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We present an analytical method, rooted in the nonperturbative renormalization group, that allows one to
calculate the critical exponents and the correlation and response functions of the Kardar-Parisi-Zhang (KPZ)
growth equation in all its different regimes, including the strong-coupling one. We analyze the symmetries of
the KPZ problem and derive an approximation scheme that satisfies the linearly realized ones. We implement
this scheme at the minimal order in the response field, and show that it yields a complete, qualitatively correct
phase diagram in all dimensions, with reasonable values for the critical exponents in physical dimensions. We
also compute in one dimension the full (momentum and frequency dependent) correlation function, and the
associated universal scaling function. We find a very satisfactory quantitative agreement with the exact result
from Prähofer and Spohn [J. Stat. Phys. 115, 255 (2004)]. In particular, we obtain for the universal amplitude
ratio g0 � 1.149(18), to be compared with the exact value g0 = 1.1504 . . . (the Baik and Rain [ J. Stat. Phys. 100,
523 (2000)] constant). We emphasize that all these results, which can be systematically improved, are obtained
with sole input the bare action and its symmetries, without further assumptions on the existence of scaling or on
the form of the scaling function.
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I. INTRODUCTION

In their seminal work [1], Kardar et al. proposed a
stochastic continuum equation to describe surface growth
through ballistic deposition which reads

∂h(t,�x)

∂t
= ν ∇2h(t,�x) + λ

2
(∇h(t,�x))2 + η(t,�x), (1)

where η is an uncorrelated white noise of strength D,
〈η(t,�x)η(t ′,�x ′)〉 = 2 D δd (�x − �x ′) δ(t − t ′), which models ran-
domness in deposition. The term ν ∇2h(t,�x) provides the
interface with a smoothening mechanism. The insightful
feature of Eq. (1) is to take into account the nonlinearity of the
growth velocity through the inclusion of the term λ(∇h(t,�x))2

which plays an essential role in the large-scale properties of
the height profile h(t,�x).

The KPZ equation (1) is maybe the simplest nonlinear
Langevin equation showing nontrivial behavior [2], and as
a consequence it arises in connection with an extremely
large class of nonequilibrium or disordered systems [2] such
as randomly stirred fluid (Burgers equation) [3], directed
polymers in random media [4], dissipative transport [5,6], or
magnetic flux lines in superconductors [7]. The KPZ equation
has thus emerged as one of the fundamental theoretical models
to investigate universality classes in nonequilibrium scaling
phenomena and phase transitions [2]. It is only recently,
though, that a definitively convincing experimental realiza-
tion has been brought out for a one-dimensional interface,
confirming detailed theoretical predictions [8].

The profile of the stationary interface is usually character-
ized by the two-point correlation function,

C(t,|�x|) ≡ 〈[h(t,�x) − h(0,0) − t〈∂th〉]2〉, (2)

and, in particular, by its large-scale properties. The KPZ
growth leads to generic scaling. At long time τ and
large distance L, C assumes the scaling form C(τ,L) ∝
τ 2χ/z g(L2χτ−2χ/z) without fine-tuning any parameter of the
model. The scaling function g is universal and has the
asymptotics g(y) → const. as y → 0 and g(y) ∼ |y| as
y → ∞. χ and z are the universal roughness and dynamical
exponents, respectively. In fact, these two exponents are not
independent since the Galilean symmetry [3]—the invariance
of Eq. (1) under an infinitesimal tilt of the interface—enforces
the scaling relation z + χ = 2 as long as λ = 0.

The KPZ equation encompasses two distinct scenarios
depending on the dimension of the interface. Above two
dimensions, there exist two different regimes separated by
a critical value λc of the nonlinear coefficient [1,3]. In
the weak-coupling regime (λ < λc), the interface remains
smooth, its properties are determined by the λ = 0 (Gaussian)
fixed point—corresponding to the linear Edwards-Wilkinson
equation [2]—with exponents χ = (2 − d)/d and z = 2. In
the strong-coupling regime (λ > λc), the nonlinearity becomes
relevant and the interface roughens. In this regime, the
exponents are not known exactly, and some important issues
are still controversial, such as the existence of an upper
critical dimension (for a recent discussion, see, e.g., [9]). This
unsatisfactory situation has persisted up to very recently [10]
because the strong coupling phase of the KPZ equation has
remained out of reach of controlled analytical approaches.
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In particular, standard perturbation expansions [1,11,12] have
been proved to fail at all order to find a strong coupling
fixed point [13]. Some nonperturbative approaches have been
devised, such as the mode-coupling (MC) approximation
[5,14–17], or the weak noise scheme [18], but they are difficult
to improve in practice. (Some specific comments regarding
the MC approximation are put forward throughout this paper).
Let us finally mention the self-consistent expansion, which
is performed on the Fokker-Planck equation and can be
systematically improved [19–21]. It has yielded important
results for the KPZ equation in arbitrary dimensions, where it
predicts an upper critical dimension [9]. Note that it has also
been applied to different extensions of the KPZ model, such
as the nonlocal KPZ equation [19] or the KPZ equation with
colored noise [20].

In two dimensions and below, the situation is different,
both from a physical and a theoretical point of view. Phys-
ically, the interface always roughens; there is no transition.
On the theoretical side, exact results are available in one
dimension [22–26]. The critical exponents χ = 1/2 and z =
3/2 have been known for long since they are fixed by the
existence of an incidental fluctuation-dissipation theorem in
this dimension [1], but the scaling function g(y) (and other
universal properties) have been computed exactly only very
recently [23–26]. Note that there had been earlier attempts
to determine the scaling function, in the framework of the
mode-coupling approximation [14,27,28]. In Ref. [28], a
refined ansatz for the scaling function in one dimension is
devised to solve self-consistently the MC equations and it
turns out that the result compares quite accurately with the
exact solution. The one-dimensional scaling function has also
been obtained within the self-consistent expansion in one
dimension [21] and coincides in many respects with the MC
result (see Sec. VI). Regarding the MC theory, it is an “ad
hoc” approximation which consists of resumming one-loop
diagrams while discarding vertex corrections. The quality of
the results is all the more surprising that it was shown that the
contribution of the neglected terms are of the same order as
those kept [14]. The main drawbacks of the MC approach are
that it strongly relies on the quality of the “educated guess” for
the ansatz—only available in one dimension up to now—and
it cannot in practice be systematically improved by calculating
higher orders.

Recently, we have proposed an analytical approach to
the KPZ equation based on nonperturbative renormalization
group (NPRG) techniques [10]. This early work has shown
that the NPRG flow equations embedded a strong-coupling
fixed point in all dimensions, and it has thus provided a
complete, qualitatively correct phase diagram for the first
time within an RG approach, as well as reasonable values
for the strong-coupling fixed point exponents in physical
dimensions [10].

In this paper we present a general and systematic framework
for applying NPRG methods to the KPZ problem, strongly
constrained by the symmetries of this model. We derive
general Ward identities and introduce a “covariantization”
associated with the Galilean symmetry which, to the best of
our knowledge, has never been reported before in the literature.
Within this formalism, successive orders of approximation are
easily made explicit. In the present contribution, we implement

the minimal order in the response field of this approximation
scheme. We review the (simplified) first account of it presented
in [10]—postponing its complete revisited version—and de-
rive new results related to the one-dimensional problem, in
order to confront our approach to the available exact results.
In particular, we compute the correlation function, show that
it takes a scaling form at long time and large distance and
extract the associated scaling function. The NPRG results are
in even better agreement with the exact results of Prähofer
and Spohn [24] than those obtained under the MC or the
self-consistent approximations.

We stress the advantages of the NPRG formalism: (i) It is
based on an exact flow equation, which, given a microscopic
model, yields the macroscopic properties of the system. The
only input is the bare action, that is, no a priori knowledge,
other than the microscopic model and its symmetries, is
required to compute the physical observables. In particular,
one does not have to assume scaling at long time and
large distance nor the form of the scaling function; (ii) the
approximations, which are mandatory to solve the exact flow
equation can be systematically improved and implemented in
any dimension and, in contrast to most other nonperturbative
approaches, the calculation of higher orders is achievable and
have been performed in practice in other systems [29,30];
(iii) beyond scaling, a wealth of quantities can be calculated
(for example, we compute here the correction to scaling
exponent ω); (iv) it has already yielded many nontrivial and
accurate results in systems at equilibrium such as frustrated
magnets [31], the random bond and random field Ising model
[32], membranes [33], bosonic systems [34], but also in
systems out-of-equilibrium, where one can mention important
advances in reaction-diffusion systems [35].

As the NPRG is a field theoretical method, our starting point
is the field theory associated with Eq. (1), which follows from
the standard procedure of Janssen-de Dominicis relying on the
introduction of a response field h̃ and sources (j,j̃ ) [36]. This
procedure allows one to explicitly carry out the integration
over the Gaussian-distributed noise η in Eq. (1) upon doubling
the number of fields (see, e.g., [38]). The generating functional
reads

Z[j,j̃ ] =
∫

D[h,ih̃] exp

(
−S[h,h̃] +

∫
x
jh + j̃ h̃

)
, (3)

S[h,h̃] =
∫

x

{
h̃

(
∂th − ν ∇2h − λ

2
(∇h)2

)
− D h̃2

}
, (4)

where x = (t,�x).
The remainder of the paper is organized as follows. In

Sec. II, we briefly review the nonperturbative renormalization
group formalism for out-of-equilibrium problems. In Sec. III,
we analyze in detail the symmetries of the KPZ action (4) and
derive Ward identities associated with the linearly realized
ones. In Sec. IV, we build an approximation scheme based
on a covariantization procedure rooted in the symmetries, and
derive explicitly an ansatz at the minimal order in the response
field. The determination of the complete phase diagram and
of critical exponents in all dimensions, using a simplified
version of this ansatz, is reported in Sec. V. Section VI is
then devoted to the calculation (using the full ansatz) of the
scaling function and of some other universal quantities in one
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dimension, which are compared with their exact counterparts.
Technical details, such as some of the Ward identities, a
discussion of the validity of our approximation scheme, the
computation of vertex functions, or the procedures for the
numerical integration of the flow equations are reported in
Appendices A, B, C, and D, respectively.

II. THE NONPERTURBATIVE
RENORMALIZATION GROUP

The NPRG formalism relies on Wilson’s RG idea, which
consists of building a sequence of scale-dependent effective
models such that fluctuations are smoothly averaged as the
(momentum) scale κ is lowered from the microscopic scale �,
where no fluctuations are yet included, to the macroscopic one
κ = 0 where all fluctuations are summed over [29,37].

For out-of-equilibrium problems, one formally proceeds as
in equilibrium, but with the presence of additional response
fields and with special care required to deal with the conse-
quences of Itō’s discretization and with causality issues, as
stressed in detail in [38], from which conventions are taken
throughout this paper. For future use, we define the Fourier
conventions used in [38] and throughout this work:

f̃ (ω, �p) =
∫

dd �xdt f (t,�x) ei �p·�x−iωt , (5)

f (t,�x) =
∫

dd �p
(2π )d

dω

(2π )
f̃ (ω, �p) e−i �p.�x+iωt (6)

≡
∫

p
f̃ (p) e−i �p·�x+iωt , (7)

where p = (ω, �p).
To achieve the separation of fluctuation modes within

the NPRG procedure, one adds to the original action S, a
momentum-dependent masslike term:

Sκ = 1

2

∫
q
hi(−q) [Rκ (q)]ij hj (q), (8)

where the indices i,j ∈ {1,2} label the field and response field,
respectively, h1 = h,h2 = h̃, and summation over repeated
indices is implicit. The matrix elements [Rκ (q)]ij are pro-
portional to a cutoff function r(q2/κ2) (see Sec. III D), with
q = ‖�q‖, which ensures the selection of fluctuation modes:
r(x) is required to vanish as x � 1 such that the fluctuation
modes hi(q � κ) are unaffected by Sκ , and to be large when
x � 1 such that the other modes (hi(q � κ)) are essentially
frozen. Since Sκ must preserve the symmetries of the model,
we postpone the discussion of the precise structure of the
matrix elements [Rκ (q)]ij to Sec. III D after the analysis of
these symmetries.

In presence of the mass term Sκ , the generating functional
(3) becomes scale dependent,

Zκ [j,j̃ ]=
∫

D[h,ih̃] exp

(
−S − Sκ +

∫
x
jh + j̃ h̃

)
, (9)

and the effective action �κ [ϕ,ϕ̃], where ϕi = 〈hi〉j,j̃ are the
expectation values of the fields hi in the presence of the
external sources j and j̃ , is given by the Legendre transform

of Wκ = logZκ (up to a term proportional to Rκ ) [29,38]:

�κ [ϕ,ϕ̃] + logZκ [j,j̃ ] =
∫

jiϕi − 1

2

∫
q
ϕi [Rκ ]ij ϕj . (10)

From �κ , one can derive two-point correlation and response
functions,

[
�(2)

κ

]
i1i2

(x1,x2,ϕ,ϕ̃) = δ2�κ [ϕ,ϕ̃]

δϕi1 (x1)δϕi2 (x2)
, (11)

and more generally n-point correlation functions that we write
here in a 2 × 2 matrix form (omitting the dependence on the
running scale κ),

�
(n)
i3,...,in

(x1, . . . ,xn,ϕ,ϕ̃) = δn−2�(2)(x1,x2,ϕ,ϕ̃)

δϕi3 (x3) . . . δϕin(xn)
. (12)

The exact flow for �κ [ϕ,ϕ̃] is given by Wetterich’s equation
which reads (in Fourier space) [29]:

∂κ�κ = 1

2
Tr

∫
q
∂κRκ · Gκ with Gκ = [

�(2)
κ + Rκ

]−1
, (13)

the full renormalized propagator of the theory. When κ

flows from � to 0, �κ interpolates between the microscopic
model �κ=� = S and the full effective action �κ=0 that
encompasses all the macroscopic properties of the system [38].
Differentiating Eq. (13) twice with respect to the fields and
evaluating it in a uniform and stationary field configuration
(since the model is analyzed in its long-time and large-distance
regime where it is translationally invariant in space and time)
one obtains the flow equation for the two-point functions:

∂κ [ �(2) ]ij (p)

= Tr
∫

q
∂κR(q) · G(q) ·

(
− 1

2
�

(4)
ij (p, − p,q)

+�
(3)
i (p,q) · G(p + q) · �

(3)
j (−p,p + q)

)
· G(q), (14)

where the κ and background field dependencies have been
omitted, as well as the last argument of the �(n) which is
determined by frequency and momentum conservation [38].

Solving Eq. (13) [or Eq. (14)] is in principle equivalent
to solving the model. In practice this resolution cannot be
performed exactly since (13) is a nonlinear integral partial
differential functional equation. Hence one has to devise an
approximation scheme. The main constraint on this approxi-
mation scheme is to preserve the symmetries of the problem.
We thus now revisit the symmetries of the KPZ action.

III. SYMMETRIES OF THE KPZ ACTION

The KPZ action (4) possesses well-known symmetries,
in addition to translation and rotation invariances: (i) the
Galilean symmetry and (ii) the h-shift symmetry, which can
be expressed as the invariance of the action (4) under the
following transformations:

(i)
h′(t,�x) = �x · �v + h(t,�x + λ�vt)

h̃′(t,�x) = h̃(t,�x + λ�vt).
(15)

(ii) h′(t,�x) = h(t,�x) + c, (16)

where �v and c are arbitrary constant quantities.

061128-3
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In one dimension, the KPZ equation also satisfies a
fluctuation-dissipation theorem that fixes the exponents ex-
actly. This property roots in a time-reversal symmetry of
the action which, as shown in [39], can be encoded in the
transformation,

(iii)
h′(t,�x) = −h(−t,�x)

h̃′(t,�x) = h̃(−t,�x) + ν
D

∇2h(−t,�x).
(17)

One can check that the invariance of the action (4) under the
transformation (17) requires that the contribution

∫ ∇2h(∇h)2

vanishes, which is “incidentally” true only in d = 1. The
time-reversal symmetry thus only holds in this dimension.
This set of symmetries entails Ward identities for the n-point
vertex functions, as long as the mass term Sκ is appropriately
chosen (see Sec. III D).

In fact, there exist even stronger symmetries of the KPZ
action that, to our knowledge, were only pointed out in [40].
They consist in “gauging” in time the transformations (i) and
(ii) in the following way:

(i’)
h′(t,�x) = �x · ∂t �v(t) + h(t,�x + λ�v(t))

h̃′(t,�x) = h̃(t,�x + λ�v(t)).
(18)

(ii’) h′(t,�x) = h(t,�x) + c(t), (19)

which we will refer to as Galilean-gauged and shift-gauged
symmetries, respectively. In these gauged versions, �v(t) and
c(t) are arbitrary infinitesimal functions of time. Note that the
action (4) is not strictly invariant under the transformations
(18) and (19) but the corresponding variations of the action are
linear in the fields, and this behavior also yields useful Ward
identities, which we derive in the following. These stronger
forms of the symmetries will be thoroughly exploited.

Finally, an additional Z2 symmetry, which is manifest on
the Cole-Hopf version of the theory, is nonlinearly realized in
the KPZ action (4). The Cole-Hopf field transformation writes
as follows:

h(x) = 2ν

λ
log |w(x)|

(20)
h̃(x) = w(x)w̃(x).

In terms of w and w̃—upon rescaling these fields and time—
the KPZ action becomes

S[w,w̃] =
∫

x
w̃(∂tw − ∇2w) − 1

4
gb (ww̃)2, (21)

with the bare coupling constant,

gb = λ2D

ν3
. (22)

This action is invariant under the simple Z2 transformation (iv)
w(t,�x) → w̃(−t,�x), w̃(t,�x) → w(−t,�x). However, in terms of
the original fields h and h̃, this transformation becomes

(iv)
h′(t,�x) = −h(−t,�x) + 2ν

λ
log |h̃(−t,�x)|

h̃′(t,�x) = h̃(−t,�x).
(23)

Its highly nonlinear form renders complicated the induced
Ward identities among vertex functions. Consequently, they
are not given here as they will not be exploited in the following.

A. Shift-gauged symmetry

The Ward identity associated with the shift-gauged symme-
try can be derived by performing in the functional integral (9)
the change of variables corresponding to the transformation
(19). As this operation must leave the value of the integral
unchanged, one obtains that∫

x
{c(t)j (x) − 〈h̃(x)〉j,j̃ ∂t c(t) − 〈Sκ [c(t),h̃(x)]〉j,j̃ } (24)

must vanish. Here, [Rκ (q)]11 has been set to zero [as in
Eq. (41)] for simplicity and for causality issues (see Sec. III D).
As the mass term is quadratic in fields, Sκ [c(t),h̃(x)] is linear
in h̃, and thus

〈Sκ [c(t),h̃(x)]〉j,j̃ = Sκ [c(t),〈h̃(x)〉 = ϕ̃(x)].

The expression (10) of the Legendre transform then implies∫
x

{
c(t)

δ�κ [ϕ,ϕ̃]

δϕ(x)
− ϕ̃(x)∂tc(t)

}
= 0. (25)

After integrating by parts the second term, we conclude that
the functional,

�κ [ϕ,ϕ̃] −
∫

x
ϕ̃(x)∂tϕ(x), (26)

is invariant under the transformation (19). In other words,
the only noninvariant term

∫
ϕ̃∂tϕ of the bare action is

not renormalized and the rest of the action is shift-gauged
symmetric.

Let us express this property on the n-point vertex functions,
that we denote from now on as

�(l,m)
κ (x1, . . . ,xl+m),

which stands for the �(n=l+m)
κ vertex involving l (respectively,

m) legs—derivatives of �κ with respect to ϕ (respectively, ϕ̃)—
with the l first frequencies and momenta referring to the ϕ fields
and the m last to the ϕ̃ fields. At this stage, it is convenient to
work in Fourier space. The n-point vertex function are defined
in Fourier space by

(2π )d+1δd+1

(∑
i

pi

)
�(l,m)

κ (p1, . . . ,pl+m−1)

=
∫

x1···xl+m

�(l,m)
κ (x1, . . . ,xl+m)ei

∑
i (�xi · �pi−tiωi ), (27)

where again, the last frequency and momentum, fixed by
translational invariance in time and space, are implicit. The
shift-gauged symmetry entails that the n-point vertex functions
in Fourier space satisfy the following property:

�(m,n)
κ (ω1, �p1 = 0, . . . ,pm+n−1) = iω1δm1δn1, (28)

which means that, apart from the contribution of
∫

ϕ̃∂tϕ to
�(1,1)

κ , the vertices vanish upon setting the momentum of one
of the ϕ to zero. This is related to the fact that the field
ϕ only appears in �κ with gradients. In particular, it roots
the nonrenormalization of the kinetic term ϕ̃∂tϕ of the KPZ
action, which is well established in perturbation theory (see,
e.g., [14]).
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B. Galilean symmetry

1. Global Galilean symmetry

Let us first review the Ward identities associated with
the standard Galilean symmetry. As for the shift-gauged
symmetry, one can prove that, as the transformation (15)
encoding the Galilean symmetry of the bare action is affine,
and provided the mass term Sκ is chosen Galilean-invariant
(as in the form (41)—see Sec. III D), �κ also possesses this
symmetry. The corresponding Ward identity is∫

x

{
(�x · �v + λt �v · ∇ϕ(x))

δ�κ

δϕ(x)
+ λt �v · ∇ϕ̃(x)

δ�κ

δϕ̃(x)

}
= 0,

(29)

that is, �κ is invariant under the same Galilean transformation
(with the same parameter) as the bare action. One can then
proceed to the derivation of the Ward identities for the vertex
functions, by taking functional derivatives of Eq. (29) with
respect to the fields and then evaluating them for uniform and
static fields. For instance, one gets the standard identity for the
three-point function:

i
∂

∂ �p�(2,1)
κ (ω = 0, �p = �0; ω1, �p1) = λ �p1

∂

∂ω1
�(1,1)

κ (ω1, �p1).

(30)

The Ward identity for a generic n-point function can be derived
and one obtains

i
∂

∂ �p�(m+1,n)
κ (ω = 0, �p = �0; p1; . . . ; pm+n−1)

= λ

(
�p1

∂

∂ω1
+ · · · + �pm+n−1

∂

∂ωm+n−1

)
�(m,n)

κ (p1; . . . ; pm+n−1). (31)

2. Galilean-gauged symmetry

Let us now come to the gauged form (18) of the Galilean
symmetry. As for the shift-gauged symmetry, the variation of
the action under this transformation is linear in the fields and
consequently, it entails a Ward identity which reads∫

dd �x
{
λ∇ϕ(x)

δ�κ

δϕ(x)
− �x∂t

δ�κ

δϕ(x)

+ λ∇ϕ̃(x)
δ�κ

δϕ̃(x)
− �x∂2

t ϕ̃(x)

}
= 0. (32)

From this functional identity, one can again deduce identities
for the vertex functions. They bare similar expressions as those
for the global Galilean symmetry, but with a stronger content.
For instance, the identity for the three-point function becomes

iω
∂

∂ �p�(2,1)
κ (ω, �p = �0; ω1, �p1)

= λ �p1
(
�(1,1)

κ (ω + ω1, �p1) − �(1,1)
κ (ω1, �p1)

)
, (33)

which in the limit ω → 0 coincides with (30). The gauged
identity (33) is stronger as it constrains the whole frequency
dependence and not only the zero-frequency sector. One could
derive similar identities for generic n-point functions, but
we now stress, instead, a more efficient way to exploit the

Galilean symmetry, that will guide our construction of the
approximation scheme.

3. Covariant time derivatives

The previous Ward identities ensuing from the Galilean
symmetry do not clearly reflect the geometrical interpretation
of this symmetry. In order to do so, one can analyze
the Galilean invariance from another angle. One can build
quantities which are manifestly scalar under the Galilean
transformation (15), upon introducing an adequate covariant
time derivative. Let us define a function f (x) as a scalar under
the Galilean symmetry if its infinitesimal transform under (15)
is given by

δf (x) = tλ�v · ∇f (x). (34)

With this definition, if f is a scalar then
∫

dd �xf is invariant
under the Galilean transformation and can be used to build
an action possessing the Galilean symmetry. It follows from
this definition that the response field h̃ is a scalar, but that the
field h is not unless one takes two successive space derivatives
∇i∇jh. The gradient of a scalar remains a scalar, but not its
time derivative since

δ(∂tf (x)) = λ�v · (t∇(∂tf (x)) + ∇f (x)). (35)

However, as in fluid mechanics, one can construct a covariant
time derivative,

D̃t ≡ ∂t − λ∇h(x) · ∇,

which conserves the scalar property (i.e., if f is a scalar then
so is D̃tf ). Note that the covariant time derivative of the field
h itself, that we denote Dt , bares a special form with a 1/2
factor:

Dth(x) ≡ ∂th(x) − λ

2
(∇h(x))2, (36)

since h is not a scalar on its own. These covariant derivatives
will constitute the building blocks in the construction of our
approximation scheme (see Sec. IV).

C. Time-reversal symmetry in d = 1

In d = 1, the action (4) with a mass term of the form
(41) exhibits the additional time-reversal symmetry. Note that
this is a discrete symmetry [i.e., there is no infinitesimal
transformation corresponding to (17)]. However, as it is linear
in the fields, one can show using the same procedure as
previously that �κ also possesses this symmetry. That is, it
verifies

�κ [ϕ(x),ϕ̃(x)] = �κ [−ϕ(−t,�x),ϕ̃(−t,�x) + ν

D
∇2ϕ(−t,�x)].

(37)

Again, one can derive Ward identities for the n-point vertex
functions by taking derivatives of (37) with respect to the
fields and evaluating them at uniform and static field config-
urations. For the two-point functions, this yields, in Fourier
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space,

�(2,0)
κ (ω, �p) = �(2,0)

κ (−ω, �p) + ν

D
p2�(1,1)

κ (−ω, �p)

+ ν

D
p2�(1,1)

κ (ω,− �p) +
(

ν

D

)2

p4�(0,2)
κ (−ω, �p),

(38)

which, given that �(2,0)
κ (ω, �p) = �(2,0)

κ (−ω, �p) and spatial
parity reduces to

2Re�(1,1)
κ (p) = − ν

D
p2�(0,2)

κ (p). (39)

For the three-point functions, one gets

2Re�(1,2)
κ (p1; p2) = − ν

D
p2

1�
(0,3)
κ (p1; p2).

2Im�(2,1)
κ (p1; p2) = − ν

D
p2

2Im�(1,2)
κ (p1; p2)

− ν

D
p2

1Im�(1,2)
κ (p2; p1). (40)

Similar expressions can be derived for �(3,0)
κ and for the

four-point functions, which are reported for completeness in
Appendix A.

D. Cutoff function

The mass term Sκ defined by (8) must be chosen such
that the Ward identities are preserved all along the flow.
This is not obvious a priori. In particular, a quadratic mass
term cannot be invariant under the shift-gauged symmetry.
However, as explained above, if the variation of Sκ under
the transformation (19) is linear in the field, the Ward identity
remains identical even in the presence of such a term. Similar
comments hold for the Galilean symmetry, which is preserved
as long as the cutoff matrix Rκ does not depend on the
frequency. We thus choose a frequency-independent matrix
Rκ—which also preserves causality properties [38]. Moreover,
the time-reversal symmetry imposes in one dimension the
following relation between the components of the cutoff
matrix: [Rκ (�q)]12 = − ν

2D
q2 [Rκ (�q)]22, which we will impose

in all dimensions.
Finally, we set [Rκ (�q)]11 = 0 since it is not necessary

to consider a cutoff term proportional to ϕϕ and since the
presence of such a term would spoil the property that �κ is
proportional to ϕ̃, important for causality issues (see [38]) and
also in order to preserve the shift symmetry. To summarize,
the cutoff matrix is chosen with the following form:

Rκ (�q) = r

(
q2

κ2

) (
0 νκq

2

νκq
2 −2Dκ

)
, (41)

where the running coefficients νκ and Dκ are introduced for
convenience [10]. Here we use r(x) = α/(exp(x) − 1) where
α is a free parameter.

IV. APPROXIMATION SCHEME

Two routes have been followed in the past to build approx-
imation schemes to deal with exact NPRG flow equations
such as Eqs. (13) and (14). Either one focuses on the
long-time and large-distance properties, trying to describe as

accurately as possible the zero-momentum and zero-frequency
domain while approximating the other sectors; or the aim
is to compute the momentum and frequency dependence of
two-point functions and then the approximation concerns the
three- and four-point functions.

The usual implementation of the first route consists of
performing a “derivative expansion”: �κ is expanded in
powers of gradients and time derivatives of the fields [29,38].
This strategy has been undertaken to investigate the critical
properties of many equilibrium [29], and also nonequilibrium
systems such as reaction-diffusion processes [35], where it has
yielded satisfactory results. However, for the KPZ problem, the
signature nonlinear term involves a gradient, and this seems to
preclude the use of the derivative expansion [39].

The second route is the one followed here. At equilibrium,
one can compute the momentum dependence of the two-
point function using the Blaizot-Méndez-Wschebor (BMW)
approximation scheme which has proved to yield very accurate
results for O(N ) models [41]. In the BMW framework, the
momentum dependence of �(3)

κ and �(4)
κ in the flow equation

for �(2)
κ is truncated. However, a direct implementation of

the BMW scheme for the KPZ problem is hindered by the
symmetries which impose strict identities between �(m,n)

κ ’s
with different m and at different momenta [see, e.g., Eq. (31)],
and render complicated the writing of a truncation.

To overcome this difficulty, we propose, instead of design-
ing directly truncations on the three- and four-point functions,
to construct an ansatz for �κ that manifestly preserves the
shift-gauged and Galilean-gauged symmetries while allowing
for arbitrary frequency and momentum dependencies in the
two-point functions. This is easily achieved by combining
together the basic Galilean scalars of the theory—ϕ̃, ∇i∇jϕ,
and Dtϕ, and arbitrary powers of their gradients and covariant
time derivatives D̃t—since, by construction, all calculations
involving a functional of these quantities automatically satisfy
the Galilean symmetry (the other symmetries, but the nonlin-
early realized one, being easily enforced a posteriori).

On this basis, various truncations may be performed to
obtain an ansatz for �κ . One could, for example, keep complete
dependencies in ϕ̃ and ∇2ϕ, while treating only the zero-
frequency sector. This “super derivative expansion” option is
left for future studies. An alternative choice, pursued here
with the ultimate aim of confronting the obtained two-point
correlation functions in one dimension with the exact ones, is
to truncate the field dependence of �κ while preserving the
complete dependence in both momentum and frequency of the
two-point functions.

In the following, we hence proceed to a field truncation
at the minimal order. It appears that the truncations of �κ

at a given order in either ϕ or ϕ̃ are not equivalent because
the dependence in ϕ, contrary to that in ϕ̃, is constrained by
the Galilean symmetry—ϕ enters in D̃t . The minimal order
in fields amounts to keeping terms: (i) at most quadratic in
ϕ̃, (ii) linear in ∇2ϕ or in Dtϕ, and (iii) to combine them
with arbitrary powers of Laplacian ∇2 and covariant time
derivatives D̃t . This choice allows for an arbitrary dependence
in momentum and frequency of the two-point functions. Notice
that the dependence in ϕ is not restricted to be polynomial since
arbitrary powers of this field are included through the covariant
derivative D̃t . To summarize, the ansatz for �κ considered in
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the following reads

�κ [ϕ,ϕ̃]=
∫

x

{
ϕ̃f λ

κ

(−D̃2
t , − ∇2)Dtϕ − ϕ̃f D

κ

(−D̃2
t , − ∇2)ϕ̃

− ν

2D

[∇2ϕf ν
κ

( − D̃2
t , − ∇2

)
ϕ̃

+ ϕ̃f ν
κ

( − D̃2
t , − ∇2

)∇2ϕ
]}

. (42)

Setting f λ
κ = 1 and f ν

κ = f D
κ = D in the previous ansatz, one

is left with the bare action (4)—written in terms of covariant
time derivatives. Allowing nonconstant (and scale-dependent)
functions f X

κ (X = D,ν,λ) of the Laplacian and of covariant
derivatives is then the way to include an arbitrary dependence
in momentum and frequency for the two-point functions
that preserves all the symmetries, at the lowest (second)
order in ϕ̃.

The operator D̃t is squared in f D
κ since this function is real.

For f ν
κ and f λ

κ , to take the square of D̃t is a choice that ensures a
natural separation between real and imaginary parts of �(1,1)

κ ,
without loss of generality for the two-point functions. Note
that one needs to make precise the meaning of the expressions
f X

κ (−D̃2
t , − ∇2) (X = D,ν,λ). Indeed, it is ambiguous as it

stands since the D̃t and ∇ operators do not commute. We take
the convention that all D̃t ’s are on the left of the ∇’s. We also
assume that these functions can be expanded in a series of their
arguments:

f X
κ

(−D̃2
t , − ∇2

) =
∞∑

m,n=0

amn

(−D̃2
t

)m
(−∇2)n. (43)

One can then consider the constraints stemming from
the other symmetries. The shift-gauged symmetry imposes
that f λ

κ (ω2, �p 2 = 0) ≡ 1. In dimension one, the time-reversal
symmetry implies that the two functions f D

κ and f ν
κ become

identical, and also that f λ
κ (ω2, �p 2) ≡ 1. In a generic dimension

d, the ansatz (42) thus consists of three independent running
functions of p2 and ω2, and is reduced to a unique function of
p2 and ω2 in d = 1.

To compute the flow equations of the functions f X
κ (−D̃2

t , −
∇2), X = λ,ν, or D, one needs the expressions of the n-point
functions up to n = 4. All the calculations are performed
at vanishing fields. For the two-point functions, they are
straightforward and yield

�(2,0)
κ (ω, �p) = 0,

�(1,1)
κ (ω, �p) = iωf λ

κ (ω2, �p 2) + ν

D
�p 2f ν

κ (ω2, �p 2), (44)

�(0,2)
κ (ω, �p) = −2f D

κ (ω2, �p 2).

In this case, there is no ambiguity arising from the ordering
of the gradient and covariant time derivative operators. The
calculation and the explicit expressions of the three- and four-
point functions, more lengthy, are detailed in Appendix C. One
can check that all the Ward identities derived in Sec. III are
satisfied by these functions.

We can be a priori confident in our approximation scheme,
as it is close in spirit to the BMW approximation which can
accurately capture the momentum dependence of two-point

functions [41]. A more detailed discussion on the validity of
our approximation scheme can be found in Appendix B.

V. SIMPLIFIED APPROXIMATION

The ansatz (42) in generic dimensions d can be further
simplified by restraining the form of the functions f X

κ (−D̃2
t , −

∇2). The idea is to focus on a reliable description of the
zero-frequency and zero-momentum sector of the theory while
circumventing the limitations of the derivative expansion
which is problematic here. For this, one can neglect all D̃2

t

dependence in these functions: f X
κ (−D̃2

t , − ∇2) → f X
κ (−∇2)

for X = λ,ν and D.
The ansatz proposed in [10]—which was derived before

the formalization of the Galilean-gauged symmetry in terms
of covariant derivatives—is actually endowed with an addi-
tional simplification since we imposed the one-dimensional
constraint f λ

κ = 1 in all dimensions [or stated otherwise we
extended the condition f λ

κ ( �p = 0) = 1 holding for all d to the
whole �p sector]. It reads

�κ [ϕ,ϕ̃] =
∫

x

{
ϕ̃(x)Dtϕ(x) − ϕ̃(x)f D

κ (−∇2)ϕ̃(x)

− ν

D
ϕ̃(x)f ν

κ (−∇2)∇2ϕ(x)

}
. (45)

As a matter of fact, this ansatz implies that all interaction
vertices (�(n)

κ with n > 2) are reduced to their bare form.
Among these, the only nonvanishing one is �(2,1)

κ :

�(2,1)
κ (ω1, �p1,ω2, �p2) = λ �p1 · �p2. (46)

With the ansatz (45), the two-point functions in generic
dimensions simplify to

�(2,0)
κ (ω, �p) = 0,

�(1,1)
κ (ω, �p) = iω + ν

D
�p 2f ν

κ (p2), (47)

�(0,2)
κ (ω, �p) = −2f D

κ (p2).

With the aim of analyzing the fixed point structure, one
introduces dimensionless and renormalized functions f̂ ν

κ ≡
f ν

κ /νκ (respectively, f̂ D
κ ≡ f D

κ /Dκ ), where νκ (respectively,
Dκ ) are running coefficients [identifying at the microscopic
scale κ = � with the bare parameters ν (respectively, D)
of the action (4)] that are related to anomalous dimensions
κ∂κνκ = −ην(κ)νκ [respectively, κ∂κDκ = −ηD(κ)Dκ ]. At a
fixed point, these coefficients are expected to behave as power
laws νκ ∼ κ−η∗

ν and Dκ ∼ κ−η∗
D and the scaling exponents are

then expressed in terms of these anomalous dimensions as
z = 2 − η∗

ν and χ = (2 − d + η∗
D − η∗

ν )/2.
The flow equations for the functions f̂ ν

κ and f̂ D
κ can

be found in [10]. The Galilean invariance ensures that the
flow of the dimensionless running coupling constant ĝκ ≡
κd−2λ2Dκ/ν

3
κ is reduced to its dimensional part,

∂sĝκ = ĝκ (d − 2 + 3ην(κ) − ηD(κ)), (48)

with ∂s = κ∂κ , which thus enforces the identity z + χ = 2 at
any non-Gaussian fixed point. The subleading exponent ω,
governing the corrections to scaling, is independent of the
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FIG. 1. (Color online) (a) Flow diagram stemming from our
(simplified) minimal order approximation in the (d,ĝvd ) plane (with
v−1

d = 2d+1πd/2�[ d

2 ] a normalization factor related to the integration
volume). (Red circles) Renormalized value ĝ∗

SC at FSC. (Dashed
purple line) Gaussian fixed point FEW. (Cyan squares) Bare value ĝc,
which separates the basins of attraction of FSC and FEW. Gray arrows
symbolize flow lines. (b) Variation with d of χ = 2 − z for FSC (red
circles, our results; orange squares, numerical values from [43,44];
see also Table I).

leading critical exponents χ and z and can be calculated from
the flow behavior as s → −∞, using, for instance, that

ĝκ ∼ ĝ∗ + ĝ1 exp(ωs) (49)

in this limit.
Despite its simplicity, this ansatz yields the correct phase

diagram in all dimensions [Fig. 1(a)]—including the strong
coupling fixed point, and reasonable exponent values in
physical dimensions [Fig. 1(b)] [10]. More precisely, in all
dimensions studied (i.e., up to d = 8), there exists besides
the Edwards-Wilkinson fixed point FEW, a fully attractive
nontrivial strong-coupling fixed point FSC. In all d, generic
scaling is found (i.e., the flow always reaches one of these fixed
points). For d < 2, FSC is reached from any initial condition.
For d > 2, FEW and FSC become locally fully attractive. More
precisely, there exists a critical value of the (bare) coupling,
denoted ĝc, that separates the basins of attraction of FSC

and of FEW and for which the flow reaches the roughening
transition fixed point FRT. In d = 2, FRT coincides with FEW,
and becomes non-Gaussian for larger dimensions.

Because of Eq. (48) and since the fixed point coupling
constant ĝ∗

SC is nonzero, FSC is characterized by a single
exponent. We thus only discuss below the values obtained
for χ [10]. Table I and Fig. 1(b) contain our estimates for
the roughness exponent χ and the subleading exponent ω. For
d � 4, χ decreases almost linearly with d, with the exact value
1
2 (respectively, 2

3 ) recovered in d = 1 (respectively, d = 0),
and a reasonable but deteriorating agreement with numerical
values for 2 � d � 4. In higher dimensions, χ increases with
d, at odds with both numerical values and the scenario of
d = 4 being an upper critical dimension beyond which χ = 0

TABLE I. Exponent values in integer dimensions. The average
numerical values are extracted from [43]. To our knowledge, no
estimates of ω are available in the literature.

d 1 2 3 4

χ [38] 0.50 0.33 0.17 0.075
χ (numerics) 0.50 0.38 0.30 0.24
ω [38] 0.817 0.70 0.63 0.54

[17,18,45]. The values for the critical exponents can be refined
by computing the next order of our approximation scheme,
which is work in progress.

Regarding FRT, we record negative values of χ for 2 <

d < 5, which is reminiscent of perturbative results performed
at fixed d [12] but in contradiction with exact results dictating
χ = 0 [13,46]. This is to be imputed to our breaking of
the Z2 symmetry manifest in the Cole-Hopf formulation and
nonlinearly realized in the KPZ problem.

VI. ONE-DIMENSIONAL SCALING FUNCTION

We now consider the full ansatz (42) to calculate the
momentum- and frequency-dependent two-point correlation
function of the one-dimensional problem and to extract from
it the universal scaling function. We recall that, due to the
incidental time-reversal symmetry, the ansatz (42) simplifies
in d = 1 to only one running function left: f D

κ = f ν
κ ≡ fκ

and f λ
κ ≡ 1. We also drop from now on the vector arrows and

set ν = D = 1 since these two coefficients can be absorbed
in the action (4) through an appropriate rescaling of the fields
and of time and the change of coupling constant λ → √

gb =
λD1/2/ν3/2.

A. Flow equations

The flow equation for the function fκ can be obtained either
from the flow of �(0,2)

κ or from the one of �(1,1)
κ according to

(44). These two flows are equal in d = 1 since the ansatz
preserves all the symmetries including the time-reversal one.
They can be computed using Eq. (14), where Gκ is the
propagator matrix Gκ = [�(2)

κ + Rκ ]−1 as defined in Eq. (13).
Using the expressions (41) and (44) (specialized to d = 1 (i.e.,
a setting νκ = Dκ , f D

κ = f ν
κ ≡ fκ , and f λ

κ ≡ 1) for the matrix
elements of Rκ and �(2)

κ , one finds for the propagator,

Gκ (ω,q) = 1

Pκ (ω2,q2)

(
2kκ (ω2,q2) Yκ (ω,q)

Y ∗
κ (ω,q) 0

)
, (50)

where kκ (ω2,q2) = fκ (ω2,q2) + Dκr(q2/κ2), Yκ (ω,q) =
iω + q2kκ (ω2,q2), and Pκ (ω2,q2) = ω2 + (q2kκ )2. The cal-
culation of the flow equation for, for example, �(0,2)

κ , involving
matrix products and trace according to Eq. (14), is then
straightforward. This yields for the flow of fκ ,

∂κfκ (�,p) = −1

2

∫
q

∂κSκ (q)

{
1

P 2
κ (ω2,q2)

Xκ (ω2,q2)�(2,2)
κ (q, − q,p) + 1

2P 2
κ (ω2,q2)Pκ ((� + ω)2,(p + q)2)

× [
2Xκ (ω2,q2)Yκ (� + ω,p + q)�(1,2)

κ (−q, − p)�(2,1)
κ (q, − p − q)
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− q2Y 2
κ (ω,q)�(1,2)

κ (−p − q,p)
(
Yκ (� + ω,p + q)�(1,2)

κ (−q, − p) + 2kκ ((� + ω)2,(p + q)2)�(2,1)
κ (p + q, − q)

)
− (

Y ∗
κ (� + ω,p + q)�(1,2)

κ (q,p) + 2kκ ((� + ω)2,(p + q)2)�(2,1)
κ (q, − p − q)

)
× (

q2(Y ∗
κ )2(ω,q)�(1,2)

κ (p + q, − p) − 2Xκ (ω2,q2)�(2,1)
κ (p + q, − q)

)]}
, (51)

where q ≡ (ω,q), p ≡ (�,p), Xκ (ω2,q2) = ω2 −
q4k2

κ (ω2,q2), Sκ (q) = Dκr(q2/κ2), and where the expressions
for the three- and four-point vertex functions �(n,m)

κ are given
in Appendix C. The flow equation for fκ is hence an integral
over the internal momentum q and frequency ω and depends
on the external momentum p and frequency � .

As we intend to study the fixed point properties, we intro-
duce dimensionless and renormalized quantities. Momenta are
measured in units of κ (e.g., p̂ = p/κ), and frequencies in units
of Dκκ

2 [e.g., �̂ = �/(Dκκ
2)]. We define the dimensionless

renormalized function f̂κ = fκ/Dκ , as at the bare level,
fκ=� = D = 1. The sole running anomalous dimension ηκ is
defined by κ∂κ ln Dκ = −ηκ so that Dκ ∼ κ−η∗

at the fixed
point. The critical exponents in d = 1 are then given by
z = 2 − η∗ and χ = η∗. The absolute normalization of f̂κ and
Dκ is fixed by setting f̂κ (0,0) = 1 for simplicity [41].

The flow equation for the dimensionless function reads

∂sf̂κ (�̂ ,p̂) ≡ ∂s

[
1

Dκ

fκ

(
�

Dκκ2
,
p

κ

)]
= ηκ f̂κ (�̂ ,p̂) + (2 − ηκ )�̂ ∂�̂ f̂κ (�̂ ,p̂)

+ p̂ ∂p̂f̂κ (�̂ ,p̂) + 1

Dκ

κ∂κfκ (�,p), (52)

where ∂s = κ∂κ . Once the substitutions for dimensionless
quantities have been performed in (51), the last term 1

Dκ
∂sfκ

in (52) is dimensionless, and depends on the external dimen-
sionless momentum p̂ and frequency �̂ .

TABLE II. Characteristic parameters of the different scaling
functions, from the exact results of Ref. [24] and from this work:
(i) relative to f , universal amplitude ratio g0; (ii) relative to f̃ : position
of the first zero k0, coordinates of the negative dip (kd ,f̃d ), coefficient
of the stretched exponential b0, pulsation of the oscillations a0;
(iii) correction to scaling exponent ω. The error bars reflect the weak
variations around plateau values when the α parameter of the cutoff
function is varied between 0.5 and 14.

Quantity Exact NPRG

g0 1.15039 1.149(18)

k0 4.36236 4.21(4)

kd 4.79079 5.07(6)

f̃d −0.00120 −0.013(1)

a0
1
2 0.17(1)

b0
1
2 0.34(1)

ω − 0.82(4)

The dimensionless running coupling constant reads in one
dimension ĝκ = κ−1λ2/D2

κ . Its flow equation is again reduced
to its dimensional part due to Galilean invariance:

∂sĝκ = ĝκ (2ηκ − 1), (53)

and one finds as expected that χ = η∗ = 1
2 at any fixed

point with ĝ∗ = 0. The subleading exponent ω is calculated
according to (49) and we find values in agreement with
the ones obtained with the simplified ansatz of Sec. V (see
Tables I and II).

B. Numerical integration and error bars

The numerical integration of Eqs. (52) and (53) was
performed using standard techniques and the numerical er-
ror stemming from the integration procedure was assessed
by resorting to several system sizes, resolutions, etc. (see
Appendix D). It turned out that the numerical error was
negligible compared with the error coming from the approx-
imation scheme itself, which constitutes the dominant source
of inaccuracy and which we now discuss.

Ultimately, the error relative to the whole approximation
scheme can be evaluated by comparing successive orders of
approximation. However, when only a given order is available,
one can assess the accuracy of this approximation by varying
the parameter α of the cutoff function. Indeed, although
physical quantities are obtained in the limit κ → 0 (where
Rκ=0 vanishes) from the exact NPRG flow equations (13)
or (14) and thus do not depend in principles on the choice
of the particular profile of Rκ , any approximation introduces
a spurious residual dependence on the regulator [30]. This
sensitivity to the cutoff can be investigated and exploited to
estimate the accuracy of the approximation implemented.

Here, α was varied between 0.5 and 14, and all the physical
quantities computed and discussed in Sec. VI C exhibited a
similar large plateau behavior. The value given in the following
(text and Table II) for a quantity corresponds to the central
value on the plateau, and the error bars reflect the dispersion
of this quantity around its plateau value when α varies in
the range [0.5,14]. We emphasize that this procedure only
provides an intrinsic error at a given order of approximation
related to an artificial regulator dependence. Accumulated
experience in NPRG calculations seem to indicate that in
general this procedure yields a reasonable estimate of the order
of magnitude of the committed error [30]. However, in some
cases, these error bars may represent only lower bounds on
the uncertainties. Definite error bars can be inferred from the
comparison with the next order of approximation.

Runs were started from various different initial conditions
including the bare action (f̂� ≡ 1) with ĝ� typically between 1
and 10. In all cases, the function f̂κ smoothly deformed from its

061128-9
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FIG. 2. (Color online) Typical shape of the dimensionless fixed
point function f̂ ∗(�̂ ,p̂) (recorded at s = −25 and for α = 1).

initial shape to eventually reach a fixed point where it stopped
evolving, typically after s � −20. In other words, the NPRG
flow equations entail generic scaling for the one-dimensional
KPZ problem, since the long time and large distance behavior
is always governed by this nontrivial fixed point, yielding a
scaling regime (described in Sec. VI C). Figure 2 shows a
typical shape of the fixed point function f̂ ∗(�̂ ,p̂). It is fixed by
the normalization condition to unity at vanishing momentum
and frequency and decays as a power law when �̂ and/or p̂

become large.

C. Scaling function

1. Extraction of the scaling function

We now turn to the description of the fully attractive
fixed point. At this fixed point ∂sf̂κ (�̂ ,p̂) = 0 [in Eq. (52)]
and g∗ = 0 such that ηκ ≡ η∗ = 1

2 . Moreover, we verified
numerically that the nonlinear term ∂sfκ/Dκ in (52) decouples
(that is, ∂sfκ/Dκ → 0) when �̂ � 1 and/or p̂ � 1. As a
consequence, at the fixed point, Eq. (52) reduces in the regime
�̂ and/or p̂ � 1 to the homogeneous equation,

1
2 f̂ ∗(�̂ ,p̂) + p̂ ∂p̂f̂ ∗(�̂ ,p̂) + 3

2�̂ ∂�̂ f̂ ∗(�̂ ,p̂) = 0. (54)

Its general solution has the form

f̂ ∗(�̂ ,p̂) = 1

p̂1/2
ζ̂

(
�̂

p̂3/2

)
, (55)

where the function ζ̂ cannot be determined from the homo-
geneous equation but can be extracted from the numerical
solution of the full Eq. (52)—by tabulating the values
p̂1/2f̂ ∗(�̂ ,p̂) against the ratios �̂/p̂3/2. We observe that the
fixed point function f̂ ∗(�̂ ,p̂) is regular for all �̂ and p̂ (see
Fig. 2), which allows us to deduce the limits of ζ̂ . First ζ̂ (0)
has to be finite for the limit �̂ → 0 to exist and followingly
f̂ ∗ ∼ ζ̂ (0)p̂−1/2 for p̂ � 1 at fixed �̂ . Second, ζ̂ must behave
as ζ̂ (x) ∼ ζ̂∞x−1/3 as x → ∞ for the limit p̂ → 0 to exist and
followingly f̂ ∗ ∼ ζ̂∞�̂−1/3 for �̂ � 1 at fixed p̂. We show
below that the form of the solution (55) entails scaling for the
(dimensionful) correlation function C(�,p).

We now consider the fixed point dimensionful function,

f (�,p) = Dκf̂
∗(�̂ ,p̂) = Dκf̂

∗
(

�

Dκκ2
,
p

κ

)
. (56)

The physical limit is obtained when the running scale κ tends
to zero at fixed values of � and p. This limit is precisely
equivalent to �̂ � 1 and/or p̂ � 1, which corresponds to
the scaling regime described above where f̂ ∗ takes the form
(55). Moreover, when κ → 0, Dκ behaves as a power law
Dκ = D0κ

−1/2 where D0 is a nonuniversal constant. Hence,
the physical dimensionful function f is expressed in terms of
the scaling function ζ̂ as

f (�,p) = D0

p1/2
ζ̂

(
1

D0

�

p3/2

)
. (57)

The correlation function is defined, upon inverting the matrix
�(2) of the two-point vertex functions, by

C(�,p) = − �(0,2)(�,p)

|�(1,1)(�,p)|2 = 2f (�,p)

� 2 + p4f (�,p)2
, (58)

where the ansatz (44), with f D
κ = f ν

κ ≡ f , f λ
κ ≡ 1, and

ν = D = 1, has been used in the second equality. Note that
the definition (58) of the correlation function corresponds
in real space to the connected mean value 〈h(t,x)h(0,0)〉c
which differs by a factor −2 from the definition (2) in the
co-moving frame. Restoring the ν and D coefficients also
yields an additional factor, such that the correlation function
defined by (58) finally relates to the Fourier transform of the
correlation function defined by (2) via an overall multiplicative
factor,

C0 = −1

2

ν2

D
. (59)

Replacing in (58) the dimensionful fixed point function f by
its expression (57) yields

C(�,p) = 2

p7/2

D0ζ̂
(

1
D0

�
p3/2

)
� 2/p3 + D2

0 ζ̂
2
(

1
D0

�
p3/2

) (60)

= 2

p7/2

1

D0

ζ̂
(

�̂
p̂3/2

)
�̂ 2/p̂3 + ζ̂ 2

(
�̂

p̂3/2

) (61)

≡ 2

p7/2

1

D0
F̊

(
1

D0

�

p3/2

)
. (62)

Equation (60) shows that the correlation function takes a
scaling form at large distance and long time. Let us emphasize
once more that we did not assume scaling, the latter emerges
from the fixed point solution of the flow equation starting
from any reasonable microscopic initial condition. The scaling
function F̊ is hence universal, up to an absolute normalization
and a rescaling of its argument by a multiplicative constant.

According to Eqs. (61) and (62), this function F̊ can be
computed from the numerical data for the dimensionless fixed
function, selecting its values for arguments in the range �̂

and/or p̂ � 1 which corresponds to the scaling regime. We
proceeded for various initial conditions and for different values
of the parameter α. In all cases, we observed for each value of
α the expected data collapse—generating the scaling function
F̊—with a very high precision, as illustrated in Fig. 3.
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FIG. 3. (Color online) (Leftmost curve) Scaling function F̊ ( �̂

p̂3/2 )
corresponding to the data collapse (62), with the two insets zooming
different parts to show the very high quality of the collapse (note
the vertical scales); the various colors (gray shades) differentiate
the contributions of distinct values of �̂ . (Rightmost curve) Scaling
function F̊ (τ = �̂

p̂7/3 ) multiplied by τ 7/3 to illustrate the power-law

behavior of the tail F̊ ∼ τ−7/3 (see text). Note that the small dispersion
visible in the inset zooming the tail for τ � 100 is hence magnified
by a factor of order 1007/3.

2. Normalizations

Our aim is now to confront our scaling function F̊ with the
exact result obtained in Ref. [24]. The first step consists of
fixing the normalizations. Indeed, two constants are involved
in the standard definition [as recalled below Eq. (2)] of the
universal scaling function g from the correlation function C,

C(τ,L) = const.τ 2χ/z g(const.′L2χτ−2χ/z),

that have to be fixed. The scaling function g(y) is normalized
in [24] in the following way:

g(y) = lim
t→∞

C((2λAt2)1/3y,t)(
1
2λA2t

)2/3 , (63)

with A ≡ D/ν. Then three functions f , f̃ , and f̊ are
introduced in [24], through the definitions,

f (y) = 1

4
g′′(y),

f̃ (k) = 2
∫ ∞

0
dy cos(ky)f (y), (64)

f̊ (τ ) = 2
∫ ∞

0
dk cos(kτ )f̃ (k2/3),

and imposing the additional normalization condition,

f̃ (0) = 1. (65)

The last function f̊ is proportional to C(ω,p)p7/2 (see [24]),
that is, it corresponds to our function F̊ reconstructed using
(62) up to normalization factors. The analog of the functions
f̃ and f , that are computed in the following, will also be
denoted with capital letters F̃ and F , respectively. The precise

normalization constants between F̊ and f̊ can be established
as follows. First one deduces from Eqs. (63) and (64) that

f̊ (τ ) = − p7/2

25/3λ4/3A5/3t7/3
C

(
p

(2λAt2)1/3
,τ

p3/2

t

)
. (66)

Then, comparing this expression with our definition (62) and
taking into account the multiplicative factor (59), we obtain
the relation,

f̊ (τ ) = 2
√

2g∗
√

D

νA
F̊

(√
2g∗

√
νA

D
τ

)
, (67)

where we used that the bare value λ is related to the fixed point
coupling g∗ through g∗ = gb/D

2
0 = λ2D/(D2

0ν
3). Relating the

Fourier transforms is then straightforward:

f̃ (k) = 2
D

νA
F̃

(
k(

2g∗ νA
D

)1/3

)
≡ 1

F̃n

F̃

(
k

kn

)
. (68)

Finally, using the same normalization criterion (65) as in [24]
gives the absolute vertical normalization F̃n = νA

2D
= F̃ (0) and

the absolute horizontal normalization kn = (4F̃ng
∗)1/3.

3. Properties of the scaling function f̃

Let us first compare the scaling functions f̃ and F̃ .
The function f̃ is studied in detail in [24] and also in
[17,21], where interesting features are highlighted. According
to Ref. [24], the function f̃ first decreases to vanish at
k0 � 4.36236 . . . and then exhibits a negative dip of coor-
dinates (kd � 4.79079 . . . ,f̃d � −0.0012023 . . .). After this
dip, the function decays to zero with a stretched exponential
tail, over which are superimposed tiny oscillations around zero,
only apparent on a logarithmic scale. A heuristic fit of this
behavior for k � 15 is given in [24]

f̃ (k) ∼ 10.9k−9/4 sin

(
k3/2

2
− 1.937

)
e− 1

2 k3/2
. (69)

We show below that we here recover qualitatively all these
features, with reasonable estimates for the different parameters
that characterize them. Following (64), the function F̃ is
defined from F̊ by the integral,

F̃ (k) =
∫ ∞

0

dτ

π
cos(τk3/2)F̊ (τ ), (70)

which has to be computed numerically. The function F̊ stems
from the superposition of the numerous curves involved in
the data collapse of Eq. (62). Although the data collapse is
excellent, there subsists a high frequency and small amplitude
noise due to the reordering of the points (apparent with a large
zoom as presented in the insets of Fig. 3). As we intend to
investigate the properties of the tail of F̃ with high precision,
we first need to eliminate this noise. For that, we devise an
appropriate family of analytical fitting functions to smooth
our data for F̊ (τ ). The choice of the family of fitting functions
is determined as follows.

First, they have to reproduce the large τ behavior of F̊ .
The latter can be inferred from the limits of the function ζ̂ (x)
established after Eq. (55). One obtains F̊ (τ ) ∼ F̊∞τ−7/3 as
τ → ∞. For each value of the parameter α, the proportionality
constant F̊∞ can be estimated graphically (up to 4–5 digits)
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from the curve τ 7/3F̊ (τ ). Moreover, the fitting functions have
to be even, and finite at the origin. To satisfy these constraints,
we build a family of fitting functions as an expansion in
elementary rational polynomials of τ 2 raised to the adequate
power to reproduce the large τ behavior:

F̊fit(τ ) =
(

a00 + a02τ
2

1 + a01τ 2 + a03τ 4
+ a10

1 + a11τ 2

+ a20

1 + a21τ 2
+ · · ·

)7/6

, (71)

with the additional constraint (a02/a03 + a10/a11 +
a20/a21 + · · ·)7/6 = F̊∞ [47]. The first fit is achieved using
the three independent coefficients a0i . The corresponding
denominator introduces four nonanalyticities in the points of
the complex plane ±z±

0 with

z±
0 =

√
1

2a03

( − a01 ± i

√
−a2

01 + 4a03
)
, (72)

whose coordinates were found to be very robust against the
choice and the order of the fit as explained below. Note that
these four points appeared never to lie on the imaginary
axis, nor on the real axis (−a2

01 + 4a03 > 0). We then add
in turn simple monomials corresponding to purely imaginary
poles up to nine independent coefficients (we observed that
additional complex poles were systematically decomposed
into two purely imaginary poles). This procedure turned out
to converge rapidly for all α values, as illustrated in Fig. 4.
In particular, the existence and the coordinates of the complex
singularities ±z±

0 appeared to be a robust feature of the data.
Moreover, they are always found to lie the closest to the real
axis when other poles are included according to (71) [48].
For the remaining calculations we work with the analytical
expression F̊fit which reproduces faithfully our data, and hence
drop in the following the index fit.
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FIG. 4. (Color online) Illustration of the fitting procedure de-
scribed in the text, using the same data for F̊ as in Fig. 3 but with
unified colors [black curves, on the left F̊ (τ ); on the right, F̊ (τ )τ 7/3].
The four successive orders of the fit appear superimposed in the main
graph; the two insets present large zooms (note the vertical scales)
to differentiate them and highlight the convergence: the higher the
order, the closer to the data (black-dotted curve) the fit lies. Note
that for the right curve and inset F̊ (τ )τ 7/3 the differences are again
magnified by a factor τ 7/3.
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FIG. 5. (Color online) Comparison of the scaling function F̃ (k)
(red curve with dots) obtained in this work with the exact one f̃ (k)
(black curve with squares) from [24]. The inset shows the stretched
exponential behavior of the tail with the superimposed oscillations,
developing on the same scale k3/2. Note the vertical scale; this
behavior develops with amplitudes below typically 10−6 (see text
for a detailed comment of the figure).

We computed numerically the function F̃ from F̊ according
to (70) and normalized it using (68), which yielded the
following results. We find that F̃ exhibits all the qualitative
features of the exact function f̃ , in particular, the existence
of the negative dip and the subsequent stretched exponential
decay with the presence of oscillations in the tail, as displayed
in Fig. 5. Moreover, it compares very accurately with the
exact function. Indeed, we find for the position of the first
zero k0 � 4.21(4) and for the coordinates of the dip (kd �
5.07(6),F̃d � −0.013(1)), which are reasonably close to the
exact results (see Table II). As for the behavior of the tail of F̃ ,
it can be inferred analytically from the pole structure of F̊ . Let
us define F̄ (k) = F̃ (k2/3), which is hence the standard Fourier
transform of F̊ ,

F̄ (k) =
∫ ∞

0

dτ

π
cos(τk)F̊ (τ ). (73)

As F̊ (τ ) is C∞, the tail of F̄ is dominated by the singularities
of F̊ (τ ) in the upper complex half plane lying the closest to the
real axis, which are z+

0 and −z−
0 . Denoting z+

0 = a0 + ib0 with
b0 > 0, we obtain F̄ (k) ∼ e−ikz+

0 + eikz−
0 ∝ e−b0k cos(a0k) as

k → ∞ and followingly,

F̃ (k) = F̄ (k3/2) ∼ e−b0k
3/2

cos(a0k
3/2) as k → ∞. (74)

F̃ hence decays following a stretched exponential with super-
imposed oscillations on the scale k3/2 exactly as observed in the
exact solution [see (69)]. Regarding the tiny magnitude over
which develop these features, this agreement is remarkable.
Let us emphasize that within the MC approximation and the
self-consistent expansion, the stretched exponential behavior
and the oscillations were also highlighted, but not on the
correct scale [17,21,24]. The NPRG method hence seems
to provide more accurate results than other nonperturbative
approaches, and with much less inputs (no assumed scaling
nor a precise scaling form).
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A consequence is that, conversely to the MC approach for
instance, the coefficient of the exponential and the period of
the oscillations can here be estimated—extracted analytically
from the values of z0. We find b0 � 0.34(1) for the coefficient
of the exponential, and a0 � 0.17(1) for the pulsation of
the oscillations (checking that these values coincide with
the same quantities estimated graphically from the tail of
F̃ computed numerically—the latter being determined with
much less accuracy). These coefficients can be compared with
the coefficients of the fit (69) of the tail of the exact function
which are b0 = a0 = 1

2 . They are of the same order, which
is already highly nontrivial. The discrepancy is visible on a
logarithmic scale, as illustrated in the inset of Fig. 5. Let us
emphasize once more that the error bars attributed here to
a given quantity reflect the weak variations of this quantity
around plateau values when the α parameter of the cutoff
function is varied. It represents an error estimate intrinsic to
the order of approximation under study and does not imply that
the value at the next order of approximation would necessarily
fall within these error bars.

4. Scaling function in real space and universal amplitude ratio

We finally come to the real space scaling function f

defined in (64). We computed it numerically by Fourier
transforming F̃ ,

F (y) =
∫ ∞

0

dk

π
cos(ky)F̃ (k). (75)

It is compared in Fig. 6 with the exact result. Again, the
function F reproduces accurately the exact one f , though it is
the less accurate of our three scaling functions since it stems
from the two successive numerical (oscillating) integrations
(70) and (75) of our raw data. The tail is particularly sensitive
to this loss of precision. The exact function f (y) is found
to decrease as exp(−cy3) when y → ∞ in [24], whereas the
decay of the function F (y), though it starts with the correct
behavior, rapidly crosses over to a simple exponential decay
exp(−c′y).
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FIG. 6. (Color online) Comparison of the scaling function F (y)
(red curve with dots) obtained in this work with the exact one f (y)
(black curve with squares) from [24].

From this function can be computed the universal amplitude
ratio g0 with the definition given in [24]

g0 ≡ 4
∫ ∞

0
dy yf (y). (76)

The exact result is the Baik-Rain constant [25] g0 =
1.1503944783 . . . (more digits can be found in [24]). Here,
the universal constant g0 can be estimated by performing
the numerical integration corresponding to (76) using F .
However, this amounts to achieving three successive numerical
integrations from our raw function F̊ and the resulting
precision is low. Alternatively, one can compute part of the
involved integrals analytically, using the definition given in
[24]: g0 ≡ g(0) where g(y) is the original scaling function
proportional to the second derivative of f (y) [see (64)]. Indeed,
g(y) can be expressed integrating twice f through its Fourier
transform f̃ ,

g(y) − g(0) = 4

π

∫ y

0
dv

∫ v

0
du

∫ ∞

0
dk cos(ku) f̃ (k)

= 4

π

∫ ∞

0
dk (1 − cos(ky))

f̃ (k)

k2
. (77)

Taking the limit y → ∞ in this expression with the change
of variables z = ky [and recalling that f̃ (k = 0) = 1], one
deduces that in this limit,

g(y) = 4

π

∫ ∞

0
dk

1 − cos(ky)

k2
+ O(1/y), (78)

and consequently,

g(0) = lim
y→∞ − 4

π

∫ ∞

0
dk (1 − cos(ky))

(
f̃ (k) − 1

k2

)
. (79)

Since the function (f̃ (k) − 1)/k2 is infinitely derivable, its
Fourier transform vanishes in the limit y → ∞ and one is left
with

g(0) = − 4

π

∫ ∞

0
dk

(
f̃ (k) − 1

k2

)
(80)

= 6

π2

∫ ∞

0

dk√
k

∫ ∞

0
dτ sin(τk3/2)τ f̊ (τ ) (81)

= 2

π2
�

(
1

3

) ∫ ∞

0
dτ τ 2/3f̊ (τ ), (82)

using the definitions (64). This universal quantity can thus
be determined numerically with much higher precision from
F̊ by performing a unique, nonoscillating integral. We find
g0 � 1.149(18) which is in close agreement with the exact
value, superior to the MC estimate g0 � 1.1137 [17]. All
our estimates for the characteristic parameters of the different
scaling functions obtained in this section are summarized in
Table II.

VII. CONCLUSION

In this work, we have presented a general framework to in-
vestigate the KPZ equation using the NPRG method. We have
proposed a detailed and revisited analysis of the symmetries
of the KPZ equation, both the standard symmetries—Galilean
and shift—and their versions gauged in time, as well as the
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one-dimensional time-reversal symmetry and a nonlinearly
realized Z2 symmetry. We have derived general Ward identities
associated with these symmetries (except for the Z2 one) and
proposed a convenient geometric interpretation of the Galilean
symmetry in terms of covariant time derivatives.

We have then devised an approximation scheme based
on an ansatz for �κ which, in contrast to the standard
derivative expansion often used in the NPRG framework,
preserves the momentum and frequency structure of the vertex
functions. This ansatz, constrained by the symmetries, allows
one to compute correlation functions in a nonperturbative, yet
systematically improvable, way. We explicitly implemented
the minimal order in the response field of this approximation
scheme, specifically developing two applications: the deter-
mination of critical exponents in physical dimensions (with
a simplified ansatz) and the computation of universal scaling
functions in one dimension.

We found that, without any input other than the bare action
and its symmetries (in particular without assuming scaling),
the renormalization group flow is generically attracted toward
a strong-coupling fixed point—which roots the existence of
generic scaling—or to the EW fixed point for d > 2 and
λ < λc, yielding for the first time the full correct phase diagram
of the KPZ equation within an RG approach.

The estimates of the critical exponents obtained in dimen-
sions two and three compare reasonably with results from
simulations, though the accuracy of these exponents decreases
with the dimension. We are confident that these results, which
were obtained using what remains, finally, a rather crude
approximation, will get better as higher order approximations
are studied—which is hopefully feasible in practice. Indeed,
we know from experience that within the NPRG framework,
the convergence is generally very fast, such that pushing it to
even a slightly higher order can eventually provide excellent
results [30]. Similarly, we are unable, at this current order of
approximation, to settle on the existence of an upper critical
dimension, but we should be able to solve this issue at next
orders.

The scaling functions F̊ , F̃ , and F obtained in one
dimension, on the other hand, compare very accurately with the
exact ones. In particular, we recover the stretched exponential
with tiny superimposed oscillations of the tail of f̃ (k) on the
correct scale k3/2. We also obtained an accurate estimate of the
universal amplitude ratio g0 � 1.149(18). Quantities beyond
the leading scaling regime can also be computed, which we
illustrated here with the determination of the correction to
scaling exponent ω.

A further step will consist in refining the computation
of critical exponents in all dimensions by improving the
approximation, which is in progress. One could also compute
the probability distributions of the h(t,�x) field, which are again
known exactly in one dimension but not in any other, and
investigate the influence of boundary conditions.
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APPENDIX A: TIME-REVERSAL WARD IDENTITIES
FOR THE THREE- AND FOUR-POINT FUNCTIONS

All the Ward identities for the three- and four-point ver-
tex functions are derived by taking functional derivatives of the
identity (37) and evaluating them at uniform and static fields.
For the remaining three-point function, one obtains in Fourier
space,

2�(3,0)
κ (ω1, �p1; ω2, �p2)

= − ν

D
p2

1Re�(2,1)
κ (ω2, �p2; −ω1 − ω2, − �p1 − �p2)

− ν

D
p2

2Re�(2,1)
κ (ω1, �p1; −ω1 − ω2, − �p1 − �p2)

− ν

D
p2

3Re�(2,1)
κ (ω1, �p1; ω2, �p2)

+ 1

2

(
ν

D

)3

p2
1p

2
2p

2
3�

(0,3)
κ (ω1, �p1; ω2, �p2). (A1)

For the four-point functions, we report the four additional
independent identities obtained for uniform and static fields:

2Re�(1,3)
κ (ω1,ω2,ω3) = − ν

D
p2

1�
(0,4)
κ (ω1,ω2,ω3),

2Im�(2,2)
κ (ω1,ω2,ω3) = − ν

D
p2

2Im�(1,3)
κ (ω1,ω2,ω3)

− ν

D
p2

1Im�(1,3)
κ (ω2,ω1,ω3),

2Re�(3,1)
κ (ω4,ω3,ω2) = 1

2

(
ν

D

)3

p2
2p

2
3p

2
4�

(0,4)
κ (ω4,ω3,ω2)

− ν

D
p2

4Re�(2,2)
κ (ω3,ω2,ω4)

− ν

D
p2

3Re�(2,2)
κ (ω2,ω4,ω3)

− ν

D
p2

2Re�(2,2)
κ (ω3,ω4,ω2), (A2)

and, finally,

p2
1Im�(3,1)

κ (ω2,ω3, − ω1 − ω2 − ω3) + 3 perm.

= −1

2

(
ν

D

)2

p2
1p

2
2p

2
3Im�(1,3)

κ (−ω1 − ω2

−ω3,ω1,ω2) + 3 perm., (A3)

where “perm.” refers to the following: (i) on the left-hand side,
the permutation of the last (implicit) frequency-momentum
argument (corresponding to the ϕ̃ leg) together with the p2

factor in front, from ω1 over to ω2,ω3 and −ω1 − ω2 − ω3; (ii)
on the right-hand side, the permutation of the first frequency-
momentum argument (corresponding to the ϕ leg) together
with the complementary product of p2 in front, from −ω1 −
ω2 − ω3 over to ω1, ω2, and ω3.
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APPENDIX B: VALIDITY OF THE
APPROXIMATION SCHEME

The approximation scheme presented in Sec. IV is closely
inspired by the BMW scheme, which provides an accurate de-
scription of the momentum dependence of two-point functions
at equilibrium [41]. The BMW scheme thus stands as the most
adequate approximation scheme for the KPZ problem, both
because we are intrinsically interested in the momentum and
frequency structure of the two-point functions and because the
derivative nature of the interaction vertex seems to require one
to go beyond a simple derivative expansion [39]. However,
the implementation of the BMW scheme for the KPZ problem
is hindered by the very demanding symmetries of the KPZ
action. As a consequence, it cannot be directly performed but
has to be adapted regarding three main aspects.

First, the standard BMW approximation at equilibrium
consists, at leading nontrivial order, of performing truncations
on the three- and four-point functions, keeping only the
leading order in their internal momenta since high momentum
contributions are suppressed by the cutoff function (see
[41] for a full justification of the scheme). In the KPZ
problem, as stressed in Sec. IV, the Galilean symmetry relates
n-point functions with different n and different momenta in a
complicated way such that a naive expansion of the three- and
four-point functions in their internal momenta and frequencies
would spoil these relations. To overcome this difficulty, we
propose here instead to devise an ansatz for �κ that manifestly
satisfies all the symmetries and such that they are hence
automatically preserved in subsequent calculations (functional
derivatives with respect to the fields). This ansatz imposes

in turn the form of the three- and four-point functions. It
appears that these functions retain some internal momentum
and frequency dependencies that would be neglected in a direct
implementation of the BMW approximation but which are here
necessary to fulfill the symmetry constraints. Hopefully, these
additional subleading terms are not expected to deteriorate the
quality of the approximation.

Second, another specificity inherent to the KPZ problem
resides in the absence of regulator on the frequency sector,
which is prevented by the Galilean-gauged symmetry (see
Sec. III D). As the whole BMW scheme relies on the presence
of the cutoff term to perform expansions in internal momenta
and frequencies, the absence of such a cutoff in the frequency
sector would render an expansion in internal frequencies
unjustified. Hopefully, the very same symmetry also cures this
problem. Indeed, if vertices are expanded in momenta, then the
Galilean-gauged symmetry fixes the frequency dependence
associated with ϕ legs [see, e.g., Eq. (33)]. Accordingly, no
internal frequency expansion is needed for the ϕ legs once an
expansion in internal momenta is performed.

Finally, the previous discussion applies to the ϕ legs.
However, the ϕ̃ legs are treated in the proposed ansatz (42) in
a much cruder way since �κ is simply expanded at quadratic
order in that field. The quality of such an expansion has been
analyzed in equilibrium statistical mechanics both within the
derivative expansion (see, e.g., [29,30]) and within the BMW
approximation scheme [42], and it seems to give reasonable
results. Nevertheless, it probably constitutes the main source
of inaccuracy of the present scheme. We leave for future work
the improvement of the ϕ̃ dependence of the approximation.

APPENDIX C: n-POINT FUNCTIONS AT THE MINIMAL ORDER OF THE APPROXIMATION SCHEME

To compute the three- and four-point functions at vanishing field ensuing from the ansatz (42) involves one to take functional
derivatives of the functions f X

κ (−D̃2
t , − ∇2) (X = D,ν,λ) with respect to the field ϕ and then to evaluate the result at ϕ = 0.

This can be done using the expression of the series expansion (43):

δf X
κ

(−D̃2
t , − ∇2

)
δϕ(t1,�x1)

=
∞∑

m=1,n=0

amn

m−1∑
k=0

(−D̃2
t

)k δ
(−D̃2

t

)
δϕ(t1,�x1)

(−D̃2
t

)m−k−1(−∇2
x

)n
, (C1)

with

δ
(−D̃2

t

)
δϕ(t1,�x1)

= λ(∇x(δ(t − t1)δ(d)(�x − �x1)) · ∇x(∂t − λ∇xϕ(x) · ∇x) + (∂t − λ∇xϕ(x) · ∇x)(∇x(δ(t − t1)δ(d)(�x − �x1)) · ∇x)).

(C2)

When Fourier transforming,

δ
(−D̃2

t

)
δϕ(t1,�x1)

→ iλ �p1 · ( �p1 + �p)(ω1 + 2ω). (C3)

One obtains, for instance,

�(1,2)
κ (ω1, �p1,ω2, �p2) = −iλ

∞∑
m=1,n=0

amn ×
m−1∑
k=0

ω2k
2 [ �p1 · ( �p1 + �p2)(ω1 + 2ω2)](ω1 + ω2)2(m−k−1)(( �p1 + �p2)2)n + (2 ↔ 3),

(C4)
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and, thus,

�(1,2)
κ (ω1, �p1,ω2, �p2) = − iλ

ω1

[ �p1 · ( �p1 + �p2)
(
f D

κ ((ω1 + ω2)2,( �p1 + �p2)2) − f D
κ

(
ω2

2,( �p1 + �p2)2
))

− �p1 · �p2
(
f D

κ

(
ω2

2, �p 2
2

) − f D
κ

(
(ω1 + ω2)2, �p 2

2

))]
. (C5)

All the other functions can be computed the same way. The three-point functions read

�(3,0)
κ (ω1,ω2; �p1, �p2) = 0, (C6)

�(0,3)
κ (ω1,ω2; �p1, �p2) = 0, (C7)

�(2,1)
κ (ω1,ω2; �p1, �p2) = λ �p1. �p2f

λ
κ ((ω1 + ω2)2,( �p1 + �p2)2) + λ �p1. �p2

ω1

ω2

[
f λ

κ

(
(ω1 + ω2)2, �p 2

1

) − f λ
κ

(
ω2

1, �p 2
1

)]
+ λ �p1. �p2

ω2

ω1

[
f λ

κ

(
(ω1 + ω2)2, �p 2

2

) − f λ
κ

(
ω2

2, �p 2
2

)]

+ iλ
ν

2D

{
�p 2

1
�p2

ω2
.( �p1 + �p2)

[
f ν

κ ((ω1 + ω2)2,( �p1 + �p2)2) − f ν
κ

(
ω2

1,( �p1 + �p2)2
)]

+ �p 2
1

�p2

ω2
. �p1

[
f ν

κ

(
(ω1 + ω2)2, �p 2

1

) − f ν
κ

(
ω2

1, �p 2
1

)] + �p 2
2

�p1

ω1
. �p2

[
f ν

κ

(
(ω1 + ω2)2, �p 2

2

) − f ν
κ

(
ω2

2, �p 2
2

)]

+ �p 2
2

�p1

ω1
.( �p1 + �p2)

[
f ν

κ ((ω1 + ω2)2,( �p1 + �p2)2) − f ν
κ

(
ω2

2,( �p1 + �p2)2
)]}

. (C8)

Note that the combinations appearing in �(2,1)
κ and �(1,2)

κ are related. If one denotes �
(1,2)
κ,D the expression (C5) where the D index

labels the function (f D
κ ) appearing on the right-hand side, and similarly �(1,2)

κ,ν the same expression (C5) where the function f D
κ

is replaced by f ν
κ , one has

iIm�(2,1)
κ (ω1,ω2; �p1, �p2) = − ν

2D

{ �p 2
1 �(1,2)

κ,ν (ω2,ω1; �p2, �p1) + �p 2
2 �(1,2)

κ,ν (ω1,ω2; �p1, �p2)
}
. (C9)

This type of relation is used in the following to shorten the expression of �(3,1)
κ . The four-point functions are

�(4,0)
κ (ω1,ω2,ω3; �p1, �p2, �p3) = 0,

�(1,3)
κ (ω1,ω2,ω3; �p1, �p2, �p3) = 0,

�(0,4)
κ (ω1,ω2,ω3; �p1, �p2, �p3) = 0,

�(2,2)
κ (ω1,ω2,ω3; �p1, �p2, �p3) = −λ2 �p1.( �p1 + �p3) �p2. �p4

[
f D

κ

(
ω2

4, �p 2
4

)
(ω1 + ω2)ω2

+ f D
κ

(
ω2

3, �p 2
4

)
(ω1 + ω2)ω1

− f D
κ

(
(ω1 + ω3)2 , �p 2

4

)
ω1ω2

]

− λ2 �p2.( �p2 + �p3) �p1. �p4

[
f D

κ

(
ω2

4, �p 2
4

)
(ω1 + ω2)ω1

+ f D
κ

(
ω2

3, �p 2
4

)
(ω1 + ω2)ω2

− f D
κ

(
(ω2 + ω3)2 , �p 2

4

)
ω1ω2

]

− λ2 �p1.( �p1 + �p4) �p2. �p3

[
f D

κ

(
ω2

3, �p 2
3

)
(ω1 + ω2)ω2

+ f D
κ

(
ω2

4, �p 2
3

)
(ω1 + ω2)ω1

− f D
κ

(
(ω1 + ω4)2 , �p 2

3

)
ω1ω2

]

− λ2 �p2.( �p2 + �p4) �p1. �p3

[
f D

κ

(
ω 2

3 , �p 2
3

)
(ω1 + ω2)ω1

+ f D
κ

(
ω 2

4 , �p 2
3

)
(ω1 + ω2)ω2

− f D
κ

(
(ω2 + ω4)2 , �p 2

3

)
ω1ω2

]

≡ �
(2,2)
κ,D (ω1,ω2,ω3; �p1, �p2, �p3), (C10)

where in the last line the D index refers to the involved function f D
κ . We denote �̄

(2,2)
κ,D the two last lines of (C10) with the same

convention for the meaning of the index D. Finally, one finds, omitting the dependence in �pi (which follows the same order
as ωi),

�(3,1)
κ (ω1,ω2,ω3) = − ν

2D
�p 2

3 �(2,2)
κ,ν (ω1,ω2,ω3) − ν

2D
�p 2

2 �(2,2)
κ,ν (ω3,ω1,ω2) − ν

2D
�p 2

1 �(2,2)
κ,ν (ω2,ω3,ω1)

+ iω3�̄
(2,2)
κ,λ (ω1,ω2,ω3) + iω2�̄

(2,2)
κ,λ (ω3,ω1,ω2) + iω1�̄

(2,2)
κ,λ (ω2,ω3,ω1)

− i
λ2

ω3
�p3.( �p1 + �p2) �p1. �p2

[
f λ

κ ((ω1 + ω2)2,( �p1 + �p2)2) − f λ
κ

(
ω2

4,( �p1 + �p2)2
)]
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− i
λ2

ω1
�p1.( �p2 + �p3) �p2. �p3

[
f λ

κ ((ω2 + ω3)2,( �p2 + �p3)2) − f λ
κ

(
ω2

4,( �p2 + �p3)2)]
− i

λ2

ω2
�p2.( �p1 + �p3) �p1. �p3

[
f λ

κ ((ω1 + ω3)2,( �p1 + �p3)2) − f λ
κ

(
ω2

4,( �p1 + �p3)2)]. (C11)

APPENDIX D: PROCEDURE FOR THE
NUMERICAL INTEGRATION

This appendix is devoted to presenting the details of the
numerical procedure implemented to achieve the integration
of flow equations, on the example of Eqs. (52) and (53).
The momentum and frequency are discretized on a p̂ × √

�̂

mesh of spacing p̂ and 
√

�̂ and sizes p̂max and
√

�̂max.
The integrals over the internal momentum q̂ and frequency
ω̂ in (51) are performed using Simpson’s rule. The

√
�̂

mesh is chosen because the integrand can have rather long
tails in ω̂ as there is no cutoff term [analogous to r(y)]
suppressing the high frequencies. The values of f̂ at ω̂ ± �̂

which do not fall on
√

�̂ mesh points are evaluated using
cubic interpolations. The function f̂ is extended outside
the grid (for momenta p̂ + q̂ greater than p̂max or/and
frequencies �̂ + ω̂ greater than �̂max) using power law
extrapolations.

Regarding the integration over q̂, as the integrand falls off
exponentially due to the (derivative of the regulator) ∂sSκ

term in (51), the bounds ±∞ of the integral can be safely
replaced by ±p̂max. This is not the case for the integral over the
frequency ω̂ as the decay of the integrand may be slow. We first

compute the integral on [−�̂max,�̂max] and then evaluate the
contribution of the integral on the boundaries [−∞, − �̂max]
and [�̂max,∞] by performing in these regions the change of
variable x = ω̂/ω̂max and using the extrapolated values of f̂ .
The precision on the momentum and frequency integral is
of order 10−4 for the typical resolutions p̂ = 

√
�̂ = 1/4

and mesh sizes �̂max = 152 and p̂max from 20 to 45 increasing
with the value of α (20 for α = 0.5 to 45 for α = 14). The
derivative terms p̂∂p̂ and �̂∂�̂ are computed using five-point
differences.

We use an explicit Euler time stepping with a typical
time step s = −2.10−5 to integrate the flow equations on
the renormalization time s, which turns out to be stable.
In all cases, a fixed point is reached after s � −20. The
fixed point functions are recorded at s = −25. We studied
separately the influence of the resolution (p̂ and 

√
�̂ ),

and of the mesh sizes (p̂max and �̂max) on the precision level,
and checked the convergence. The differences (in all physical
quantities) between resolutions and/or domain sizes are in all
cases smaller than typically 1% and these numerical errors are
dominated by the residual variations observed when varying
the cutoff parameter α.
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