 0.35 (see Fig. 7) and
(b) q = 0.05, ηr

s = 0.2 (see Fig. 4) with results of the Derjaguin
Eq. (14) and morphometric approximations Eq. (15).

mixture and in particular phase behavior. A useful indicator in
this regard is the value of the second virial coefficient B2:

B2 = −2π

∫ ∞

0
(e−βφeff (r) − 1)r2 dr, (18)

where the effective pair potential is defined in Eq. (1).
Previous work by Vliegenthart and Lekkerkerker [56]

and Noro and Frenkel [57] has shown that an extended
corresponding states behavior applies to fluids that share the
same value of B2. Specifically, the measured values of B2 at
fluid-fluid criticality were found to be similar across a wide
range of model potentials. Subsequent work by Largo and
Wilding [37] examined this criterion explicitly for the case of
two DFT-based hard-sphere effective potentials that had been
fitted to analytical forms and parameterized in terms of the
reservoir packing fraction ηr

s [4,14]. Using simulation of a
single-component fluid interacting via a pair potential Eq. (1)
with W (r) given by these parameterized depletion potentials,
the value of ηr

s at which the metastable fluid-fluid critical
point occurs was determined using an accurate approach based
on finite-size scaling [37,58]. Interestingly for both q = 0.1
and 0.05 and both choices of parameterized potentials, the

value of B2 for the depletion potential at criticality was in
quantitative agreement with that of the adhesive hard-sphere
model (AHS) at its fluid-fluid critical point as determined
separately in simulations by Miller and Frenkel [59]. These
authors report a critical value BAHS

2 = −1.207BHS
2 , where

the hard spheres’ second virial coefficient BHS
2 = 2πσ 3

b /3.
The level of agreement was much greater than that seen
for more general model potentials (such as the square well
or Lennard-Jones model studied by Noro and Frenkel),
suggesting that the quasi-universality of the critical point B2

value holds particularly closely for effective potentials whose
attractive piece is very short range in nature, as pertains to
highly size-asymmetrical hard-sphere mixtures. Further con-
firmation of this has been found very recently in simulations
of the AO potential where, for q = 0.1, Ashton [60] has found
that the metastable critical point occurs at ηr

s = 0.249(1), to be
compared with the prediction ηr

s = 0.2482 based on matching
to BAHS

2 .
In practical terms the universality of B2 at the fluid-fluid

critical point implies that one can predict the critical point value
of ηr

s for effective one-component treatments of hard-sphere
mixtures at small q simply by matching the corresponding B2

to the universal value. Conversely, it follows that comparison
of B2 values as a function of ηr

s for different potentials
provides a sensitive measure of the extent to which their
phase behavior differs. We have made such a comparison
for effective potentials obtained from DFT, the morphometric
approximation, and simulation for q = 0.1, 0.05, and 0.02.
The results are shown in Figs. 9(a)–9(c) and demonstrate that at
the two larger values of q even the relatively small differences
that we observe between the DFT and simulation estimates
of effective potentials could lead to significant differences in
the small particle packing fractions at which fluid-fluid phase
separation is predicted to occur. Specifically, for q = 0.1 based
on this B2 criteria, it seems that the DFT with the Rosenfeld
functional underestimates the putative critical point value of
ηr

s by some 13%, while the WB2 functional underestimates
it by some 9%.3 For q = 0.05 [Fig. 9(b)] the discrepancy
between DFT and simulation has fallen to about 4%, while
for q = 0.02 [Fig. 9(c)], the values of B2 for the hard-sphere
mixtures arising from the various DFT flavors agree very
well with one another and with simulation, at least for the
range of ηr

s at which bulk phase separation is expected to
occur. They also agree well with the AO model, suggesting
that the additive and extreme nonadditive models will have
very similar phase behavior at this value of q. Recall that
for q < 0.154 the mapping of the binary AO mixture to an
effective one-component Hamiltonian, with the AO depletion
potential Eq. (17), is exact, and we might also expect that for
very small q the phase behavior of the full binary hard-sphere
mixture, at physically relevant (small) values of ηr

s , is described
accurately by the depletion pair potential we calculate here.
Many-body contributions should be negligible.

3We note that in Refs. [36,56] an empirical (average) value Bcrit
2 =

−1.5BHS
2 was used to estimate the critical point. We prefer the AHS

value as an indicator of the onset of phase separation since we focus
on short-range (sticky) potentials, following Largo and Wilding [37].
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FIG. 9. (Color online) (a) Comparison of the second virial
coefficient B2 [Eq. (18)] derived from DFT and morphometric
and simulation measurements of the effective potential for q = 0.1
and various ηr

s . The horizontal dashed line indicates the value of
BAHS

2 = −2.527σ 3
b for which fluid-fluid criticality was found in the

adhesive hard sphere model [37,59]; see text. For values of B2 below
this line, fluid-fluid phase separation is expected. Panels (b) and (c)
show corresponding plots for q = 0.05 and 0.02, respectively. Unless
error bars are shown, statistical errors in simulation data points do
not exceed the symbol size.

Interestingly, the DFT data for B2 exhibit a broad minimum
with increasing ηr

s , as can be seen for q = 0.1 in Fig. 9(a).
The same feature has previously been reported in Ref. [36].

A similar minimum occurs within the DFT for q = 0.05 at
ηr

s ≈ 0.38 (not shown in Fig. 9(b)). The origin of the upturn
in the value of B2 beyond the minimum appears to be due to
the fact that the magnitude of the first repulsive maximum of
W (r) increases faster with ηr

s than the depth of the potential
well at contact. Unfortunately we could not corroborate the
authenticity of this feature via simulation because it occurs at
larger values of ηr

s than are currently accessible to us. Should
it prove real (rather than being an artifact of the DFT), it raises
the intriguing possibility that fluid-fluid phase separation may
occur only within a certain range of ηr

s .
Also plotted in Fig. 9 are the results of the morphometric

approximation Eq. (15) for B2. Like the DFT results these
show minima at all q studied (though only that for q = 0.1
is visible in the plotted ranges). For q = 0.1, B2(ηr

s ) does not
cross the AHS line, implying that the theory fails to predict
fluid-fluid phase separation at this size ratio. At smaller q, the
agreement with simulation is better, but still poorer than DFT.
It is disappointing that both versions of the morphometric
approximation perform poorly for q = 0.02, where we find
the results are substantially different from those of the AO
model. The discrepancy with simulation for B2 appears to arise
primarily from a failure of the morphometric approximation
to correctly predict the additive constant in the potential, as
shown from the comparison of the potentials of Figs. 4 and 7
with the shifted representation of Fig. 8. While morphometric
results for the depletion force [24,31] might be in reasonable
agreement with DFT and simulation, any additive shift is
important for B2.

V. DISCUSSION

In summary, we have employed bespoke MC simulation
techniques to obtain direct and accurate simulation measure-
ments of depletion potentials in highly size asymmetrical
binary mixtures of hard spheres having q � 0.1. Small
particles were treated grand canonically, the value of the
chemical potential being chosen to target prescribed values
of the reservoir packing fraction ηr

s . The simulation results
were compared with new DFT calculations (performed using
the insertion method) based on the Rosenfeld, White Bear, and
White Bear Mark 2 functionals. For ηr

s � 0.2 generally good
agreement with simulation was found at all size ratios studied,
though on increasing the packing fraction to ηr

s = 0.35 at
q = 0.1 significant discrepancies between the various flavors
of DFT and the simulation estimates were evident. In this latter
regime, Rosenfeld (RF) was found to be somewhat better than
the other functionals in reproducing the height of the first
maximum of the effective potential, while White Bear 2 was
marginally the best of the three with regard to its prediction
for the contact value and for second virial coefficients.

Overall our results show that the DFT insertion method
provides a reasonably accurate description of effective po-
tentials for highly size asymmetrical hard sphere mixtures
at least in the range of small particle packing fractions at
which fluid-fluid phase separation is likely to occur. Indeed at
ηr

s = 0.35, and q = 0.1 DFT was found to be more accurate
than the morphometric and Derjaguin approximations, the
latter providing a particularly poor prediction. This conclusion
is partly at odds with that of Herring and Henderson [8,9]
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who assert that both DFT and the Derjaguin approximation
provide descriptions that are almost equally poor compared to
simulation data (see Fig. 7 of Ref. [9], which refers to q = 0.05
and ηr

s = 0.3 and 0.4) and advocate in particular that neither
approach should be used in the regime of “moderate” ηr

s to
answer important questions such as the existence of fluid-fluid
coexistence. While we concur with this assessment in the
case of the Derjaguin approximation, Herring and Henderson’s
conclusions regarding the accuracy of DFT calculations were
reached on the basis of simulation estimates for the effective
potential which were not obtained directly, but by integrating
measurements of the interparticle force as outlined in Sec. I A.
Perhaps as a consequence, their estimates are much noisier (see
Fig. 6 of Ref. [9]) than those presented in the present work and
consequently, we believe, do not serve as a sufficiently reliably
indicator of the accuracy of DFT, especially in the key regime
where fluid-fluid phase separation might occur.

Indeed, we have investigated the likely extent of the
consequences for predictions of phase behavior arising from
discrepancies between theory and simulation estimates of
depletion potentials via calculations of the dependence of the
second virial coefficient on ηr

s . Previous simulation studies
of phase behavior in single-component fluid interacting via
effective potentials [37] have shown that when the potential
is very short range, the onset of fluid-fluid phase separation
occurs at a near-universal value of B2 = −2.527σ 3

b . Based
on this criterion, we found that compared to the effective
potentials obtained via simulation in the present work, the
morphometric theory provides the poorest predictions of
the critical packing fraction of small particles (and fails to
predict phase separation at all at q = 0.1). Those from DFT
underestimate the critical packing fraction of small particles
by about 10% for q = 0.1 and about 4% for q = 0.05. While
these are significant discrepancies, we do not feel that they
constitute a “qualitative breakdown” of the DFT insertion
method approach as suggested by Herring and Henderson
[8,9] on the basis of their simulation data, at least not in
the regime where phase separation is expected. Herring and
Henderson speak of a nanocolloidal regime. We interpret
this as size ratios q of, say, 0.1 to 0.01. Our present study
shows that this regime is amenable to accurate simulation
studies up to values of the small-sphere packing fraction that
are relevant for investigations of fluid-fluid phase separation
and that DFT works well in this regime, the focus of the
present paper. For larger values of ηr

s there are serious issues
concerning the accuracy of the existing DFT approaches, and
we shed no new light on this interesting but somewhat extreme
regime.

Turning finally to the outlook for further work on highly
size-asymmetrical mixtures, it would, of course, be of great
interest to verify the existence (or otherwise) of the putative
fluid-fluid critical point in the full two-component size-
asymmetric hard sphere mixture. This topic remains ebullient.
For example, Ref. [26] provides evidence based on integral
equation studies of the binary mixture and comparison with
simulation studies of the effective one-component fluid [4,37]
for (metastable) fluid-fluid phase separation, and a recent paper
[61], based on a version of thermodynamic perturbation theory,
conjectures that additive hard spheres will exhibit fluid-fluid
separation, albeit metastable with respect to the fluid-solid
transition, for size ratios in the range 0.01 � q � 0.1. Our
measurements of B2 for the depletion potentials obtained in our
simulations provide predictions for the small particle packing
fraction at which the critical point occurs. The accuracy of
these predictions was demonstrated for an effective potential
exhibiting oscillations [37] and for the (nonoscillatory) AO
potential with q = 0.1 [60]. While this does not prove that
the B2 criterion is sufficiently robust to predict phase behavior
accurately for all effective potentials, i.e., all size ratios, it
shows that the criterion is a very powerful indicator for
the onset of fluid-fluid phase separation. We are currently
employing a grand canonical version of the staged insertion
MC method [43] to investigate its usefulness in this context.

The simulation methods we develop here can be applied
to any short-range potential, and it would also be of interest
to examine the influence on the effective potential of adding
small amounts of finite attraction or repulsion to the bs

and ss interactions. This would allow us to better model
real colloidal systems, where one can have a variety of
interaction potentials, and where, even in systems (such as
sterically stabilized PMMA) that approximate hard spheres
rather well, one expects residual non-hard-sphere interactions
[62,63]. Previous work [36,64] has suggested that the effects
of such residual interactions may be represented in terms of
a nonadditive hard-sphere mixture. It would be of interest to
examine this proposal explicitly using accurate simulation data
and DFT calculations.
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