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Parametric correlations versus fidelity decay: The symmetry breaking case

H. Kohler,1,* T. Nagao,2,† and H.-J. Stöckmann3,‡
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We provide formulas for fidelity decay and parametric energy correlations for random matrix ensembles where
time-reversal invariance of the original Hamiltonian is broken by the perturbation. Like in the case of a symmetry
conserving perturbation a simple relation between both quantities exists. Fidelity freeze is observed for systems
with even and odd spin.

DOI: 10.1103/PhysRevE.84.061133 PACS number(s): 05.30.−d, 05.45.Mt, 03.65.Yz, 03.67.Lx

I. INTRODUCTION

Fidelity presently attracts considerable attention in diverse
fields like quantum information, quantum chaotic systems, and
others [1,2]. It measures the change of quantum dynamics
of a state under a modification of the Hamiltonian. In
quantum information, fidelity measures the deviation between
a mathematical algorithm and its physical implementation.

Since fidelity requires knowledge of the entire wave
function for the original and for the modified system the
measurement of fidelity is a notoriously difficult task. However
a number of experimental results have been obtained in
microwave billiards, where the perturbation was achieved by
varying some geometric parameter. There are two qualitatively
different ways to do this, either by a global perturbation, e.g.,
by moving one wall [3], or a local perturbation, e.g., by varying
the position of an impurity [4]. For the first case random matrix
theory is applicable, and indeed a perfect agreement between
experiment and theory has been found [3].

On the other hand statistical properties of energy corre-
lations between spectra of complex quantum systems which
differ by a parameter-dependent variation have been studied
experimentally and theoretically [5]. This quantity can be
obtained with great accuracy from scattering experiments by
analyzing the fluctuations of the resonances in the scattering
cross section [6,7].

From an experimental point of view it is interesting to
relate fidelity with spectral quantities. This allows an indirect
measurement of fidelity via an analysis of the (parametric)
scattering data and the problem of measuring the entire wave
function is circumvented.

A simple differential relation between fidelity decay and
parametric energy correlations has been established in the
case where the parameter-dependent perturbation falls into the
same symmetry class as the unperturbed system [8,9]. This
differential relation was derived earlier in energy space by
Taniguchi et al. [10] and Simons and Altshuler [11], and it was
identified with a continuity equation of the Calogero–Moser–
Sutherland model [12]. In Ref. [13] similar expressions are
derived for parametric energy correlations in the case where
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the perturbation breaks the global symmetry of the orgininal
unperturbed system.

Recently billiard experiments have been performed in
microwave resonators, where time reversal symmetry (TRS)
was broken by a piece of ferrite [14] which plays the role
of the perturbation. From the experimental results S-matrix
elements could be determined and an estimate of the strength
of the TRS breaking could be made. The experimental
setup seems adequate for the measurement of parametric
energy correlations and of fidelity decay by a TRS breaking
perturbation.

In this paper we therefore analyze the expressions found in
Refs. [11,13] for TRS breaking perturbations under the aspect
of fidelity and provide formulas for fidelity and parametric
form factor as well as differential relations between them and
discuss their consequences.

II. DEFINITIONS AND RESULTS

Fidelity amplitude is defined as a functional of the initial
wave function. In an ergodic situation it seems reasonable to
replace a specific initial state by a random one. In Ref. [15] the
corresponding random matrix model for the fidelity amplitude
is defined by (h̄ = 1)

f (λ‖,λ⊥,t) = 1

N
〈tr exp(itH ) exp(−itH0)〉. (1)

The Fourier transform of parametric energy correlations is
defined by

K̃(λ‖,λ⊥,t) = 1

N
〈tr exp(itH )tr exp(−itH0)〉. (2)

It was named cross form-factor in Ref. [8]. The brackets denote
an ensemble average. The perturbed Hamiltonian H is given
as

H = H0 + λ‖V‖ + λ⊥V⊥. (3)

Let us first discuss the unperturbed Hamiltonian. We assume
that for the unperturbed system H0 TRS is conserved. The time
reversal operator T acts differently on systems with integer
spin and on systems with half-integer spin [16]. For even
spin, T1 = Ĉ, where Ĉ is the complex conjugation operator.
In this case (called case I in the following) H0 is chosen
from the ensemble of real symmetric matrices, called the
Gaussian orthogonal ensemble (GOE, β = 1). For odd spin

061133-11539-3755/2011/84(6)/061133(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.061133
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systems, T2 = ĈĴ , where Ĵ acts via conjugation with the
symplectic metric. In this case (case II) H0 is chosen from
the Gaussian symplectic ensemble (GSE, β = 4), consisting
of all Hermitian matrices which are invariant under T2. The
ensembles are defined by the averages

〈(H0)ij (H0)kl〉 =
{

N
π2 (δilδjk + δikδjl) (GOE),
N
π2 (δilδjk − 1

2δikδjl) (GSE).
(4)

For the GSE the matrix entries are quaternions. Zirnbauer and
Altland classified random matrix ensembles along Cartan’s
classification of symmetric spaces with curvature zero [17,18].
They called the GOE of AI type and the GSE of AII type.

In contrast to Ref. [19] we now assume that the perturbation
contains two parts. One part, named V‖, shares the symmetry
of H0 and is taken either from a GOE or a GSE

〈(V‖)ij (V‖)kl〉 =
{

δilδjk + δikδjl (GOE),

δilδjk − 1
2δikδjl (GSE).

(5)

The second part, V⊥, breaks the symmetry of H0 and is
taken for case I from the Gaussian ensemble of matrices
which change sign under time reversal T1, being antisymmetric
matrices with purely imaginary entries. The ensemble is of type
B using the classification of Ref. [18]. For case II it is taken
from the ensemble of matrices which change sign under T2.
They are of the block form

V⊥ =
[

A B

B† −A∗

]
, A = A†, B = BT , (6)

where A and B are N/2 × N/2 matrices (N even). The
corresponding ensemble is termed C type in Ref. [18]. The
B type and C type ensembles are defined by the averages

〈(V⊥)ij (V⊥)kl〉 =
{

δilδjk − δikδjl (B type),

δilδjk + 1
2δikδjl (C type) .

(7)

The variance of the matrix elements has been chosen to have
a mean level spacing, D = 1, for H0, and to be of the order
1/

√
N for V‖ and V⊥.

One parameter λ‖ characterizes the strength of the perturba-
tion, which conserves TRS. The second one, λ⊥, is the strength
of the TRS breaking perturbation. Thereby we consider a
much wider class of TRS breaking Hamiltonians as before.
Observe that for λ‖ = λ⊥ this corresponds to a perturbation
by a Hermitian matrix, i.e., to a perturbation which is taken
from the Gaussian unitary ensemble (GUE). This ensemble
is called type A in Ref. [18]. Thus time reversal symmetry
breaking can occur in different ways. Symbolically we may
write the left-hand side of Eq. (3) as AI + λ‖AI + λ⊥B (case I)
or as AII + λ‖AI + λ⊥C (case II). Usually only the transition
AI + λA is considered, when time reversal invariance is
discussed [20].

Analyzing Eq. (4) and the following ones of Ref. [13], we
find expressions for fidelity amplitude and for cross form-
factor. To present them concisely we define for case I the

function

Z (I)(λ‖,λ⊥,τ ) =
∫ τ

max(0,τ−1)
du

∫ u

0
v dv

× 1 + 4π2λ2
⊥(τ 2 − v2)√

[u2 − v2][(u + 1)2 − v2]

(τ − u)(1 − τ + u)

(v2 − τ 2)2

× e−2π2(λ2
‖+λ2

⊥)τ (2u+1−τ )−2π2(λ2
‖−λ2

⊥)v2
, (8)

and we define for case II the function

Z (II)(λ‖,λ⊥,τ ) =
∫ +1

−1
du

∫ 1−|u|

0

(u + t)2 − 1

(t2 − v2)2

× θ (u − 1 + t)
vdv[1 + π2λ2

⊥(τ 2 − v2)]√
[(u − 1)2 − v2][(u + 1)2 − v2]

× e−π2(λ2
‖+λ2

⊥)τ (2u+τ )−π2(λ2
‖−λ2

⊥)v2
, (9)

where τ is time measured in units of Heisenberg time tH =
2π/D. Then in the large N -limit the fidelity as defined in
Eq. (1) is given in both cases by

f (λ‖,λ⊥,τ ) = − 1

π2

∂

∂(λ2
‖)
Z(λ‖,λ⊥,τ ). (10)

The cross form-factor is given by

K̃(λ‖,λ⊥,τ ) = 4

β
τ 2Z(λ‖,λ⊥,τ ). (11)

From this follows the relation between fidelity and cross form-
factor [11]:

f (λ‖,λ⊥,τ ) = − β

4π2τ 2

∂

∂(λ2
‖)

K̃(λ‖,λ⊥,τ ). (12)

This relation can be derived through a universality argument
without going through a lengthy supersymmetric calculation
and comparing results. In Appendix A we present this
derivation extending the method of Refs. [8,9] to the case
of TRS breaking.

Some details on the the derivation of Eqs. (8) to (12)
from the pertinent formulas of Ref. [13] are given in
Appendix B.

III. DISCUSSION

The double integrals (8) and (9) can be evaluated nu-
merically (see Appendix B of Ref. [21] for a convenient
parametrization). Figure 1 shows the fidelity decay in case
I for different perturbation strengths and for a perturbation
taken from a GUE (AI + λA), from a GOE (AI + λ‖AI),
and from the B-type ensemble of purely antisymmetric
matrices (AI + λ⊥B). For weak perturbations there is nearly
no difference between the fidelity decay with a GOE and a
GUE perturbation, respectively. This feature is closely related
with the extremely weak fidelity decay for an imaginary
antisymmetric perturbation. The latter is called fidelity freeze
[22] and is discussed in the context with random matrix theory
in Ref. [19]. The diagonal elements of the perturbation in the
eigenbasis of the original Hamiltonian cause a Gaussian decay,
which dominates for times larger than Heisenberg time. It was
therefore predicted [22] that fidelity decay is much slower for
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FIG. 1. Ensemble average of the fidelity amplitude f (λ,λ,τ )
(solid line) with H0 taken from the GOE (case I) and the perturbation
taken from the GUE for different perturbation strengths λ. The results
f (λ,0,τ ) (a pure GOE perturbation, dashed lines) and f (0,λ,τ )
(a purely perpendicular perturbation, dashed-dotted lines) are shown
as well for the same parameter.

perturbations which are purely off-diagonal in the eigenbasis
of the original Hamiltonian.

With increasing perturbation the decays for the GOE and the
GUE perturbation separate, and the freeze behavior gets lost.
For strong perturbations a recovery of fidelity at Heisenberg
time is seen. This is already known from Ref. [23] where the
cases A + λA and AI + λAI are discussed.

For small perturbations and for times much smaller than
Heisenberg time, fidelity decay is governed by Fermi’s golden
rule. In this regime the crucial parameter is λ2 = λ2

‖ + λ2
⊥,

which is related to the spreading width 	 = 2πλ2D of an
unperturbed state. This result holds independently of the
universality class of the background. It is therefore interesting
to look at the fidelity amplitude for fixed λ but different ratios
between orthogonal and parallel perturbation.

In Fig. 2 fidelity amplitude is plotted for small perturbation
strength λ = 0.1 and for different ratios between λ‖ and λ⊥
for case I and case II.

In case I we see that fidelity amplitude is a monotonous
function of this ratio for all times. The slowest decay happens
for λ‖ = 0, i.e., when the perturbation in the direction of H0 is
zero (freeze). In case II the fidelity shows qualitatively the same

FIG. 2. Fidelity amplitude f (λ‖,λ⊥,τ ) for case I (upper picture)
and for case II (bottom picture) for different values of λ‖ and λ⊥ and
for fixed overall perturbation λ ≡ √

λ2
‖ + λ2

⊥ = 0.1. The values of λ‖
and λ⊥ are given by the five ratios λ2

‖/λ
2
⊥ = ∞ (solid line), 2 (dotted

line), 1 (dashed line), 1/2 (dashed-dotted line), and 0 (dashed-dotted-
dotted-dotted line).

behavior, i.e., a slower decay for perpendicular perturbations
for times beyond Heisenberg time. This suggests that one
should define, for a general perturbation V ,

trH0V = 0 (13)

as a condition for a fidelity freeze, which is slightly more
general than the one proposed in Ref. [22]. However in case II
the freeze is much less pronounced than in case I, indicating
that the diagonal elements of V⊥, albeit trV⊥ = trV⊥H0 = 0,
have some impact on the decay.

A careful look reveals that for times beyond Fermi’s golden
rule but smaller than Heisenberg time in case II fidelity decay
is slower for a parallel perturbation than for a perpendicular
perturbation.

This becomes evident for strong perturbations. In Fig. 3
the fidelity amplitude is plotted for the same ratios of λ‖ and
λ⊥ as before but for strong overall perturbation λ = 1.5. Case
I fidelity decay shows monotonous behavior as a function
λ‖/λ⊥ and fidelity decay is for all times slowest for a perpen-
dicular perturbation. However case II fidelity decay is more
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FIG. 3. Same as Fig. 2 but for a strong overall perturbation λ =
1.5. Fidelity amplitude f (λ‖,λ⊥,τ ) is shown for case I (upper panel)
and case II (lower panel) and for the ratios λ2

‖/λ
2
⊥ = ∞ (solid line), 2

(dotted line), 1 (dashed line), 1/2 (dashed-dotted line), and 0 (dashed-
dotted-dotted-dotted line). In the lower panel for comparison fidelity
amplitude f (

√
2λ,τ/2) for a GUE with a GUE perturbation is shown

as well (thinner solid line).

complicated. For times smaller than Heisenberg time decay
is slowest for a purely parallel perturbation and fastest for a
purely perpendicular one. At Heisenberg time a pronounced
revival is seen for a purely parallel perturbation. The peak
decreases as the share of the perpendicular perturbation
increases. Finally for a purely perpendicular perturbation there
is a minimum at Heisenberg time and no revival at all.

After Heisenberg time things change. Now decay becomes
fastest for a purely parallel perturbation with only a tiny second
revival at twice the Heisenberg time. For a purely perpendicular
perturbation the freeze behavior comes in and at twice the
Heisenberg time a sizable revival occurs, such that just as in
case I for long times decay is slowest for a purely perpendicular
perturbation. Somewhere between Heisenberg time and twice
the Heisenberg time the two curves cross.

To understand this behavior qualitatively, we recall two
peculiarities of the GSE: first the spectral rigidity is much
higher than that for the GUE or the GOE. It has been argued
[23] that the revival at Heisenberg time is a signature of the
high spectral rigidity. More generally high spectral rigidity

FIG. 4. Cross form-factor K̃(λ‖,λ⊥,τ ) for case I (upper panel)
and case II (lower panel) for different values of λ‖ and λ⊥ and for
small overall perturbation λ = 0.1. The values of λ‖ and λ⊥ are given
by the the ratios λ2

‖/λ
2
⊥ = ∞ (solid line), 2 (dotted line), 1 (dashed

line), 1/2 (dashed-dotted line), and 0 (dashed-dotted-dotted-dotted
line).

favors a slow decay. Second the eigenvalues of the GSE are
twofold degenerate (Kramers degeneracy).

Thus a perpendicular perturbation has two effects: first it
breaks time reversal invariance and drives the GSE into a
GUE. Since the latter has lower spectral rigidity, this has as
a consequence that the peak at Heisenberg time becomes less
and less pronounced and for times smaller than Heisenberg
time decay is enhanced by the perpendicular perturbation.
Second it breaks Kramers degeneracy, thus the number of
independent levels and therefore level density and Heisenberg
time double. This leads to the pronounced peak at twice
the (original) Heisenberg time. A comparison with the plot
of fidelity amplitude f (

√
2λ,τ/2) of a GUE with a GUE

perturbation(A + λA) shows indeed good agreement.
In Fig. 4 the cross form-factor is plotted in both cases for

the same five ratios between λ‖ and λ⊥ as before. Qualitatively
the behavior is similar to the fidelity amplitude. In case I the
form factor is smallest for a purely parallel perturbation for
all times. In case II before Heisenberg time the form factor
is smallest for a purely perpendicular perturbation and largest
for a purely parallel one. After Heisenberg time the order is

061133-4



PARAMETRIC CORRELATIONS VERSUS FIDELITY . . . PHYSICAL REVIEW E 84, 061133 (2011)

inverted. At Heisenberg time a logarithmic singularity occurs,
which is typical for the GSE. For strong perturbations the cross
form-factor develops peaks at Heisenberg time and for case II
at twice the Heisenberg time (not shown here). It has its cause
in the algebraic decay of the cross form-factor at these specific
times [8]. At all other times it decays exponentially.

IV. CONCLUSION

In conclusion we presented the analytic formulas for
the fidelity amplitude and cross-form factor for parametric
RMT ensembles, where the time reversal invariance of the
unperturbed system is broken by the perturbation. The general
perturbation is split into a parallel component, sharing the
symmetries of the original Hamiltonian and a perpendicular
component which maximally breaks this symmetry.

Both possibilities of TRS breaking, even spin GOE → GUE
and odd spin GSE → GUE, were discussed on equal footing.
In the first case a strong freeze effect occurs for a purely
perpendicular perturbation. It can be explained by the absence
of diagonal elements of the perturbation in the eigenbasis of the
unperturbed Hamiltonian. In case II long time decay is slowest
for a purely perpendicular perturbation as well. This leads us to
propose trH0V = 0 as a more general condition for a reduced
fidelity decay. However in case II the perturbation has diagonal
entries in the eigenbasis of H0 and the attenuation of decay
is much less pronounced than in case I. We are reluctant to
call this behavior “freeze.” We propose to call it “weak fidelity
freeze.”

The full Hilbert space is involved in the condition trH0V =
0. Therefore it is only applicable to fidelity decay with respect
to a random initial state as considered here, to which all states
of the Hilbert space contribute. For an arbitrary initial state
this condition will in general not suffice to attenuate fidelity
decay.

In the differential relation between fidelity and cross
form-factor only the parallel perturbation strength enters. The
relation might be verified experimentally for instance in a
billiard experiment as described in Ref. [14]. It might be used
to measure fidelity indirectly via spectral correlations.
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APPENDIX A: DERIVATION OF EQUATION (12)
BASED ON A UNIVERSALITY ARGUMENT

In this section we demonstrate on the example of the
transition GOE → GUE (case I) how the method of Refs. [8,9]

can be extended to the case of symmetry breaking. We
introduce new variables:

λ̃‖ = λ‖
2

, H̃0 = H0 + λ‖
2

V‖. (A1)

For H̃0 we allow for a general probability measure in the GOE
universality class and denote it by dν(H̃0), while those of V‖
and V⊥ are Gaussian measures as before (dV‖ and dV⊥ include
the normalization constants). Since the probability measure of
H̃0 is assumed to be general, it should be typical and free from
any special constraint besides the matrix symmetry.

Now we define

F̃αβ,γ δ =
(

1

z1 − H0

)
αβ

(
1

z2 − H

)
γ δ

=
(

1

z1 − H̃0 + λ̃‖V‖

)
αβ

×
(

1

z2 − H̃0 − λ̃‖V‖ − iλ⊥V⊥

)
γ δ

. (A2)

Introducing δ distributions of matrix arguments we can express
F̃αβ,γ δ as

F̃αβ,γ δ =
∫

dH1dH2 δ(H1 − H̃0 + λ̃‖V‖)Fαβ,γ δ

× δ
(
H

(R)
2 − H̃0 − λ̃‖V‖

)
δ
(
H

(I )
2 − λ⊥V⊥

)
, (A3)

where H1 is an N × N real symmetric matrix, H2 is an N × N

Hermitian matrix, H (R)
2 = ReH2, and H

(I )
2 = ImH2. Moreover

Fαβ,γ δ =
(

1

z1 − H1

)
αβ

(
1

z2 − H2

)
γ δ

. (A4)

All three δ distributions can be Fourier transformed. We find

F̃αβ,γ δ =
∫

d1d2d3dH1dH2 e2πitr1(H1−H̃0+λ̃‖V‖)

× e2πitr2(H (R)
2 −H̃0−λ̃‖V‖)

× e2πitr3(H (I )
2 −λ⊥V⊥) Fαβ,γ δ. (A5)

Here 1,2,3 are matrices which have the same symmetry as
their real space counterparts, namely, H1, H (R)

2 , and H
(I )
2 . This

means 1 and 2 are N × N real symmetric matrices and
3 is an N × N real antisymmetric matrix. The integration
domain is the real axis for all independent entries of n, n =
1,2,3. The expectation value of F̃αβ,γ δ can be written as

〈Fαβ,γ δ〉 =
∫

dν(H̃0)dV‖dV⊥F̃αβ,γ δe
−(1/4)trV 2

‖ +(1/4)trV 2
⊥

=
∫

dν(H̃0)d1d2d3dH1dH2Fαβ,γ δ

× e−(2πλ̃‖)2tr(1−2)2+(2πλ⊥)2tr(3)2

× e2πitr{1(H1−H̃0)+2(H (R)
2 −H̃0)+3H

(I )
2 }. (A6)

Here the brackets 〈· · ·〉 do not simply mean the expectation
value. Rather 〈Fαβ,γ δ〉 is defined to be the expectation value
of F̃αβ,γ δ .

061133-5
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Now we introduce the notation

tr
∂2

∂H1∂H
(R)
2

=
N∑

j=1

∂2

∂(H1)jj ∂
(
H

(R)
2

)
jj

+ 1

2

N∑
j<l

∂2

∂(H1)j l ∂
(
H

(R)
2

)
j l

. (A7)

Then it follows from partial integrations that〈
tr

∂2

∂H1∂H
(R)
2

Fαα,ββ

〉
= −(2π )2〈tr(12)Fαα,ββ〉 (A8)

and

∂

∂(λ̃2
‖)

〈Fαα,ββ〉 = −(2π )2〈tr(1 − 2)2Fαα,ββ〉. (A9)

Here repeated indices stand for summations from 1 to N .
Let us note that a simultaneous shift of H1 and H

(R)
2 in

Eq. (A6) induces a shift of H̃0. Although such a shift modifies
the measure dν(H̃0), the universality of the spectral correlation
function implies that 〈Fαα,ββ〉 is asymptotically invariant in the
limit N → ∞. Therefore we obtain the following estimate〈

tr

(
∂

∂H1
+ ∂

∂H
(R)
2

)2

Fαα,ββ

〉
= −(2π )2〈tr(1 + 2)2Fαα,ββ〉 ≈ 0. (A10)

From this it follows that

∂

∂(λ2
‖)

〈Fαα,ββ〉 +
〈
tr

∂2

∂H1∂H
(R)
2

Fαα,ββ

〉
= −π2〈tr(1 + 2)2Fαα,ββ〉 ≈ 0. (A11)

In order to show that the estimate (A10) is indeed correct,
let us pay attention to Eq. (A6). Proper unfolding of the energy
level correlations requires an O(1) scaling of the eigenvalue
density of H̃0. Each element of the perturbation V‖ is set to
be O(1), because it should equally scale as the mean level
spacing. When the eigenvalue density is scaled as O(1), since
there are N eigenvalues, each eigenvalue Ẽ0j of H̃0 should
typically be O(N ). Then the right-hand side of the identity

tr(H̃0)2 =
N∑

j=1

(Ẽ0j )2 (A12)

becomes O(N3). In the left-hand side, on the other hand, we
have O(N2) terms, each of which is the square of an element
of H̃0. Therefore each element of H̃0 is estimated as O(N1/2).
Then the main contribution to the integral over the matrix H̃0

with respect to the measure dν(H̃0) in Eq. (A6) comes from a
region where the elements of 1 + 2 are of order O(N−1/2).
Only in that region a rapid oscillation of the exponential factor
is avoided.

It can be seen from the Gaussian factor in Eq. (A6) that
the elements of 1 − 2 are scaled as O(1). Because of the
identity

(1 − 2)2 = −2(12 + 21) + (1 + 2)2, (A13)

the elements of (1 − 2)2 are approximated by the elements
of −2(12 + 21). Hence we find an estimate

tr(1 − 2)2 ≈ −4tr(12), (A14)

which implies Eq. (A11). We notice that this estimate can only
be fulfilled when tr(12) is negative.

On the other hand, we can readily find

tr
∂2

∂H1∂H
(R)
2

Fαα,ββ = tr

(
1

z1 − H1

)2( 1

z2 − H2

)2

(A15)

and

∂2

∂z1∂z2
Fαβ,βα = ∂2

∂z1∂z2

(
1

z1 − H1

)
αβ

(
1

z2 − H2

)
βα

= tr

(
1

z1 − H1

)2( 1

z2 − H2

)2

, (A16)

so that 〈
tr

∂2

∂H1∂H
(R)
2

Fαα,ββ

〉
= ∂2

∂z1∂z2
〈Fαβ,βα〉. (A17)

Comparing Eqs. (A11) and (A17), we arrive at

∂

∂(λ2
‖)

〈Fαα,ββ〉 ≈ − ∂2

∂z1∂z2
〈Fαβ,βα〉, (A18)

which gives the required relation (12) between the fi-
delity and parametric spectral correlation, namely, cross
form-factor.

APPENDIX B: DERIVATION OF EQUATIONS (8)
AND (12) FROM REFERENCE [13]

In Ref. [13], called THSA in the following, the Fourier
transform of the cross form-factor was derived as a threefold
integral

K(x̄,xo,xu,ω) = Re
∫

dλdλ1dλ2WeF± , (B1)

where the integration domains are in case I defined by λ ∈
[−1,1], λ1 ∈ [1,∞], and λ2 ∈ [1,∞] and in case II by λ ∈
[1,∞], λ1 ∈ [−1,1], and λ2 ∈ [0,1]. Setting the parameter x̄ =
xu/2 the expressions for F and W [Eqs. (5) and (6) of THSA]
are given by

F± = ±κiπω(λ1λ2 − λ) ± x2
uπ

2

2

(
λ2

1 + λ2
2 − λ2 − 1

)
±x2

oπ
2

4

(
2λ2

1λ
2
2 − λ2 − λ2

1 − λ2
2 + 1

)
(B2)

W = (λ1λ2 − λ)2(1 − λ2)(
λ2

1 + λ2
2 + λ2 − 2λ1λ2 − 1

)2

×
[

1 + π2x2
u

κ

(
λ2

1 + λ2
2 + λ2 − 2λλ1λ2 − 1

)]
. (B3)

Here the plus sign applies to case I and the minus sign to case II.
The parameter κ has the value κ = 1 (case I) and κ = 2 (case
II). This factor does not appear in THSA; however it does
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appear in Ref. [24]. We introduced it, such that K̃(t) is related
to K(ω) in both cases via

K̃(τ ) =
∫

dωe−2πiωτK(ω). (B4)

In THSA the function W differs in case I and case II by a
relative minus sign between two summands in the last line of
Eq. (B3). This seems to be wrong. Moreover in the same line
the factor 1/κ in the second summand is missing in THSA.

Fourier transformation yields δ(τ − λ1λ2/2 + λ) in case I
and δ(τ − λ + λ1λ2) in case II, which allows one to integrate

over λ. Equations (8) to (12) are obtained through the following
transformations:

u = 1
2 (λ1λ2 − 1)

v = 1
2

√
λ2

1λ
2
2 − λ1 − λ2 + 1

⎫⎬⎭ case I, (B5)

u = λ1λ2

v =
√

λ2
1λ

2
2 − λ1 − λ2 + 1

}
case II. (B6)

The parameters are identified as λ‖ = xo/2 and λ⊥ = xu/
√

2.
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